Resilient k-d trees: k-means in space revisited
Fabian GIESEKE , Gabriel MORUZ , Jan VAHRENHOLD
Front. Comput. Sci. ›› 2012, Vol. 6 ›› Issue (2) : 166 -178.
Resilient k-d trees: k-means in space revisited
We propose a k-d tree variant that is resilient to a pre-described number of memory corruptions while still using only linear space. While the data structure is of independent interest, we demonstrate its use in the context of highradiation environments. Our experimental evaluation demonstrates that the resulting approach leads to a significantly higher resiliency rate compared to previous results. This is especially the case for large-scale multi-spectral satellite data, which renders the proposed approach well-suited to operate aboard today’s satellites.
data mining / clustering / resilient algorithms and data structures
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |