Frontiers of Agriculture in China >
Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors
Received date: 15 Sep 2008
Accepted date: 27 Oct 2008
Published date: 05 Jun 2009
Copyright
Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells’ extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well. In summary, the recent progress in the study of cell reprogramming for the creation of patient-specific pluripotent stem cells, some existing problems, and research perspectives were suggested.
Key words: somatic cells; pluripotent stem cells; iPS cells; reprogramming
Huiqun YIN , Hongguo CAO , Yunhai ZHANG , Yong TAO , Xiaorong ZHANG , Heng WANG . Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors[J]. Frontiers of Agriculture in China, 2009 , 3(2) : 199 -208 . DOI: 10.1007/s11703-009-0028-8
1 |
Adhikary S, Eilers M (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol, 6: 635-645
|
2 |
Alon U (2007). Network motifs: theory and experimental approaches. Nat Rev Genet, 8: 450-461
|
3 |
Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321(5889): 699-702
|
4 |
Blelloch R, Venere M, Yen J, Ramalho-Santos M (2007). Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell, 1: 245-247
|
5 |
Boyer L A, Lee T I, Cole M F, Johnstone S E, Levine S S, Zucker J P, Guenther M G, Kumar R M, Murray H L, Jenner R G, Gifford D K, Melton D A, Jaenisch R, Young R A (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122: 947-956
|
6 |
Brambrink T, Foreman R, Welstead G G, Lengner C J, Wernig M, Suh H, Jaenisch R (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2: 151-159
|
7 |
Bru T, Clarke C, McGrew M J, Sang H M, Wilmut I, Blow J J (2008). Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Exp Cell Res, 314(14): 2634-2642
|
8 |
Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 132: 885-896
|
9 |
Cawley S, Bekiranov S, Ng H H, Kapranov P, Sekinger E A, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams A J, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K, Gingeras T R (2004). Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116: 499-509
|
10 |
Collas P, Taranger C K (2006a). Toward reprogramming cells to pluripotency. Ernst Schering Res Found Workshop, 60: 47-67
|
11 |
Collas P, Taranger C K (2006b). Epigenetic reprogramming of nuclei using cell extracts. Stem Cell Rev, 2: 309-317
|
12 |
Collas P, Taranger C K, Boquest A C, Noer A, Dahl J A (2006). On the way to reprogramming cells to pluripotency using cell-free extracts. Reproductive Bio Medicine, 12: 762-770
|
13 |
Cowan C A, Atienza J, Melton D A, Eggan K (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 309: 1369-1373
|
14 |
Darr H, Benvenisty N (2006). Factors involved in self-renewal and pluripotency of embryonic stem cells. Handb Exp Pharmacol, 174: 1-19
|
15 |
Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893): 1218-1221
|
16 |
Dominguez-Sola D, Ying C Y, Grandori C, Ruggiero L, Chen B, Li M, Galloway D A, Gu W, Gautier J, Dalla-Favera R (2007). Nontranscriptional control of DNA replication by c-Myc. Nature, 448: 445-451
|
17 |
Fong H, Hohenstein K A, Donovan P J (2008). Regulation of Self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells, 26(8): 1931-1938
|
18 |
Grinnemo K H, Sylvén C, Hovatta O, Dellgren G, Corbascio M (2008). Immunogenicity of human embryonic stem cells. Cell Tissue Res, 331: 67-78
|
19 |
Hanna J, Markoulaki S, Schorderet P, Carey B W, Beard C, Wernig M, Creyghton M P, Steine E J, Cassady J P, Foreman R, Lengner C J, Dausman J A, Jaenisc R (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133: 250-264
|
20 |
Hanna J, Wernig M, Markoulaki S, Sun C W, Meissner A, Cassady J P, Beard C, Brambrink T, Wu L C, Townes T M, Jaenisch R (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318: 1920-1923
|
21 |
Hansis C, Barreto G, Maltry N, Niehrs C (2004). Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Curr Biol, 14: 1475-1480
|
22 |
Harley V R, Lovell-Badge R, Goodfellow P N (1994). Definition of a consensus DNA binding site for SRY. Nucleic Acids Res, 22: 1500-1501
|
23 |
Hochedlinger K, Jaenisch R (2006). Nuclear reprogramming and pluripotency. Nature, 441: 1061-1067
|
24 |
Jaenisch R, Young R (2002). Myc suppression of the p21 (Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature, 419: 729-734
|
25 |
Jaenisch R, Young R (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 132: 567-582
|
26 |
Jiang J, Chan Y S, Loh Y H, Cai J, Tong G Q, Lim C A, Robson P, Zhong S, Ng H H (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol, 10: 353-360
|
27 |
Kfoury C (2007). Therapeutic cloning: promises and issues. Mcgill J Med, 10: 112-120
|
28 |
Kim J B, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Araúzo-Bravo M J, Ruau D, Han D W, Zenke M, Schöler H R (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454(7204): 646-650
|
29 |
Klimanskaya I, Rosenthal N, Lanza R (2008). Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov, 7: 131-142
|
30 |
Knoepfler P S, Zhang X Y, Cheng P F, Gafken P R, McMahon S B, Eisenman R N (2006). Myc influences global chromatin structure. EMBO J, 25: 2723-2734
|
31 |
Kohda T, Inoue K, Ogonuki N, Miki H, Naruse M, Kaneko-Ishino T, Ogura A, Ishino F (2005). Variation in gene expression and aberrantly regulated chromosome regions in cloned mice. Biol Reprod, 73: 1302-1311
|
32 |
Lagarkova M A, Volchkov P Y, Lyakisheva A V, Philonenko E S, Kiselev S L (2006). Diverse epigenetic profile of novel human embryonic stem cell lines. Cell Cycle, 5: 416-420
|
33 |
Li Y, McClintick J, Zhong L, Edenberg H J, Yoder M C, Chan R J (2005). Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood, 105: 635-637
|
34 |
Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, Chen T, Rao L, Chen, S, Jia N, Dai H, Xin S, Kang J, Pei G, Xiao L (2008). Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res, 18: 600-603
|
35 |
Lin T, Chao C, Saito S, Mazur S J, Murphy M E, Appella E, Xu Y (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Bio, 7: 165-171
|
36 |
Lowry W E, Richter L, Yachechko R, Pyle A D, Tchieu J, Sridharan R, Clark A T, Plath K (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A, 105: 2883-2888
|
37 |
Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1: 55-70
|
38 |
Mali P, Ye Z, Hommond H H, Yu X, Lin J, Chen G, Zou J, Cheng L (2008). Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells, 26(8): 1998-2005
|
39 |
Matsumura H, Tada M, Otsuji T, Yasuchika K, Nakatsuji N, Surani A, Tada T (2007). Targeted chromosome elimination from ES-somatic hybrid cells. Nat Methods, 4: 23-25
|
40 |
Meissner A, Wernig M, Jaenisch R (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol, 25: 1177-1181
|
41 |
Miller R A, Ruddle F H (1976). Pluripotent teratocarcinoma-thymus somatic cell hybrids, Cell, 9: 45-55
|
42 |
Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechno, 26: 101-106
|
43 |
Nakatake Y, Fukui N, Iwamats Y, Masui S, Takahashi K, Yagi R, Yagi K, Miyazaki J, Matoba R, Ko M S, Niwa H (2006). Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol, 26(20): 7772-7782
|
44 |
Neri T, Monti M, Rebuzzini P, Merico V, Garagna S, Redi C A, Zuccotti M (2007). Mouse fibroblasts are reprogrammed to Oct-4 and Rex-1 gene expression and alkaline phosphatase activity by embryonic stem cell extracts. Cloning Stem Cells, 9: 394-406
|
45 |
Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell, 60: 461-472
|
46 |
Okita K, Ichisaka T, Yamanaka S (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448: 313-317
|
47 |
Park I H, Daley G Q (2007). Debugging cellular reprogramming. Nat Cell Biol, 9: 871-873
|
48 |
Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451: 141-146
|
49 |
Pasquinelli A E, Hunter S, Bracht J (2005). MicroRNAs: a developing story. Curr Opin Genet Dev, 15: 200-205
|
50 |
Pesce M, Gross M K, Scholer H R (1998). In line with our ancestors: Oct-4 and the mammalian germ. Bioessays, 20: 722-732
|
51 |
Pochampally R R, Neville B T, Schwarz E J, Li M M, Prockop D J (2004). Rat adult stem cells (marrow stromal cells) engraft and differentiate in chick embryos without evidence of cell fusion. Proc Natl Acad Sci U S A, 101: 9282-9285
|
52 |
Qin D, Li W, Zhang J, Pei D (2007). Direct generation of ES-like cells from unmodified mouse embryonic fibroblasts by Oct4/Sox2/Myc/Klf4. Cell Res, 17: 959-962
|
53 |
Rosner M H, Vigano M A, Ozato K, Timmons P M, Poirier F, Rigby P W, Staudt L M (1990). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature, 345: 686-692
|
54 |
Rowland B D, Bernards R, Peeper D S (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol, 7: 1074-1082
|
55 |
Silva J, Chambers I, Pollard S, Smith A (2006). Nanog promotes transfer of pluripotency after cell fusion. Nature, 441: 997-1001
|
56 |
Smith S L, Everts R E, Tian X C, Du F, Sung L Y, Rodriguez-Zas S L, Jeong B S, Renard J P, Lewin H A, Yang X (2005). Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc Natl Acad Sci U S A, 102: 17582-17587
|
57 |
Sonia S, Michel P (2007). Oct-3/4: Not just a gatekeeper of pluripotency for embryonic stem cell, a cell fate instructor through a gene dosage effect. Cell Cycle, 6: 8-10
|
58 |
Stadtfeld M, Brennand K, Hochedlinger K (2008b). Reprogramming of pancreatic Beta cells into induced pluripotent stem cells. Curr Biol, 18: 890-894
|
59 |
Stadtfeld M, Maherali N, Breault D T, Hochedlinger K (2008a). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2: 230-240
|
60 |
Tada M, Morizane A, Kimura H, Kawasaki H, Ainscough J F, Sasai Y, Nakatsuji N, Tada T (2003). Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn, 227: 504-510
|
61 |
Tada M, Tada T, Lefebvre L, Barton S C, Surani, M A (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J, 16: 6510-6520
|
62 |
Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007a). Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc, 2: 3081-3089
|
63 |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007b). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131: 861-872
|
64 |
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126: 663-676
|
65 |
Tateishi K, He J, Taranova O, Liang G, Liang G, D'Alessio A C, Zhang Y (2008). Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem, 283(46): 31601-31607
|
66 |
Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S (2003). Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol, 23: 2699-2708
|
67 |
Wernig M, Meissner A, Cassady J P, Jaenisch R (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2: 10-12
|
68 |
Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein B E, Jaenisch R (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448: 318-324
|
69 |
Wernig M, Zhao J P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A, 105: 5856-5861
|
70 |
Wood H B, Episkopou V (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev, 86: 197-201
|
71 |
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318: 1917-1920
|
72 |
Zeineddine D, Papadimou E, Chebli K, Gineste M, Liu J, Grey C, Thurig S, Behfar A, Wallace V A, Skerjanc I S, Pucéat M (2006). Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Dev Cell, 11: 535-546
|
/
〈 | 〉 |