Fusion of visible and thermal images for facial expression recognition
Shangfei WANG , Shan HE , Yue WU , Menghua HE , Qiang JI
Front. Comput. Sci. ›› 2014, Vol. 8 ›› Issue (2) : 232 -242.
Fusion of visible and thermal images for facial expression recognition
Most present research into facial expression recognition focuses on the visible spectrum, which is sensitive to illumination change. In this paper, we focus on integrating thermal infrared data with visible spectrum images for spontaneous facial expression recognition. First, the active appearance model AAM parameters and three defined head motion features are extracted from visible spectrum images, and several thermal statistical features are extracted from infrared (IR) images. Second, feature selection is performed using the F-test statistic. Third, Bayesian networks BNs and support vector machines SVMs are proposed for both decision-level and feature-level fusion. Experiments on the natural visible and infrared facial expression (NVIE) spontaneous database show the effectiveness of the proposed methods, and demonstrate thermal IR images’ supplementary role for visible facial expression recognition.
facial expression recognition / feature-level fusion / decision-level fusion / support vector machine / Bayesian network / thermal infrared images / visible spectrum images
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |