REVIEW

Molecular characterization and roles of AP2 transcription factors on drought tolerance in plants

  • Jincai LI 1 ,
  • Yongsheng ZHANG 2 ,
  • Juntao GU 3 ,
  • Chengjin GUO 2 ,
  • Shumin WEN 3 ,
  • Guiru LIU , 2 ,
  • Kai XIAO , 2
Expand
  • 1. Science and Technology Management Office, Agricultural University of Hebei, Baoding 071001, China
  • 2. College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
  • 3. College of Life Science, Agricultural University of Hebei, Baoding 071001, China

Received date: 28 Apr 2011

Accepted date: 09 May 2011

Published date: 05 Dec 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The APETALA2 (AP2) domain defines a large family of DNA binding proteins. It has been demonstrated that the AP2 proteins have important functions in the transcriptional regulation of a variety of biologic processes related to growth and development in various responses to drought and other abiotic stresses. In this essay, recent researches on the AP2 transcription factors, such as the molecular characterization, expression patterns in responses to drought and other abiotic stresses, the roles of ABA on drought responding which were mediated by AP2 transcription factors, transcription regulation mechanisms, and the roles of overexpression of AP2 transcription factor on plant drought tolerance, etc. have been overviewed. Deepening the understanding of signaling and the corresponding transduction pathways that are initiated via drought stress stimuli will play crucial roles for providing the theoretical basis for variety breeding with promising drought tolerance in the future.

Cite this article

Jincai LI , Yongsheng ZHANG , Juntao GU , Chengjin GUO , Shumin WEN , Guiru LIU , Kai XIAO . Molecular characterization and roles of AP2 transcription factors on drought tolerance in plants[J]. Frontiers of Agriculture in China, 2011 , 5(4) : 463 -472 . DOI: 10.1007/s11703-011-1148-5

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei, China (No. C2010000752), the National Transgenic Major Program, China (No. 2009ZX08002-012B) and the Key Crop Growth Regulation Laboratory of Hebei Province, China.
1
Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004). The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 16(9): 2463–2480

DOI PMID

2
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 119(1): 109–120

DOI PMID

3
Allen G J, Kuchitsu K, Chu S P, Murata Y, Schroeder J I (1999). Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell, 11(9): 1785–1798

PMID

4
Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 17(18): 5484–5496

DOI PMID

5
Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter D E, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby W L, Berry C C, Ecker J R (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301(5633): 653–657

DOI PMID

6
Assmann S M (2003). OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci, 8(4): 151–153

DOI PMID

7
Assmann S M, Wang X Q (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol, 4(5): 421–428

DOI PMID

8
Baker S S, Wilhelm K S, Thomashow M F (1994). The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 24(5): 701–713

DOI PMID

9
Banno H, Ikeda Y, Niu Q W, Chua N H (2001). Overexpression of ArabidopsisESR1 induces initiation of shoot regeneration. Plant Cell, 13(12): 2609–2618

PMID

10
Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M, van Lammeren A A, Miki B L, Custers J B, van Lookeren Campagne M M (2002). Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 14(8): 1737–1749

DOI PMID

11
Bowman J L, Alvarez J, Weigel D, Meyerowitz E M, Smyth D R (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 119: 721–743

12
Choi D W, Rodriguez E M, Close T J (2002). Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol, 129(4): 1781–1787

DOI PMID

13
Chuck G, Meeley R B, Hake S (1998). The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev, 12(8): 1145–1154

DOI PMID

14
Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J (2002). The control of spikelet meristem identity by the branched silkless1 gene in maize. Science, 298(5596): 1238–1241

DOI PMID

15
Connolly K M, Wojciak J M, Clubb R T (1998). Site-specific DNA binding using a variation of the double stranded RNA binding motif. Nat Struct Biol, 5(7): 546–550

DOI PMID

16
Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996). A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science, 273(5279): 1239–1241

DOI PMID

17
Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 33(4): 751–763

DOI PMID

18
Elliott R C, Betzner A S, Huttner E, Oakes M P, Tucker W Q, Gerentes D, Perez P, Smyth D R (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 8(2): 155–168

PMID

19
Finkelstein R R, Gampala S S, Rock C D (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell, 14(Suppl): S15–S45

PMID

20
Finkelstein R R, Lynch T J (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 12(4): 599–609

PMID

21
Finkelstein R R, Wang M L, Lynch T J, Rao S, Goodman H M (1998). The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell, 10(6): 1043–1054

PMID

22
Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 12(3): 393–404

PMID

23
Garg A K, Kim J K, Owens T G, Ranwala A P, Choi Y D, Kochian L V, Wu R J (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA, 99(25): 15898–15903

DOI PMID

24
Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 16(4): 433–442

DOI PMID

25
Gu Y Q, Yang C, Thara V K, Zhou J, Martin G B (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell, 12(5): 771–786

PMID

26
Guo Y, Xiong L, Song C P, Gong D, Halfter U, Zhu J K (2002). A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell, 3(2): 233–244

DOI PMID

27
Gutterson N, Reuber T L (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol, 7(4): 465–471

DOI PMID

28
Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 130(2): 639–648

DOI PMID

29
Hao D, Yamasaki K, Sarai A, Ohme-Takagi M (2002). Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry, 41(13): 4202–4208

DOI PMID

30
Hao D Y, Ohme-Takagi M, Sarai A (1998). Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem, 273(41): 26857–26861

DOI PMID

31
Himmelbach A, Yang Y, Grill E (2003). Relay and control of abscisic acid signaling. Curr Opin Plant Biol, 6(5): 470–479

DOI PMID

32
Hoth S, Morgante M, Sanchez J P, Hanafey M K, Tingey S V, Chua N H (2002). Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J Cell Sci, 115(24): 4891–4900

DOI PMID

33
Hsieh T H, Lee J T, Charng Y Y, Chan M T (2002). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 130(2): 618–626

DOI PMID

34
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 103(35): 12987–12992

DOI PMID

35
Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008). Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 67(1-2): 169–181

DOI PMID

36
Hu Y X, Wang Y X, Liu X F, Li J Y (2004). Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res, 14(1): 8–15

DOI PMID

37
Hugouvieux V, Kwak J M, Schroeder J I (2001). An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell, 106(4): 477–487

DOI PMID

38
Ingram J, Bartels D (1996). The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 47(1): 377–403

DOI PMID

39
Irish V F, Sussex I M (1990). Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell, 2(8): 741–753

PMID

40
Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol, 47(1): 141–153

DOI PMID

41
Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thomashow M F (2001). Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 127(3): 910–917

DOI PMID

42
Jang I C, Oh S J, Seo J S, Choi W B, Song S I, Kim C H, Kim Y S, Seo H S, Choi Y D, Nahm B H, Kim J K (2003). Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol, 131(2): 516–524

DOI PMID

43
Jiang C, Iu B, Singh J (1996). Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol, 30(3): 679–684

DOI PMID

44
Jofuku K D, den Boer B G, Van Montagu M, Okamuro J K (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 6(9): 1211–1225

PMID

45
Jung J, Won S Y, Suh S C, Kim H, Wing R, Jeong Y, Hwang I, Kim M (2006). The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta, 225(3): 575–588

DOI PMID

46
Kagaya Y, Ohmiya K, Hattori T (1999). RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res, 27(2): 470–478

DOI PMID

47
Karin M (1990). Too many transcription factors: positive and negative interactions. New Biol, 2(2): 126–131

PMID

48
Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004). A combination of the ArabidopsisDREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol, 45(3): 346–350

DOI PMID

49
Khandelwal A, Elvitigala T, Ghosh B, Quatrano R S (2008). Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor. Plant Physiol, 148(4): 2050–2058

DOI PMID

50
Rice Full-Length cDNA Consortium; National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team, Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T; Foundation of Advancement of International Science Genome Sequencing & Analysis Group, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K; RIKEN, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003). Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science, 301(5631): 376–379

DOI PMID

51
Kizis D, Pagès M (2002). Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J, 30(6): 679–689

DOI PMID

52
Klucher K M, Chow H, Reiser L, Fischer R L (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 8(2): 137–153

PMID

53
Koornneef M, Reuling G, Karssen C M (1984). The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant, 61(3): 377–383

DOI

54
Krizek B A (2003). AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic Acids Res, 31(7): 1859–1868

DOI PMID

55
Latchman D S (1997). Transcription factors: an overview. Int J Biochem Cell Biol, 29(12): 1305–1312

DOI PMID

56
Lee J H, Hong J P, Oh S K, Lee S, Choi D, Kim W T (2004). The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol, 55(1): 61–81

DOI PMID

57
Lee T I, Young R A (2000). Transcription of eukaryotic protein-coding genes. Annu Rev Genet, 34(1): 77–137

DOI PMID

58
Leung J, Giraudat J (1998). Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 49(1): 199–222

DOI PMID

59
Leung J, Merlot S, Giraudat J (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 9(5): 759–771

PMID

60
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10(8): 1391–1406

PMID

61
Lu C, Fedoroff N (2000). A mutation in the ArabidopsisHYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell, 12(12): 2351–2366

PMID

62
Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004). dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J, 37(5): 720–729

DOI PMID

63
Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J, 25(3): 295–303

DOI PMID

64
Meyerowitz E M (1994). Flower development and evolution: new answers and new questions. Proc Natl Acad Sci USA, 91(13): 5735–5737

DOI PMID

65
Moose S P, Sisco P H (1996). Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev, 10(23): 3018–3027

DOI PMID

66
Murzin A G, Brenner S E, Hubbard T, Chothia C (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 247(4): 536–540

DOI PMID

67
Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14(12): 3089–3099

DOI PMID

68
Nakano T, Suzuki K, Fujimura T, Shinshi H (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 140(2): 411–432

DOI PMID

69
Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 51(4): 617–630

DOI PMID

70
Nikolov D B, Burley S K (1997). RNA polymerase II transcription initiation: a structural view. Proc Natl Acad Sci USA, 94(1): 15–22

DOI PMID

71
Nole-Wilson S, Krizek B A (2000). DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res, 28(21): 4076–4082

DOI PMID

72
Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K (2009). Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol, 150(3): 1368–1379

DOI PMID

73
Oh S J, Kwon C W, Choi D W, Song S I, Kim J K (2007). Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J, 5(5): 646–656

DOI PMID

74
Oh S J, Song S I, Kim Y S, Jang H J, Kim S Y, Kim M, Kim Y K, Nahm B H, Kim J K (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol, 138(1): 341–351

DOI PMID

75
Ohki I, Shimotake N, Fujita N, Nakao M, Shirakawa M (1999). Solution structure of the methyl-CpG-binding domain of the methylation-dependent transcriptional repressor MBD1. EMBO J, 18(23): 6653–6661

DOI PMID

76
Ohme-Takagi M, Shinshi H (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 7(2): 173–182

PMID

77
Ohto M A, Fischer R L, Goldberg R B, Nakamura K, Harada J J (2005). Control of seed mass by APETALA2. Proc Natl Acad Sci USA, 102(8): 3123–3128

DOI PMID

78
Okamuro J K, Caster B, Villarroel R, Van Montagu M, Jofuku K D (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 94(13): 7076–7081

DOI PMID

79
Park J M, Park C J, Lee S B, Ham B K, Shin R, Paek K H (2001). Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 13(5): 1035–1046

PMID

80
Pawson T (1993). Signal transduction—a conserved pathway from the membrane to the nucleus. Dev Genet, 14(5): 333–338

DOI PMID

81
Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290(5499): 2105–2110

DOI PMID

82
Riechmann J L, Meyerowitz E M (1998). The AP2/EREBP family of plant transcription factors. Biol Chem, 379(6): 633–646

PMID

83
Roeder R G (1996). The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci, 21(9): 327–335

PMID

84
Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 290(3): 998–1009

DOI PMID

85
Schroeder J I, Kwak J M, Allen G J (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 410(6826): 327–330

DOI PMID

86
Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002). Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics, 2(6): 282–291

DOI PMID

87
Shen Y G, Zhang W K, Yan D Q, Du B X, Zhang J S, Liu Q, Chen S Y (2003). Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet, 107(1): 155–161

PMID

88
Shinozaki K, Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol, 115(2): 327–334

DOI PMID

89
Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 6(5): 410–417

DOI PMID

90
Shukla R K, Raha S, Tripathi V, Chattopadhyay D (2006). Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol, 142(1): 113–123

DOI PMID

91
Skinner J S, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger E J, Thomashow M F, Chen T H, Hayes P M (2005). Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol, 59(4): 533–551

DOI PMID

92
Sohn K H, Lee S C, Jung H W, Hong J K, Hwang B K (2006). Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol, 61(6): 897–915

DOI PMID

93
Song C P, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu J K (2005). Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell, 17(8): 2384–2396

DOI PMID

94
Stockinger E J, Gilmour S J, Thomashow M F (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 94(3): 1035–1040

DOI PMID

95
Thomashow M F (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 50(1): 571–599

DOI PMID

96
Trujillo L E, Sotolongo M, Menéndez C, Ochogavía M E, Coll Y, Hernández I, Borrás-Hidalgo O, Thomma B P H J, Vera P, Hernández L (2008). SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol, 49(4): 512–525

DOI PMID

97
van der Fits L, Memelink J (2000). ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 289(5477): 295–297

DOI PMID

98
Wang X Q, Ullah H, Jones A M, Assmann S M (2001). G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science, 292(5524): 2070–2072

DOI PMID

99
Wojciak J M, Sarkar D, Landy A, Clubb R T (2002). Arm-site binding by lambda-integrase: solution structure and functional characterization of its amino-terminal domain. Proc Natl Acad Sci USA, 99(6): 3434–3439

DOI PMID

100
Xiao B, Huang Y, Tang N, Xiong L (2007). Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet, 115(1): 35–46

DOI PMID

101
Xiong L, Gong Z, Rock C D, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu J K (2001b). Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell, 1(6): 771–781

DOI PMID

102
Xiong L, Lee Bh, Ishitani M, Lee H, Zhang C, Zhu J K (2001a). FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev, 15(15): 1971–1984

DOI PMID

103
Xiong L, Schumaker K S, Zhu J K (2002). Cell signaling during cold, drought, and salt stress. Plant Cell, 14(Suppl): S165–S183

PMID

104
Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996). Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 110(1): 249–257

PMID

105
Xu Z S, Xia L Q, Chen M, Cheng X G, Zhang R Y, Li L C, Zhao Y X, Lu Y, Ni Z Y, Liu L, Qiu Z G, Ma Y Z (2007). Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol, 65(6): 719–732

DOI PMID

106
Xue G P (2003). The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J, 33(2): 373–383

DOI PMID

107
Yamaguchi-Shinozaki K, Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 6(2): 251–264

PMID

108
Yamaguchi-Shinozaki K, Shinozaki K (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 57(1): 781–803

DOI PMID

109
Yamamoto S, Suzuki K, Shinshi H (1999). Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J, 20(5): 571–579

DOI PMID

110
Yi S Y, Kim J H, Joung Y H, Lee S, Kim W T, Yu S H, Choi D (2004). The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol, 136(1): 2862–2874

DOI PMID

111
Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K, Sumner L W, Wang Z Y (2005). Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J, 42(5): 689–707

DOI PMID

112
Zhou J, Tang X, Martin G B (1997). The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 16(11): 3207–3218

DOI PMID

113
Zhu J K (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53(1): 247–273

DOI PMID

Outlines

/