PDF(87 KB)
Constructing quantum codes
Author information
+
Software Engineering Institute, East China Normal University;
Show less
History
+
Published |
05 Jun 2008 |
Issue Date |
05 Jun 2008 |
Quantum error correcting codes are indispensable for quantum information processing and quantum computation. In 1995 and 1996, Shor and Steane gave first several examples of quantum codes from classical error correcting codes. The construction of efficient quantum codes is now an active multi-discipline research field. In this paper we review the known several constructions of quantum codes and present some examples.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Shor P W Schemefor reducing decoherence in quantum computer memoryPhysical Review A 1995 52R2493R2496. doi:10.1103/PhysRevA.52.R2493
2. Steane A M Multipleparticle interference and quantum error correctionIn: Proceedings of the Royal Society A 1996 45225512577. doi:10.1098/rspa.1996.0136
3. Calderbank A R Rains E M Shor P W et al.Quantum error correction via codes over GF(4)IEEE Transactions On Information Theory 1998 4413691387. doi:10.1109/18.681315
4. Calderbank A R Shor P W Good quantum error-correctingcodes existPhysical Review A 1996 5410981105. doi:10.1103/PhysRevA.54.1098
5. Steane A M Enlargementof Calderbank-Shor-Steane quantum codesIEEE Transactions on Information Theory 1999 4524922495. doi:10.1109/18.796388
6. Bierbrauer J Edel Y Quantum twisted codesJournal of Combinatorial Designs 2000 8174188. doi:10.1002/(SICI)1520‐6610(2000)8:3<174::AID‐JCD3>3.0.CO;2‐T
7. Bierbrauers J http//www.math.mtu.edu/∼jbierbra
8. Edel Y http//www.mathi.uniheidelberg.de/∼yves
9. Chen H Ling S Xing C Quantum codes from concatenated algebraic geometric codesIEEE Transactions on Information Theory August2005 5129152920. doi:10.1109/TIT.2005.851760
10. Schlingemann D Werner R F Quantum error-correcting codesassociated with graphsPhysical Review A 2001 65(012308)
11. Thangaraj A McLaughlin S W Quantum codes from cyclic codesover GF(4m)IEEE Transactions on Information Theory 2001 47(3)11761178. doi:10.1109/18.915675
12. Steane A M QuantumReed-Muller codesIEEE Transactions on InformationTheory 1999 4517011703. doi:10.1109/18.771249
13. Cohen G Encheva S Litsyn S On binary construction of quantum codesIEEE Transactions on Information Theory 1999 4524952498. doi:10.1109/18.796389
14. Chen H Somegood quantum error-correcting codes from algebraic geometric codesIEEE Transactions on Information Theory 2001 4720592061. doi:10.1109/18.930942
15. Ashikhmin A Litsyn S Tsfasman M A Asymptotically good quantum codesPhysical Review A 2001 63(032311)
16. Chen H Ling S Xing C Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-TsfasmanboundIEEE Transactions on Information Theory 2001 4720552058. doi:10.1109/18.930941
17. Matsumoto R Improvementof Ashikhmin-Litsyn-Tsfasman bound for quantum codesIEEE Transactions on Information Theory 2002 48(2)21222124. doi:10.1109/TIT.2002.1013156
18. Feng K Ling S Xing C Asymptotic bound on quantum codes from algebraic geometrycodesIEEE Transactions on Information Theory 2006 52(3)986991. doi:10.1109/TIT.2005.862086
19. Feng K Qauntumcodes [[6, 2, 3]]p [[7, 3, 3]]p existsIEEE Transactions on InformationTheory 2002 48(8)23842391. doi:10.1109/TIT.2002.800469
20. Li R Li X Binary construction of quantumcodes of minimum distance three and fourIEEE Transactions on Information Theory 2004 50(6)13311336. doi:10.1109/TIT.2004.828149
21. Lin X Quantumcyclic and constacyclic codesIEEE Transactionson Information Theory 2004 50(3)547549. doi:10.1109/TIT.2004.825502
22. Schlingemann D Werner R F Quantum error-correcting codesassociated with graphsPhys. Rev. A 2001 65(012308)
23. MacKay D J C Mitchison G McFadden P L Sparse-graph codes for quantum error correctionIEEE Transactions on Information Theory 2004 50(10)23152330. doi:10.1109/TIT.2004.834737
24. Ketker A Klappenecker A Kumar S et al.Nonbinary stablizer codes over finite fieldsIEEE Transactions on Information Theory 2006 52(11)48924913. doi:10.1109/TIT.2006.883612