1.Key Laboratory of Quantum Information, University of Science and Technology of China;Institute of Theoretical Physics and Astrophysics, University of Gdańsk;National Quantum Information Centre of Gdansk, ul. W. Andersa 27; 2.Key Laboratory of Quantum Information, University of Science and Technology of China;
Show less
History+
Published
05 Jun 2008
Issue Date
05 Jun 2008
Abstract
In this article, we review the relationship between Bell inequality and its associated polytopes and introduce a method to extend Bell inequalities to more parties. According to this method, the Bell inequality in n parties can be extended to n + 1 parties. Such generalization is nontrivial in that there is stronger violation for new inequalities.
This is a preview of subscription content, contact us for subscripton.
References
1. Bell J S Onthe Einstein-Podolsky-Rosen paradoxPhysics 1964 1195200 2. Einstein A Podolsky B Rosen N Can quantum-mechanical description of physical realitybe considered complete?Physics Review 1935 47777780. doi:10.1103/PhysRev.47.777 3. Clauser J F Horne M A Shimony A et al.Proposed experiment to test local hidden-variabletheoriesPhysical Review Letters 1969 23880884. doi:10.1103/PhysRevLett.23.880 4. Clauser J F Horne M A Experimental consequences ofobjective local theoriesPhysical ReviewD 1974 10526535. doi:10.1103/PhysRevD.10.526 5. Greenberger D M Horne M A Zeilinger A In: Kafatos MBell'sTheorem, Quantum Theory, and Conceptions of the UniverseDordrechtKluwerAcademic Publisher 1989 69 6. Ardehali M Bellinequalities with a magnitude of violation that grows exponentiallywith the number of particlesPhysical ReviewA 1992 4653755378. doi:10.1103/PhysRevA.46.5375 7. Belinskii A V Klyshko D N Interference of light and Bell'stheoremPhysics-Uspekhi 1993 36653693. doi:10.1070/PU1993v036n08ABEH002299 8. Werner R F Wolf M W All-multipartite Bell-correlationinequalities for two di-chotomic observables per sitePhysical Review A 2001 64032112. doi: 10.1103/PhysRevA.64.032112 9. Weinfurter H Zukowski M Four-photon entanglement fromdown-conversionPhysical Review A 2001 64010102(R). doi: 10.1103/PhysRevA.64.010102 10. Zukowski M Brukner Č Bells theorem for general N-qubit statesPhysical Review Letters 2002 88210401. doi: 10.1103/PhysRevLett.88.210401 11. Pitowsky I Quantumprobability–quantum logic (Lecture notes in physics 321)Foundations of Physics Letters 1989 2(3)297298. doi:10.1007/BF00692674 12. Pitowsky I Svozil K Optimal tests of quantum nonlocalityPhysical Review A 2001 64014102. doi: 10.1103/PhysRevA.64.014102 13. Sliwa C Symmetriesof the Bell correlation inequalitiesPhysicsLetters A 2003 317165. doi: 10.1016/S0375‐9601(03)01115‐0 14. Wu X H Zong H S A new Bell inequality for threespin-half particle systemPhysics LettersA 2003 307262. doi: 10.1016/S0375‐9601(02)01672‐9 15. Wu X H Zong H S Violation of local realismby a system with N spin-1/2 particlesPhysical Review A 2003 68032102. doi: 10.1103/PhysRevA.68.032102 16. Laskowski W Paterek T Zukowski M et al.Tight multipartite Bell's inequalities involvingmany measurement settingsPhysical ReviewLetters 2004 93200401. doi: 10.1103/PhysRevLett.93.200401 17. Paterek T Laskowski W Zukowski M On series of multiqubit Bell's inequalitiesModern Physics Letters A 2006 21111. doi: 10.1142/S0217732306019414 18. Pitowsky I Therange of quantum probabilityJournal ofMathematical Physics 1986 27(6)15561565. doi:10.1063/1.527066 19. Avis D Imai H Ito T Two-party Bell inequalities derived from combinatoricsvia triangular eliminationJournal of PhysicsA: Mathematical and General 2005 381097110987. doi:10.1088/0305‐4470/38/50/007 20. Avis D Imai H Ito T On the relationship between convex bodies related to correlationexperiments with dichotomic observablesJournal of Physics A: Mathematical and General 2006 391128311299. doi:10.1088/0305‐4470/39/36/010 21. Pironia S LiftingBell inequalitiesJournal of MathematicalPhysics 2005 46062112. doi: 10.1063/1.1928727 22. Zukowski M Alltight multipartite Bell correlation inequalities for three dichotomicobservables per observerarXiv:quant-ph/0611086 23. Wieśniak M Badziag P Zukowski M Explicit form of correlation function three-settings tightBell inequalities for three qubitsPhysicalReview A 2007 76012110. doi: 10.1103/PhysRevA.76.012110 24. Wu Y C Wieśniak M Badziag P et al.Extending Bell inequalities to more partiesPhysical Review A 2008 77032105. doi: 10.1103/PhysRevA.77.032105 25. Ekert A K Quantumcryptography based on Bells theoremPhysicalReview Letters 1991 67661663. doi:10.1103/PhysRevLett.67.661 26. Scarani V Gisin N Quantum communication between N partners and Bell's inequalitiesPhysical Review Letters 2001 87117901. doi: 10.1103/PhysRevLett.87.117901 27. Brukner C Zukowski M Pan J W et al.Bells inequalities and quantum communication complexityPhysical Review Letters 2004 92127901. doi: 10.1103/PhysRevLett.92.127901 28. Acin A Gisin N Masanes L et al.Bell's inequalities detect efficient entanglementInternational Journal of Quantum Information 2004 223. doi: 10.1142/S0219749904000043 29. Gisin N Bellinequalities: many questions, a few answersarXiv: quant-ph/0102021
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.