Evolutionary multi-objective optimization:some current research trends and topics that remain to be explored

Carlos A. COELLO COELLO

PDF(605 KB)
PDF(605 KB)
Front. Comput. Sci. ›› 2009, Vol. 3 ›› Issue (1) : 18-30. DOI: 10.1007/s11704-009-0005-7
REVIEW ARTICLE

Evolutionary multi-objective optimization:some current research trends and topics that remain to be explored

Author information +
History +

Abstract

This paper provides a short review of some of the main topics in which the current research in evolutionary multi-objective optimization is being focused. The topics discussed include new algorithms, efficiency, relaxed forms of dominance, scalability, and alternative metaheuristics. This discussion motivates some further topics which, from the author’s perspective, constitute good potential areas for future research, namely, constraint-handling techniques, incorporation of user’s preferences and parameter control. This information is expected to be useful for those interested in pursuing research in this area.

Keywords

evolutionary multi-objective optimization / evolutionary algorithms / multi-objective optimization / metaheuristics

Cite this article

Download citation ▾
Carlos A. COELLO COELLO. Evolutionary multi-objective optimization:some current research trends and topics that remain to be explored. Front Comput Sci Chin, 2009, 3(1): 18‒30 https://doi.org/10.1007/s11704-009-0005-7

References

[1]
Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading: Addison-Wesley Publishing Company, 1989
[2]
Eiben A E, Smith J E. Introduction to Evolutionary Computing. Berlin: Springer, 2003
[3]
Coello Coello C A, Lamont G B, Van Veldhuizen D A. 2nd ed. Evolutionary Algorithms for Solving Multi-Objective Problems. New York: Springer, 2007
[4]
Deb K. Multi-Objective Optimization using Evolutionary Algorithms. Chichester: John Wiley & Sons, 2001
[5]
Coello Coello C A. An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys, 2000, 32(2): 109-143
CrossRef Google scholar
[6]
Miettinen K M. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers, 1999
[7]
Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. <DissertationTip/>. Nashville: Vanderbilt University, 1984
[8]
Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the First International Conference on Genetic Algorithms and their Applications, 1985, 93-100
[9]
Coello Coello C A. Evolutionary multiobjective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 2006, 1(1): 28-36
CrossRef Google scholar
[10]
Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest S, ed. Proceedings of the Fifth International Conference on Genetic Algorithms. San Fransisco: Morgan Kaufmann Publishers, 1993, 416-423
[11]
Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. Piscataway: IEEE Service Center, 1994, 1: 82-87
[12]
Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221-248
CrossRef Google scholar
[13]
Husbands P. Distributed coevolutionary genetic algorithms for multicriteria and multi-constraint optimisation. In: Fogarty T C, ed. Evolutionary Computing. Springer-Verlag, LNCS, 1994, 865: 150-165
[14]
Osyczka A, Kundu S. A genetic algorithm approach to multicriteria network optimization problems. In: Proceedings of the 20th International Conference on Computers and Industrial Engineering, 1996, 329-332
[15]
Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271
CrossRef Google scholar
[16]
Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 2000, 8(2): 149-172
CrossRef Google scholar
[17]
Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. In: Giannakoglou K, Tsahalis D, Periaux J, Papailou P, Fogarty T, eds. Proceedings of EUROGEN 2001-Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2002, 95-100
[18]
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197
CrossRef Google scholar
[19]
Babbar M, Lakshmikantha A, Goldberg D E. A modified NSGA-II to solve noisy multiobjective problems. In: Foster J, ed. Proceedings of 2003 Genetic and Evolutionary Computation Conference. Late-Breaking Papers. Chicago: AAAI, 2003, 21-27
[20]
Jozefowiez N, Semet F, Talbi E G. Enhancements of NSGA II and its application to the vehicle routing problem with route balancing. In: Talbi E G, Liardet P, Collet P, Lutton E, Schoenauer M, eds. Proceedings of Artificial Evolution, 7th International Conference, Evolution Artificielle, EA 2005. Lille: Springer, LNCS, 2005, 3871: 131-142
[21]
Nojima Y, Narukawa K, Kaige S, Ishibuchi H. Effects of removing overlapping solutions on the performance of the NSGA-II algorithm. In: Coello Coello C A, Hernández-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005). Guanajuato: Springer, LNCS, 2005, 3410: 341-354
[22]
Köoppen M, Yoshida K. Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Crterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 727-741
[23]
Goldberg D E, Richardson J. Genetic algorithm with sharing for multimodal function optimization. In: Grefenstette J J, ed. Proceedings of Genetic Algorithms and Their Applications, the Second International Conference on Genetic Algorithms. Hillsdale: Lawrence Erlbaum, 1987, 41-49
[24]
Deb K, Goldberg D E. An investigation of niche and species formation in genetic function optimization. In: Schaffer J D, ed. Proceedings of the Third International Conference on Genetic Algorithms. San Mateo: Morgan Kaufmann Publishers, 1989, 42-50
[25]
Knowles J, Corne D. Properties of and adaptive archiving algorithm for storing nondominated vectors. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 100-116
CrossRef Google scholar
[26]
Cui X X, Li M, Fang T J. Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles. In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001). Piscataway: IEEE Service Center, 2001, 2: 1316-1321
[27]
Farhang-Mehr A, Azarm S. Diversity assessment of Pareto optimal solution sets: an entropy approach. In: Proceedings of Congress on Evolutionary Computation (CEC’2002). Piscataway: IEEE Service Center, 2002, 1: 723-728
[28]
Farhang-Mehr A, Azarm S. Entropy-based multi-objective genetic algorithm for design optimization. Structural and Multidisciplinary Optimization, 2002, 24(25): 351-361
CrossRef Google scholar
[29]
Zitzler E, Künzli S. Indicator-based selection in multiobjective search. In: Yao X, , eds. Parallel Problem: Solving from Nature – PPSN VIII. Birmingham: Springer-Verlag, LNCS, 2004, 3242: 832-842
[30]
Zitzler E, Thiele L, Laumanns M, Fonseca C M, Da Fonseca V G. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117-132
CrossRef Google scholar
[31]
Zitzler E, Thiele L, Bader J. SPAM: set preference alogrithm for multiobjective optimization. In: Rudolph G, Jansen T, Lucas S, Poloni C, Beume N, eds. Parallel Problem Solving from Nature–PPSN X. Dortmund: Springer, LNCS, 2008, 5199: 847-858
[32]
Emmerich M, Beume N, Naujoks B. An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello C A, Hernández-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005). Guanajuato: Springer, LNCS, 2005, 3410: 62-76
[33]
Beume N, Naujoks B, Emmerich M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research, 2007, 181(3): 1653-1669
CrossRef Google scholar
[34]
Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms—a comparative study. In: Eiben A E, ed. Parallel Problem Solving from Nature V. Amsterdam: Springer–Verlag, 1998, 292-301
CrossRef Google scholar
[35]
Zitzler E. Evolutionary algorithms for multiobjective optimization: Methods and application. <DissertationTip/>. Zurich: Swiss Federal Institute of Technology (ETH), 1999
[36]
Igel C, Hansen N, Roth S. Covariance matrix adaptation for multiobjective optimization. Evolutionary Computation, 2007, 15(1): 1-28
CrossRef Google scholar
[37]
Igel C, Suttorp T, Hansen N. Steady-state selection and efficient covariance matrix update in the multi-objective CM-ES. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of 4th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 171-185
[38]
Sefrioui M, Periaux J. Nash genetic algorithms: examples and applications. In: Proceeding of 2000 Congress on Evolutionary Computation. San Diego: IEEE Service Center, 2000, 1: 509-516
[39]
Landa-Becerra R, Coello Coello C A. Solving hard multiobjective optimization problems using ϵ-constraint with cultured differential evolution. In: Runarsson T P, Beyer H G, Burke E, Merelo-Gurervós J J, Whitley D L, Yao X, eds. Proceedings of 9th International Conference on Parallel Problem Solving from Nature-PPSN IX. Reykjavk: Springer, LNCS, 2006, 4193: 543-552
[40]
Nebro A J, Durillo J J, Luna F, Dorronsoro B, Alba E. A cellular genetic algorithm for multiobjective optimization. In: Pelta D A, Krasnogor N, eds. Proceedings of the Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO 2006), 2006, 25-36
[41]
Nebro A J, Durillo J J, Luna F, Dorronsoro B, Alba E. Design issues in a multiobjective cellular genetic algorithm. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of 4th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 126-140
[42]
Coello Coello C A, Toscano-Pulido G.Multiobjective optimization using a micro-genetic algorithm. In: Spector L, Good-man E D, Wu A, Langdon W B, Voigt H M, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon M H, Burke E, eds. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001). San Francisco: Morgan Kaufmann Publishers, 2001, 274-282
[43]
Toscano-Pulido G, Coello Coello C A. The micro genetic algorithm 2: towards online adaptation in evolutionary multiobjective optimization. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Second International Conference on Evolutionary Multi- Criterion Optimization (EMO 2003). Faro: Springer, LNCS, 2003, 2632: 252-266
[44]
Jensen M T. Reducing the run-time complexity of multionbjective EAs: the NSGA-II and other algorithms. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 503-515
CrossRef Google scholar
[45]
Kung H T, Luccio F, Preparata F P. On finding the maxima of a set of vectors. Journal of the Association for Computing Machinery, 1975, 22(4): 469-476
[46]
Rohling G. Multiple objective evolutionary algorithms for independent, computationally expensive objective evaluations. <DissertationTip/>. Atlanta: Georgia Institute of Technology, 2004
[47]
Yukish MA. Algorithms to identify Pareto points inmulti-dimensional data sets. <DissertationTip/>. Philadelphia: Pennsylvania State University, 2004
[48]
Krishnakumar K. Micro-genetic algorithms for stationary and nonstationary function optimization. In: Proceedings of SPIE: Intelligent Control and Adaptive Systems, 1989, 1196: 289-296
[49]
Won K S, Ray T. Performance of Kriging and Cokriging based surrogate models within the unified framework for surrogate assisted optimization. In: Proceedings of 2004 Congress on Evolutionary Computation (CEC’2004). Portland: IEEE Service Center, 2004, 2: 1577-1585
[50]
Karakasis M K, Giannakoglou K C. Metamodel-assisted multiobjective evolutionary optimization. In: Schilling R, Haase W, Periaux J, Baier H, Bugeda G, eds. Proceedings of EUROGEN 2005- Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2005
[51]
Voutchkov I, Kene A J. Multiobjective optimization using surrogates. In: Parmee I C, ed. Proceedings of the Seventh International Conference on Adaptive Computing in Design and Manufacture 2006. Bristol: The institute for People-centred Computation, 2006, 167-175
[52]
Knowles J. ParEGO: A hybrid algorithm with on-line landscape approximation for exersive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66
CrossRef Google scholar
[53]
Ray T, Smith W. A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design. Engineering Optimization, 2006, 38(8): 997-1011
CrossRef Google scholar
[54]
Reynolds R G, Michalewiez Z, Cavaretta M. Using cultural algorithms for constraint handing in GENOCOP. In: McDonnell J R, Reynolds R G, Fogel D B, eds. Proceedings of the Fourth Annual Conference on Evolutionary Programming. Cambridge: MIT Press, 1995, 298-305
[55]
Coello Coello C A, Landa-Becerra R. Evolutionary multionbjective optimization using a cultural algorithm. In: Proceedings of 2003 IEEE Swarm Intelligence Symposium. Indianapolis: IEEE Service Center, 2003
[56]
Jin Y C. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, 2005, 9(1): 3-12
CrossRef Google scholar
[57]
Smith R E, Dike B A, Stegmann S A. Fitness inheritance in genetic algorithms. In: Proceedings of the 1995 ACM Symposium on Applied Computing. Nashville: ACM Press, 1995, 345-350
[58]
Bui L T, Abbass H A, Essam D. Fitness inheritance for noisy evolutionary multi-objective optimization. In: Beyer H G, , eds. Proceedings of 2005 Genetic and Evolutionary Computation Conference (GECCO’2005). New York: ACM Press, 2005, 1: 779-785
[59]
Reyes-Sierra M, Coello Coeello C A. A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization. In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’2005). Edinburgh: IEEE Service Center, 2005, 1: 65-72
[60]
Landa-Becerra R, Santana-Quintero L V, Coello Coello C A. Knowledge incorporation in multi-objective evolutionary algorithms. In: Ghosh A, Dehuri S, Ghosh S, eds. Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases. Berlin: Springer, 2008, 23-46
CrossRef Google scholar
[61]
Hernández-Díaz A G, Santana-Quintero L V, Coello Coello C A, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough sets theory. In: Keijzer M, , eds. Proceedings of 2006 Genetic and Evolutionary Computation Conference (GECCO’2006). Seattle: ACM Press, 2006, 1: 675-682
[62]
Santana-Quintero L V, Ramírez N, Coello Coello C A. A multiobjective particle swarm optimizer hybridized with scatter search. In: Gelbukh A, Reyes-Garcia C A, eds. Proceedings of MICAI 2006: Advances in Artificial Intelligence, 5th Mexican International Conference on Artificial Intelligence. Apizaco: Springer, 2006, LNAI, 4293: 294-304
[63]
Wanner E F, Guimaráes F G, Takahashi R H C, Fleming P J. Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria. Evolutionary Computation, 2008, 16(2): 185-224
CrossRef Google scholar
[64]
Adra S F, Griffin I, Fleming P J. An informed convergence accelerator for evolutionary multiobjective optimiser. In: Thierens D, ed. Proceedings of 2007 Genetic and Evolutionary Computation Conference (GECCO’2007). London: ACM Press, 2007, 1: 734-740
[65]
Adra S F. Improving convergence, diversity and pertinency in multiobjective optimisation. <DissertationTip/>. Sheffield: The University of Sheffield, 2007
[66]
Kokolo I, Hajime K, Shigenobu K. Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001). Piscataway: IEEE Service Center, 2001, 2: 957-962
[67]
Laumanns M, Thiele L, Deb K, Zitzler E. Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation, 2002, 10(3): 263-282
CrossRef Google scholar
[68]
Villalobos-Arias M A, Toscano Pulido G, Coello Coello C A. A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer. In: Proceedings of 2005 IEEE Swarm Intelligence Symposium (SIS’05). IEEE Press, 2005, 22-29
[69]
Hernández-Díaz A G, Santana-Quintero L V, Coello Coello C A, Molina J. Pareto-adaptive ϵ-dominance. Evolutionary Computation, 2007, 15(4): 493-517
CrossRef Google scholar
[70]
Deb K, Mohan M, Mishra S. Towards a quick computation of wellspread Pareto-optimal solutions. In: Fonseca CM, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Second International Conference (EMO 2003). Faro: Springer, LNCS, 2003, 2632: 222-236
[71]
Mostaghim S, Teich J. The role of ϵ-dominance in multi objective particle swarm optimization methods. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC’2003). Canberra: IEEE Press, 2003, 3: 1764-1771
[72]
Deb K, Mohan M, Mishra S. Evaluating the ϵ-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation, 2005, 13(4): 501-525
CrossRef Google scholar
[73]
Santana-Quintero L V, Coello Coello C A. An algorithm based on differential evolution for multi-objective problems. International Journal of Computational Intelligence Research, 2005, 1(2): 151-169
[74]
Khare V, Yao X, Deb K. Performance scaling of multi-objective evolutionary algorithms. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Second International Conference on Evolutionary Multi-Criterion Optimization (EMO 2003). Faro: Springer, LNCS, 2003, 2632: 376-390
[75]
Hughes E J. Evolutionary many-objective optimisation: many once or one many? In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’2005). Edinburgh: IEEE Service Center, 2005, 1: 222-227
[76]
Wagner T, Beume N, Naujoks B. Pareto-, aggregation-, and indicatorbased methods in many-objective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 742-756
[77]
Farina M, Amato P. On the optimal solution definition for manycriteria optimization problems. In: Proceedings of the NAFIPSFLINT International Conference’2002, Piscataway: IEEE Service Center, 2002, 233-238
[78]
Knowles J, Corne D. Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 757-771
[79]
Purshouse R C. On the evolutionary optimisation of many objectives. <DissertationTip/>. Sheffield: The University of Sheffield, 2003
[80]
Purshouse R C, Fleming P J. On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Algorithms, 2007, 11(6): 770-784
CrossRef Google scholar
[81]
Di Pierro F. Many-objective evolutionary algorithms and applications to water resources engineering. <DissertationTip/>. Exeter: University of Exeter, 2006
[82]
Di Pierro F, Khu S T, Savić D A. An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 17-45
CrossRef Google scholar
[83]
Farina M, Amato P. A fuzzy definition of “optimality” for manycriteria optimization problems. IEEE Transactions on Systems, Man, and Cybernetics Part A—Systems and Humans, 2004, 34(3): 315-326
CrossRef Google scholar
[84]
Sülflow A, Drechsler N, Drechsler R. Robust multi-objective optimization in high dimensional spaces. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 715-726
[85]
Saxena D K, Deb K. Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 772-787
[86]
Brockhoff D, Zitzler E. Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: Runarsson T P, Beyer H G, Burke E, Merelo-Guervós J J, Whitley L D, Yao X, eds. Proceedings of Parallel Problem Solving from Nature- PPSN IX, 9th International Conference. Reykjavik: Springer, LNCS, 2006, 4193: 533-542
[87]
Jaimes A L, Coello Coello C A, Chakraborty D. Objective reduction using a feature selection technique. In: Proceedings of 2008 Genetic and Evolutionary Computation Conference (GECCO’2008). Atlanta: ACM Press, 2008, 674-680
[88]
Durillo J J, Nebro A J, Coello Coello C A, Luna F, Alba E. A comparative study of the effect of parameter scalability in multi-objective metaheuristics. In: Proceedings of 2008 Congress on Evolutionary Computation (CEC’2008). Hong Kong: IEEE Service Center, 2008, 1893-1900
[89]
Nebro A J, Luna F, Alba E, Dorronsoro B, Durillo J J, Beham A. AbYSS: adapting scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2008, 12(4): 439-457
CrossRef Google scholar
[90]
Corne D, Dorigo M, Glover F, eds. New Ideas in Optimization. London: McGraw-Hill, 1999
[91]
De Castro L N, Timmis J. An Introduction to Artificial Immune Systems: A New Computational Intelligence Paradigm. London: Springer, 2002
[92]
Dasgupta D, ed. Artificial Immune Systems and Their Applications. Berlin: Springer-Verlag, 1999
[93]
De Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251
CrossRef Google scholar
[94]
Luh G C, Chued C H, Liu W W. MOIA: multi-objective immune algorithm. Engineering Optimization, 2003, 35(2): 143-164
CrossRef Google scholar
[95]
Luh G C, Chued C H. Multi-objective optimal design of truss structure with immune algorithm. Computers and Structures, 2004, 82: 829-844
CrossRef Google scholar
[96]
Coello Coello C A, Cruz-Cortés N. Solving multionbjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190
CrossRef Google scholar
[97]
Freschi F, Repetto M. VIS: an artificial immune network for multiobjective optimization. Engineering Optimization, 2006, 38(8): 975-996
CrossRef Google scholar
[98]
Campelo F, Guimaráes F G, Igarashi H. Overview of artificial immune systems for multi-objective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 937-951
[99]
Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei A H. A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness. Information Sciences, 2007, 177(22): 5072-5090
CrossRef Google scholar
[100]
Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei A H. Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. International Journal of Advanced Manufacturing Technology, 2008, 36(9-10): 969-981
CrossRef Google scholar
[101]
Zhang X R, Lu B, Gou S, Jiao L. Immune multiobjective optimization algorithm using unsupervised feature selection. In Rothlauf F, , eds. Applications of Evolutionary Computing. EvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC. Budapest: Springers, LNCS, 2006, 3907: 484-494
[102]
Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies. In: Varela F J, Bourgine P, eds. Proceedings of the First European Conference on Artificial Life. Cambridge: MIT Press, 1992, 134-142
[103]
Dorigo M, Di Caro G. The ant colony optimization meta-heuristic. In: Corne D, Dorigo M, Glover F, eds. New Ideas in Optimization. London: McGraw-Hill, 1999, 11-32
[104]
Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence: From Natural to Artificial Systems. New York: Oxford University Press, 1999
[105]
Dorigo M, Stützle T. Ant Colony Optimization. Cambridge: The MIT Press, 2004
[106]
Mariano-Romero C E, Morales-Manzanares E. MOAQ an ant-Q algorithm for multiple objective optimization problems. In: Banzhaf W, Daida J, Eiben A E, Garzon M H, Honavar V, Jakiela M, Smith R E, eds. Proceedings of Genetic and Evolutionary Computing Conference (GECCO 99). San Francisco: Morgan Kaufmann, 1999, 1: 894-901
[107]
Iredi S, Merkle D, Middendorf M. Bi-criterion optimization with multi colony ant algorithms. In: Zitzler E, Deb K, Thiele L, Coello Coello C A, Corne D, eds. Proceedings of First International Conference on Evolutionary Multi-Criterion Optimization. Berlin: Springer-Verlag, LNCS, 2001, 1993: 359-372
[108]
Barán B, Schaerer M. A multiobjective ant colony system for vehicle routing problem with time windows. In: Proceedings of the 21st IASTED International Conference on Applied Informatics. Innsbruck: IASTED, 2003, 97-102
[109]
Guntsch M, Middendorf M. Solving multi-criteria optimization problems with population-based ACO. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Second International Conference (EMO 2003). Faro: Springer, LNCS, 2003, 2632: 464-478
[110]
Doerner K, Gutjahr W J, Hartl R F, Strauss C, Stummer C. Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 2004, 131(1-4): 79-99
CrossRef Google scholar
[111]
Doerner K F, Gutjahr W J, Hartl R F, Strauss C, Stummer C. Pareto ant colony optimization with ILP preprocessing in multiobjective portfolio selection. European Journal of Operational Research, 2006, 171(3): 830-841
CrossRef Google scholar
[112]
García-Martínez C, Cordón O, Herrera F. A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research, 2007, 180(1): 116-148
CrossRef Google scholar
[113]
Ehrgott M, Gandibleux X. Multiobjective combinatorial optimization— theory, methodology, and applications. In: Ehrgott E, Gandibleux X, eds. Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Boston: Kluwer Academic Publishers, 2002, 369-444
[114]
Gandibleux X, Ehrgott M. 1984-2004 – 20 years of multiobjective metaheuristics. But what about the solution of combinatorial problems with multiple objectives? In: Coello Coello C A, Hernández-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005). Guanajuato: Springer, LNCS, 2005, 3410: 33-46
[115]
Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway:IEEE Service Center, 1995, 1942-1948
[116]
Kennedy J, Eberhart R C. Swarm Intelligence. San Francisco: Morgan Kaufmann Publishers, 2001
[117]
Eberhart R C, Shi Y. Comparison between genetic algorithms and particle swarm optimization. In: Porto V W, Saravanan N, Waagen D, Eibe A E, eds. Proceedings of the Seventh Annual Conference on Evolutionary Programming. Berlin: Springer-Verlag, 1998, 611-619
[118]
Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm. In: Proceedings of the 1997 IEEE Conference on Systems, Man, and Cybernetics. Piscataway: IEEE Service Center, 1997, 4104-4109
[119]
Engelbrecht A P. Computational Intelligence: An Introduction. Chichester: John Wiley & Sons, 2003
[120]
Engelbrecht A P. Fundamentals of Computational Swarm Intelligence. West Sussex: John Wiley & Sons, 2005
[121]
Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of 2003 IEEE Swarm Intelligence Symposium.Indianapolis: IEEE Service Center, 2003, 26-33
[122]
Li X D. A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Cantú-Paz E, , eds. Proceedings of Genetic and Evolutionary Computation—GECCO 2003,Part I. Berlin: Springer, LNCS, 2003, 2723: 37-48
[123]
Coello Coello C A, Toscano-Pulido G, Salazar Lechuga M. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279
CrossRef Google scholar
[124]
Srinivasan D, Seow T H. Particle swarm inspired evolutionary algorithm (PS-EA) for multi-criteria optimization problems. In: Abraham A, Jain L, Goldberg R, eds. Evolutionary Multiobjective Optimization: Theoretical Advances And Applications. London: Springer-Verlag, 2005, 147-165
CrossRef Google scholar
[125]
Alvarez-Benitez J E, Everson R M, Fieldsend J E. A MOPSO algorithm based exclusively on Pareto dominance concepts. In: Coello Coello C A, Hernánde-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005). Guanajuato: Springer, LNCS, 2005, 3410: 459-473
[126]
Reyes-Sierra M, Coello Coello C A. Improving PSO-based multiobjective optimization using crowding, mutation and ϵ-dominance. In: Coello Coello C A, Aguirre A H, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005). Guanajuato: Springer, LNCS, 2005, 3410: 505-519
[127]
Reyes-Sierra M, Coello Coello C A. Multi-objective particle swarm optimizers: a survey of the state-of-the-art. International Journal of Computational Intelligence Research, 2006, 2(3): 287-308
[128]
Branke J, Mostaghim S. About selecting the personal best in multiobjective particle swarm optimization. In: Runarsson T P, Beyer H G, Burke E, Merelo-Guervós J J, Whitley L D, Yao X, eds. Proceedings of Parallel Problem Solving from Nature- PPSN IX, 9th International Conference. Reykjavik: Springer, LNCS, 2006, 4193: 523-532
[129]
Toscano-Pulido G, Coello Coello C A, Santana-Quintero L V. EMOPSO: a multi-objective particle swarm optimizer with emphasis on efficiency. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Springer, LNCS,2007, 4403: 272-285
[130]
Glover F. Heuristics for integer programming using surrogate constraints. Decision Sciences, 1977, 8: 156-166
CrossRef Google scholar
[131]
Glover F. Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Applied Mathematics, 1994, 49: 231-255
CrossRef Google scholar
[132]
Laguna M, Mart´ı R. Scatter Search : Methodology and Implementations in C. Bostion: Kluwer Academic Publishers, 2003
[133]
Martí R. Scatter search–wellsprings and challenges. European Journal of Operational Research, 2006, 169: 351-358
CrossRef Google scholar
[134]
Romero-Zaliz R, Zwir I, Ruspini E. Generalized analysis of promoters: a method for DNA sequence description. In: Coello Coello C A, Lamont G B, eds. Applications of Multi-Objective Evolutionary Algorithms. World Scientific, 2004, 427-449
[135]
Vasconcelos J A, Maciel J H R D, Parreiras R O. Scatter search techniques applied to electromagnetic problems. IEEE Transactions on Magnetics, 2005, 41(5): 1804-1807
CrossRef Google scholar
[136]
Beausoleil R P. “MOSS” multiobjective scatter search applied to nonlinear multiple criteria optimization. European Journal of Operational Research, 2006, 169(2): 426-449
CrossRef Google scholar
[137]
Knowles J, Corne D. Memetic algorithms for multiobjective optimization: issues, methods and prospects. In: Hart W E, Krasnogor N, Smith J E, eds. Recent Advances in Memetic Algorithms. Heidelberg: Springer, Studies in Fuzziness and Soft Computing, 2005, 166: 313-352
[138]
Surry P D, Radcliffe N J. The COMOGA method: constrained optimization by multiobjective genetic algorithms. Control and Cybernetics, 1997, 26(3): 391-412
[139]
Hernández-Aguirre A, Botello-Rionda S, Lizárraga-Lizárraga G, Coello Coello C A. IS-PAES: multiobjective optimization with efficient constraint handling. In: Burczyński T, Osyczka A, eds. IUTAM Symposium on Evolutionary Methods in Mechanics. Drodrecht/ Boston/London: Kluwer Academic Publishers, 2004, 111-120
[140]
Wang Y, Cai Z X. A constrained optimization evolutionary algorithm based on multiobjective optimization techniques. In: Proceeding of 2005 IEEE Congress on Evolutionary Computation (CEC’2005). Edinbugh: IEEE Service Center, 2005, 2: 1081-1087
[141]
Wang J C, Terpenny J P. Interactive preference incorporation in evolutionary engineering design. In: Jin Y C, ed. Knowledge Incorporation in Evolutionary Computation. Berlin: Springer, 2005, 525-543
[142]
Mezura-Montes E, Coello Coello C A. Constrained optimization via multiobjective evolutionary algorithms. In: Knowles J, Corne D, Deb K, eds. Multi-Objective Problem Solving from Nature: From Concepts to Applications. Berlin: Springer, 2008, 53-75
CrossRef Google scholar
[143]
Gupta H, Deb K. Handling constraints in robust multi-objective optimization, In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’2005). Edinburgh: IEEE Service Center, 2005, 1: 25-32
[144]
Oyama A, Shimoyama K, Fujii K. New constraint-handling method for multi-objective and multi-constraint evolutionary optimization. Transactions of the Japan Society for Aeronautical and Space Sciences, 2007, 50(167): 56-62
CrossRef Google scholar
[145]
Woldesembet Y G, Tessema B G, Yen G G. Constraint handling in multi-objective evolutionary optimization. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation (CEC’2007). Singapore: IEEE Press, 2007, 3077-3084
[146]
Harada K, Sakuma J, Ono I, Kobayashi S. Constraint-handling method for multi-objective function optimization: Pareto descent repair operator. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 156-170
[147]
Coello Coello C A. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-12): 1245-1287
CrossRef Google scholar
[148]
Cvetković D, Parmee I C. Preferences and their application in evolutionary multiobjective optimisation. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 42-57
CrossRef Google scholar
[149]
Jin Y C, Sendhoff B. Incorporation of fuzzy preferences into evolutionary multiobjective optimization. In: Langdon W B, Cantú-Paz E, Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter M A, Schultz A C, Miller J F, Burke E, Jonoska N, eds. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2002). San Francisco: Morgan Kaufmann Publishers, 2002, 683
[150]
Branke J, Deb K. Integrating user preferences into evolutionary multiobjective optimization. In: Jin Y C, ed. Knowledge Incorporation in Evolutionary Computation. Berlin: Springer, 2005, 461-477
[151]
Figueira J, Mousseau V, Roy B, eds. Multiple Criteria Decision Analysis: State of the Art Surveys. New York: Springer, 2005
[152]
Eiben A E, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 124-141
CrossRef Google scholar
[153]
Eiben A E, Michalewicz Z, Schoenauer M, Smith J E. Parameter control in evolutionary algorithms. In: Lobo F G, Lima C F, Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms. Berlin: Springer-Verlag, 2007, 19-46
CrossRef Google scholar
[154]
Meyer-Nieberg S, Beyer H G. Self-adaptation in evolutionary algorithms. In: Lobo F G, Lima C F, Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms. Berlin: Springer-Verlag, 2007, 47-75
CrossRef Google scholar
[155]
Laumanns M, Rudolph G, Schwefel H P. Mutation control and convergence in evolutionary multi-objective optimization. In: Proceedings of the 7th International Mendel Conference on Soft Computing (MENDEL 2001). Brno: Brno University of Technology, 2001
[156]
Tan K C, Lee T H, Khor E F. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(6): 565-588
CrossRef Google scholar
[157]
Büche D, Guidati G, Stoll P, Kourmoursakos P. Self-organizing maps for Pareto optimization of airfoils. In: Merelo Guervós J J, Adamidis P, Beyer H G, Fernández-Villacanas J L, Schwefel H P, eds. Parallel Problem Solving from Nature—PPSN VII. Granada: Springer-Verlag, LNCS, 2002, 2439: 122-131
[158]
Abbass H A. The self-adaptive Pareto differential evolution algorithm. In: Proceedings of Congress on Evolutionary Computation (CEC’2002). Piscataway: IEEE Service Center, 2002, 831-836
[159]
Zhu Z Y, Leung K S. Asynchronous self-Adjustable island genetic algorithm for multi-objective optimization problems. In: Proceedings of Congress on Evolutionary Computation (CEC’2002). Piscataway: IEEE Service Center, 2002, 1: 837-842
[160]
Deb K. Evolutionary multi-objective optimization without additional parameters. In: Lobo F G, Lima C F, Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms. Berlin: Springer-Verlag, 2007, 241-257
CrossRef Google scholar
[161]
De Jong K. Parameter setting in EAs: a 30 year perspective. In: Lobo F G, Lima G F,Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms. Berlin: Springer-Verlag, 2007, 1-18
CrossRef Google scholar
[162]
Toscano-Pulido G. On the use of self-adaptation and elitism for multiobjective particle swarm optimization. <DissertationTip/>. Mexico City: CINVESTAV-IPN, 2005
[163]
Laumanns M, Thiele L, Zitzler E. Running time analysis of multiobjective evolutionary algorithms on Pseudo-Boolean functions. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 170-182
CrossRef Google scholar
[164]
Laumanns M, Thiele L, Zitzler E. Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Natural Computing, 2004, 3(1): 37-51
CrossRef Google scholar
[165]
Mostaghim S, Teich J, Tyagi A. Comparison of data structures for storing Pareto-sets in MOEAs. In: Proceedings of Congress on Evolutionary Computation (CEC’2002). Piscataway: IEEE Service Center, 2002, 1: 843-848
[166]
Habenicht W. Quad trees: a data structure for discrete vector optimization problems. Lecture Notes in Economics and Mathematical Systems, 1982, 209: 136-145
[167]
Fieldsend J E, Everson R M, Singh S. Using unconstrained elite archives for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2003, 7(3): 305-323
CrossRef Google scholar
[168]
Schütze O. A new data structure for the nondominance problem in multi-objective optimization. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Second International Conference (EMO 2003). Springer, LNCS, 2003, 2632: 509-518
[169]
Laumanns M, Thiele L, Deb K, Zitzler E. On the convergence and diversity-preservation properties of multi-objective evolutionary algorithms. Technical Report 108, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH). Zurich, 2001
[170]
Villalobos-Arias M, Coello Coello C A, Hernández-Lerma O. Asymptotic convergence of metaheuristics for multiobjective optimization problems. Soft Computing, 2006, 10(11): 1001-1005
CrossRef Google scholar
[171]
Schuetze O, Laumanns M, Tantar E, Coello Coello C A, Talbi E G. Convergence of stochastic search algorithms to gap-free Pareto front approximations. In: Thierens D, ed. Proceedings of 2007 Genetic and Evolutionary Computation Conference (GECCO’2007). London: ACM Press, 2007, 1: 892-899

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(605 KB)

Accesses

Citations

Detail

Sections
Recommended

/