A comprehensive review of significant researches on content based indexing and retrieval of visual information

R PRIYA, T. N SHANMUGAM

PDF(474 KB)
PDF(474 KB)
Front. Comput. Sci. ›› 2013, Vol. 7 ›› Issue (5) : 782-799. DOI: 10.1007/s11704-013-1276-6
REVIEW ARTICLE

A comprehensive review of significant researches on content based indexing and retrieval of visual information

Author information +
History +

Abstract

Developments in multimedia technologies have paved way for the storage of huge collections of video documents on computer systems. It is essential to design tools for content-based access to the documents, so as to allow an efficient exploitation of these collections. Content based analysis provides a flexible and powerfulway to access video data when compared with the other traditional video analysis techniques. The area of content based video indexing and retrieval (CBVIR), focusing on automating the indexing, retrieval and management of video, has attracted extensive research in the last decade. CBVIR is a lively area of research with enduring acknowledgments from several domains. Herein a vital assessment of contemporary researches associated with the content-based indexing and retrieval of visual information. In this paper, we present an extensive review of significant researches on CBVIR. Concise description of content based video analysis along with the techniques associated with the content based video indexing and retrieval is presented.

Keywords

nultimedia information / content based video retrieval (CBVR) / content based video indexing and retrieval (CBVIR) / shot segmentation / object segmentation / feature extraction / indexing / motion estimation / querying / key frame / retrieval / and indexing

Cite this article

Download citation ▾
R PRIYA, T. N SHANMUGAM. A comprehensive review of significant researches on content based indexing and retrieval of visual information. Front Comput Sci, 2013, 7(5): 782‒799 https://doi.org/10.1007/s11704-013-1276-6

References

[1]
Hanis A, Sziranyi T. Measuring the motion similarity in video indexing. In: Proceedings of the 4th EURASIP Conference Focused on Video/Image Processing andMultimedia Communications. 2003, 507-512
[2]
Calic J, Izuierdo E. Efficient key-frame extraction and video analysis. In: Proceedings of the 2002 International Conference on Information Technology: Coding and Computing. 2002, 28-33
[3]
Carbonaro A. Ontology-based video retrieval in a semantic-based learning environment. Journal of e-Learning and Knowledge Society, 2009, 4(3): 203-212
[4]
George A, Rajakumar B, Suresh B. Markov random field based image restoration with aid of local and global features. International Journal of Computer Applications, 2012, 48(8): 23-28
[5]
Kundra E H, Verma E M, Aashima E. Filter for removal of impulse noise by using fuzzy logic. International Journal of Image Processing (IJIP), 2011, 3(5): 195-202
[6]
Umamakeswari A, Rajaraman A. Object based video analysis, interpretation and tracking. Journal of Computer Science, 2007, 3(10): 818-822
CrossRef Google scholar
[7]
Amer A. Object-based video retrieval based on motion analysis and description. Technical Report, University du Québec, 1999
[8]
Javed O, Shah M, Comaniciu D. A probabilistic framework for object recognition in video. In: Proceedings of the 2004 International Conference on Image Processing. 2004, 2713-2716
[9]
Radhakrishnan R, Divakaran A, Xiong Z, Otsuka I. A content-adaptive analysis and representation framework for audio event discovery from unscripted multimedia. EURASIP Journal on Applied Signal Processing, 2006: 1-24
CrossRef Google scholar
[10]
Schnettler B, Raab J. Interpretative visual analysis developments: state of the art and pending problems. Historical Social Research/Historische Sozialforschung, 2009, 265-295
[11]
Ramoser H, Schlogl T, Beleznai C, Winter M, Bischof H. Shape-based detection of humans for video surveillance applications. In: Proceedings of the 2003 IEEE International Conference on Image Processing. 2003, 3: 1013-1016
[12]
Ahmad A M, Lee S Y. Fast and robust object-extraction framework for object-based streaming system. International Journal of Virtual Technology and Multimedia, 2008, 1(1): 39-60
CrossRef Google scholar
[13]
Ngo C W, Pong T C, Zhang H J. Motion-based video representation for scene change detection. International Journal of Computer Vision, 2002, 50(2): 127-142
CrossRef Google scholar
[14]
Zelnik-Manor L, Irani M. Event-based analysis of video. In: Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition. 2001, II-123-II-130
[15]
Ding Y, Fan G Camera view-based american football video analysis. In: Proceedings of the 8th IEEE International Symposium on Multimedia. 2006, 317-322
CrossRef Google scholar
[16]
Mohan C K, Dhananjaya N, Yegnanarayana B. Video shot segmentation using late fusion technique. In: Proceedings of the 7th International Conference on Machine Learning and Applications. 2008, 267-270
[17]
Affendey L S, Mamat A, Ibrahim H, Ahmad F. Video data modeling to support hybrid query. International Journal of Computer Science and Network Security, 2007, 7(9): 53-61
[18]
Aytar Y, Shah M, Luo J. Utilizing semantic word similarity measures for video retrieval. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1-8
CrossRef Google scholar
[19]
Dimitrova N, Zhang H J, Shahraray B, Sezan I, Huang T, Zakhor A. Applications of video-content analysis and retrieval. IEEE MultiMedia, 2002, 9(3): 42-55
CrossRef Google scholar
[20]
Bergman L D, Castelli V, Li C. Progressive content-based retrieval from satellite image archives. Technical Report, D-LibMagazine, 1997
CrossRef Google scholar
[21]
Chang S F, Smith J R, Meng H J, Wang H, Zhong D. Finding images/video in large archives. Technical Report, D-Lib Magazine, 1997
[22]
Gupta A, Jain R. Visual information retrieval. Communications of the ACM, 1997, 40(5): 70-79
CrossRef Google scholar
[23]
Papadias D, Mantzourogiannis M, Kalnis P, Mamoulis N, Ahmad I. Content-based retrieval using heuristic search. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 1999, 168-175
[24]
Koprinska I, Carrato S. Temporal video segmentation: a survey. Signal Processing: Image Communication, 2001, 16(5): 477-500
CrossRef Google scholar
[25]
Hanjalic A. Shot-boundary detection: unraveled and resolved? IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(2): 90-105
CrossRef Google scholar
[26]
Girgensohn A, Boreczky J. Time-constrained keyframe selection technique. In: Proceedings of the 1999 IEEE International Conference on Multimedia Computing and Systems. 1999, 756-761
CrossRef Google scholar
[27]
Liu T, Kender J ROptimization algorithms for the selection of key frame sequences of variable length. In: Proceedings of the 2002 European Conference on Computer Vision. 2002, 403-417
CrossRef Google scholar
[28]
Aslandogan Y A, Yu C T. Techniques and systems for image and video retrieval. IEEE Transactions on Knowledge and Data Engineering, 1999, 11(1): 56-63
CrossRef Google scholar
[29]
Lu G. Techniques and data structures for efficient multimedia retrieval based on similarity. IEEE Transactions on Multimedia, 2002, 4(3): 372-384
CrossRef Google scholar
[30]
Lelescu D, Schonfeld D. Video skimming and summarization based on principal component analysis. In: Proceedings of the 4th IFIP/IEEE International Conference on Management of Multimedia on the Internet. 2001, 128-141
CrossRef Google scholar
[31]
Gargi U, Kasturi R, Strayer S H. Performance characterization of video-shot-change detection methods. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(1): 1-13
CrossRef Google scholar
[32]
Huang Y, Liu Q, Metaxas D. Video object segmentation by hypergraph cut. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1738-1745
CrossRef Google scholar
[33]
Aydm Alatan A, Tuncel E, Onural L. A rule-based method for object segmentation in video sequences. In: Proceedings of the 1997 International Conference on Image Processing. 1997, 522-525
[34]
Otoom A F, Gunes H, Piccardi M. Feature extraction techniques for abandoned object classification in video surveillance. In: Proceedings of the 15th IEEE International Conference on Image Processing. 2008, 1368-1371
[35]
Van Cauwelaert D. Generic models for adaptive robust feature extraction in video. In: Proceedings of the 9th FirW PhD Symposium. 2008, 148-149
[36]
Zhong D, Chang S F. An integrated approach for content-based video object segmentation and retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(8): 1259-1268
CrossRef Google scholar
[37]
Avrithis Y S, Doulamis A D, Doulamis N D, Kollias S D. An adaptive approach to video indexing and retrieval using fuzzy classification. In: Proceedings of VLBV. 1998
[38]
Idris F, Panchanathan S. Review of image and video indexing techniques. Journal of Visual Communication and Image Representation, 1997, 8(2): 146-166
CrossRef Google scholar
[39]
Christel M G, Smith M A, Taylor C R, Winkler D BEvolving video skims into useful multimedia abstractions. In: Proceedings of the 1998 SIGCHI Conference on Human factors in Computing Systems. 1998, 171-178
[40]
Marchand-Maillet S. Content-based video retrieval: an overview. 2000
[41]
Jawahar C, Chennupati B, Paluri B, Jammalamadaka N. Video Retrieval Based on Textual Queries. Technical Report, 2005
[42]
Zhang X P, Chen Z. An automated video object extraction system based on spatiotemporal independent component analysis and multiscale segmentation. EURASIP Journal on Applied Signal Processing, 2006, 2006: 184
[43]
Chang Y, Lee D J, Hong Y, Archibald J. Unsupervised video shot detection using clustering ensemble with a color global scale-invariant feature transform descriptor. Journal on Image and Video Processing, 2008, 9
[44]
Kolekar M H, Palaniappan K, Sengupta S, Seetharaman G. Semantic concept mining based on hierarchical event detection for soccer video indexing. Journal of Multimedia, 2009, 4(5): 298-312
CrossRef Google scholar
[45]
Jiang R, Crookes D. Approach to automatic video motion segmentation. Electronics Letters, 2007, 43(18): 968-970
CrossRef Google scholar
[46]
Basharat A, Zhai Y, Shah M. Content based video matching using spatiotemporal volumes. Computer Vision and Image Understanding, 2008, 110(3): 360-377
CrossRef Google scholar
[47]
Kuo T C, Chen A L. A maskmatching approach for video segmentation on compressed data. Information Sciences, 2002, 141(1): 169-191
CrossRef Google scholar
[48]
Chen D Y, Hsiao MH, Lee S Y. Automatic closed caption detection and filtering in mpeg videos for video structuring. Journal of Information Science and Engineering, 2006, 22(5): 1145-1162
[49]
Duan L Y, Xu M, Tian Q, Xu C S, Jin J S. A unified framework for semantic shot classification in sports video. IEEE Transactions on Multimedia, 2005, 7(6): 1066-1083
CrossRef Google scholar
[50]
Liu S, Xu M,Yi H, Chia L T, Rajan D. Multimodal semantic analysis and annotation for basketball video. EURASIP Journal on Applied Signal Processing, 2006: 182
[51]
Han B, Gao X, Ji H. A shot boundary detection method for news video based on rough-fuzzy sets. International Journal of Information Technology, 2005, 11(7): 101-111
[52]
Gao X, Tang X. Unsupervised video-shot segmentation and model-free anchorperson detection for news video story parsing. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(9): 765-776
CrossRef Google scholar
[53]
Zhai Y, Shah M Video scene segmentation using markov chain monte carlo. IEEE Transactions on Multimedia, 2006, 8(4): 686-697
CrossRef Google scholar
[54]
Fan J, Aref W G, Elmagarmid A K, Hacid M S, Marzouk M S, Zhu X. Multiview: multilevel video content representation and retrieval. Journal of Electronic Imaging, 2001, 10(4): 895-908
CrossRef Google scholar
[55]
Dönderler M E, Ulusoy Ö, Güdükbay U. Rule-based spatiotemporal query processing for video databases. The VLDB Journal, 2004, 13(1): 86-103
CrossRef Google scholar
[56]
Erozel G, Cicekli N K, Cicekli I. Natural language querying for video databases. Information Sciences, 2008, 178(12): 2534-2552
CrossRef Google scholar
[57]
Smeaton A F, Wilkins P, Worring M, De Rooij O, Chua T S, Luan H. Content-based video retrieval: three example systems from trecvid. International Journal of Imaging Systems and Technology, 2008, 18(2-3): 195-201
CrossRef Google scholar
[58]
Schonfeld D, Lelescu D. Vortex: video retrieval and tracking from compressed multimedia databases—multiple object tracking from mpeg-2 bit stream. Journal of Visual Communication and Image Representation, 2000, 11(2): 154-182
CrossRef Google scholar
[59]
Vrochidis S, Doulaverakis C, Gounaris A, Nidelkou E, Makris L, Kompatsiaris I. A hybrid ontology and visual-based retrieval model for cultural heritage multimedia collections. International Journal of Metadata, Semantics and Ontologies (IJMSO), 2008, 3(3): 167-182
CrossRef Google scholar
[60]
Wen C Y, Chang L F, Li H H. Content based video retrieval with motion vectors and the rgb color model. Forensic Science Journal, 2007, 6(2): 1-36
[61]
Lili N, Noah S, Khalid F. Extracting and integrating multimodality features via multidimensional approach for video retrieval. International Journal of Computer Science and Network Security, 2009, 9(2): 252
[62]
Hoi S C, Lyu M R. A multimodal and multilevel ranking scheme for large-scale video retrieval. IEEE Transactions on Multimedia, 2008, 10(4): 607-619
CrossRef Google scholar
[63]
Tjondronegoro D, Chen Y P PContent-based indexing and retrieval using mpeg-7 and x-query in video data management systems. World Wide Web, 2002, 5(3): 207-227
CrossRef Google scholar
[64]
Ma Y F, Zhang H J. Motion pattern-based video classification and retrieval. EURASIP Journal on Applied Signal Processing, 2003: 199-208
CrossRef Google scholar
[65]
DeMenthon D, Doermann D. Video retrieval of near-duplicates using κ-nearest neighbor retrieval of spatio-temporal descriptors. Multimedia Tools and Applications, 2006, 30(3): 229-253
CrossRef Google scholar
[66]
Yang J, Li Q, Wenyin L, Zhuang Y. Searching for flash movies on the web: a content and context based framework. World Wide Web, 2005, 8(4): 495-517
CrossRef Google scholar
[67]
Dagtas S, Al-Khatib W, Ghafoor A, Kashyap R L. Models for motionbased video indexing and retrieval. IEEE Transactions on Image Processing, 2000, 9(1): 88-101
CrossRef Google scholar
[68]
Lu H, Ooi B C, Shen H T, Xue X. Hierarchical indexing structure for efficient similarity search in video retrieval. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(11): 1544-1559
CrossRef Google scholar
[69]
Zhang D, Nunamaker J FA natural language approach to contentbased video indexing and retrieval for interactive e-learning. IEEE Transactions on Multimedia, 2004, 6(3): 450-458
CrossRef Google scholar
[70]
Amir A, Srinivasan S, Efrat A. Search the audio, browse the video—a generic paradigm for video collections. EURASIP Journal on Advances in Signal Processing, 1900, 2003(2): 209-222
CrossRef Google scholar
[71]
Chiu C Y, Chao S P, Wu M Y, Yang S N, Lin H C. Content-based retrieval for human motion data. Journal of Visual Communication and Image Representation, 2004, 15(3): 446-466
CrossRef Google scholar
[72]
Munesawang P, Guan L. Adaptive video indexing and automatic/semiautomatic relevance feedback. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(8): 1032-1046
CrossRef Google scholar
[73]
Fablet R, Bouthemy P, Pérez P. Nonparametric motion characterization using causal probabilistic models for video indexing and retrieval. IEEE Transactions on Image Processing, 2002, 11(4): 393-407
CrossRef Google scholar
[74]
Yi H, Rajan D, Chia L T. A new motion histogram to index motion content in video segments. Pattern Recognition Letters, 2005, 26(9): 1221-1231
CrossRef Google scholar
[75]
Babu R V, Ramakrishnan K. Compressed domain video retrieval using object and global motion descriptors. Multimedia Tools and Applications, 2007, 32(1): 93-113
CrossRef Google scholar
[76]
Snoek C G, Worring M, Koelma D C, Smeulders A W. A learned lexicon-driven paradigm for interactive video retrieval. IEEE Transactions on Multimedia, 2007, 9(2): 280-292
CrossRef Google scholar
[77]
Abdelali A B, Mtibaa A, Bourennane E, Abid M. Design of hardware accelerators for content based video indexing. Asian Journal of Information Technology, 2006, 5(9): 976-984
[78]
Doulamis A D, Doulamis N D, Kollias S D. A fuzzy video content representation for video summarization and content-based retrieval. Signal Processing, 2000, 80(6): 1049-1067
CrossRef Google scholar
[79]
Lee J, Dickinson B WHierarchical video indexing and retrieval for subband-coded video. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(5): 824-829
CrossRef Google scholar
[80]
Fan J, Zhu X, Hacid M S, Elmagarmid A KModel-based video classification toward hierarchical representation, indexing and access. Multimedia Tools and Applications, 2002, 17(1): 97-120
CrossRef Google scholar
[81]
Albanese M, Chianese A, Moscato V, Sansone L. A formal model for video shot segmentation and its application via animate vision. Multimedia Tools and Applications, 2004, 24(3): 253-272
CrossRef Google scholar
[82]
Cheung R. Indexing an intelligent video database using evolutionary control. Journal of Digital Information Management, 2003, 1: 8-19
[83]
Erol B, Kossentini F. Retrieval by local motion. EURASIP Journal on Advances in Signal Processing, 1900, 2003(1): 41-47
CrossRef Google scholar
[84]
Xu C, Cheng J, Zhang Y, Zhang Y, Lu H. Sports video analysis: semantics extraction, editorial content creation and adaptation. Journal of Multimedia, 2009, 4(2): 69-79
CrossRef Google scholar
[85]
Lee S, Yoo C D. Robust video fingerprinting for content-based video identification. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(7): 983-988
CrossRef Google scholar
[86]
Fan J, Elmagarmid A K, Zhu X, Aref W G, Wu L. Classview: hierarchical video shot classification, indexing, and accessing. IEEE Transactions on Multimedia, 2004, 6(1): 70-86
CrossRef Google scholar
[87]
Fan J, Luo H, Elmagarmid A K. Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing. IEEE Transactions on Image Processing, 2004, 13(7): 974-992
CrossRef Google scholar
[88]
Khan A, Sun L, Ifeachor E. Content-based video quality prediction for mpeg4 video streaming over wireless networks. Journal ofMultimedia, 2009, 4(4): 228-239
[89]
Dumont E, Merialdo B. Rushes video summarization and evaluation. Multimedia Tools and Applications, 2010, 48(1): 51-68
CrossRef Google scholar
[90]
Thyagharajan K, Ramachandran V. An effective transmission and browsing methodology for streaming video. Journal of Computer Science, 2006, 2(4): 326-332
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(474 KB)

Accesses

Citations

Detail

Sections
Recommended

/