Molecular characterization and roles of AP2 transcription factors on drought tolerance in plants

Jincai LI, Yongsheng ZHANG, Juntao GU, Chengjin GUO, Shumin WEN, Guiru LIU, Kai XIAO

PDF(192 KB)
PDF(192 KB)
Front. Agric. China ›› 2011, Vol. 5 ›› Issue (4) : 463-472. DOI: 10.1007/s11703-011-1148-5
REVIEW
REVIEW

Molecular characterization and roles of AP2 transcription factors on drought tolerance in plants

Author information +
History +

Abstract

The APETALA2 (AP2) domain defines a large family of DNA binding proteins. It has been demonstrated that the AP2 proteins have important functions in the transcriptional regulation of a variety of biologic processes related to growth and development in various responses to drought and other abiotic stresses. In this essay, recent researches on the AP2 transcription factors, such as the molecular characterization, expression patterns in responses to drought and other abiotic stresses, the roles of ABA on drought responding which were mediated by AP2 transcription factors, transcription regulation mechanisms, and the roles of overexpression of AP2 transcription factor on plant drought tolerance, etc. have been overviewed. Deepening the understanding of signaling and the corresponding transduction pathways that are initiated via drought stress stimuli will play crucial roles for providing the theoretical basis for variety breeding with promising drought tolerance in the future.

Keywords

transcription factor / AP2 domain / molecular characterization / transcriptional activation / drought tolerance

Cite this article

Download citation ▾
Jincai LI, Yongsheng ZHANG, Juntao GU, Chengjin GUO, Shumin WEN, Guiru LIU, Kai XIAO. Molecular characterization and roles of AP2 transcription factors on drought tolerance in plants. Front Agric Chin, 2011, 5(4): 463‒472 https://doi.org/10.1007/s11703-011-1148-5

References

[1]
Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004). The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 16(9): 2463–2480
CrossRef Pubmed Google scholar
[2]
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 119(1): 109–120
CrossRef Pubmed Google scholar
[3]
Allen G J, Kuchitsu K, Chu S P, Murata Y, Schroeder J I (1999). Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell, 11(9): 1785–1798
Pubmed
[4]
Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 17(18): 5484–5496
CrossRef Pubmed Google scholar
[5]
Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter D E, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby W L, Berry C C, Ecker J R (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301(5633): 653–657
CrossRef Pubmed Google scholar
[6]
Assmann S M (2003). OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci, 8(4): 151–153
CrossRef Pubmed Google scholar
[7]
Assmann S M, Wang X Q (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol, 4(5): 421–428
CrossRef Pubmed Google scholar
[8]
Baker S S, Wilhelm K S, Thomashow M F (1994). The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 24(5): 701–713
CrossRef Pubmed Google scholar
[9]
Banno H, Ikeda Y, Niu Q W, Chua N H (2001). Overexpression of ArabidopsisESR1 induces initiation of shoot regeneration. Plant Cell, 13(12): 2609–2618
Pubmed
[10]
Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M, van Lammeren A A, Miki B L, Custers J B, van Lookeren Campagne M M (2002). Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 14(8): 1737–1749
CrossRef Pubmed Google scholar
[11]
Bowman J L, Alvarez J, Weigel D, Meyerowitz E M, Smyth D R (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 119: 721–743
[12]
Choi D W, Rodriguez E M, Close T J (2002). Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol, 129(4): 1781–1787
CrossRef Pubmed Google scholar
[13]
Chuck G, Meeley R B, Hake S (1998). The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev, 12(8): 1145–1154
CrossRef Pubmed Google scholar
[14]
Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J (2002). The control of spikelet meristem identity by the branched silkless1 gene in maize. Science, 298(5596): 1238–1241
CrossRef Pubmed Google scholar
[15]
Connolly K M, Wojciak J M, Clubb R T (1998). Site-specific DNA binding using a variation of the double stranded RNA binding motif. Nat Struct Biol, 5(7): 546–550
CrossRef Pubmed Google scholar
[16]
Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996). A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science, 273(5279): 1239–1241
CrossRef Pubmed Google scholar
[17]
Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 33(4): 751–763
CrossRef Pubmed Google scholar
[18]
Elliott R C, Betzner A S, Huttner E, Oakes M P, Tucker W Q, Gerentes D, Perez P, Smyth D R (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 8(2): 155–168
Pubmed
[19]
Finkelstein R R, Gampala S S, Rock C D (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell, 14(Suppl): S15–S45
Pubmed
[20]
Finkelstein R R, Lynch T J (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 12(4): 599–609
Pubmed
[21]
Finkelstein R R, Wang M L, Lynch T J, Rao S, Goodman H M (1998). The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell, 10(6): 1043–1054
Pubmed
[22]
Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 12(3): 393–404
Pubmed
[23]
Garg A K, Kim J K, Owens T G, Ranwala A P, Choi Y D, Kochian L V, Wu R J (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA, 99(25): 15898–15903
CrossRef Pubmed Google scholar
[24]
Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 16(4): 433–442
CrossRef Pubmed Google scholar
[25]
Gu Y Q, Yang C, Thara V K, Zhou J, Martin G B (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell, 12(5): 771–786
Pubmed
[26]
Guo Y, Xiong L, Song C P, Gong D, Halfter U, Zhu J K (2002). A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell, 3(2): 233–244
CrossRef Pubmed Google scholar
[27]
Gutterson N, Reuber T L (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol, 7(4): 465–471
CrossRef Pubmed Google scholar
[28]
Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 130(2): 639–648
CrossRef Pubmed Google scholar
[29]
Hao D, Yamasaki K, Sarai A, Ohme-Takagi M (2002). Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry, 41(13): 4202–4208
CrossRef Pubmed Google scholar
[30]
Hao D Y, Ohme-Takagi M, Sarai A (1998). Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem, 273(41): 26857–26861
CrossRef Pubmed Google scholar
[31]
Himmelbach A, Yang Y, Grill E (2003). Relay and control of abscisic acid signaling. Curr Opin Plant Biol, 6(5): 470–479
CrossRef Pubmed Google scholar
[32]
Hoth S, Morgante M, Sanchez J P, Hanafey M K, Tingey S V, Chua N H (2002). Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J Cell Sci, 115(24): 4891–4900
CrossRef Pubmed Google scholar
[33]
Hsieh T H, Lee J T, Charng Y Y, Chan M T (2002). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 130(2): 618–626
CrossRef Pubmed Google scholar
[34]
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 103(35): 12987–12992
CrossRef Pubmed Google scholar
[35]
Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008). Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 67(1-2): 169–181
CrossRef Pubmed Google scholar
[36]
Hu Y X, Wang Y X, Liu X F, Li J Y (2004). Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res, 14(1): 8–15
CrossRef Pubmed Google scholar
[37]
Hugouvieux V, Kwak J M, Schroeder J I (2001). An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell, 106(4): 477–487
CrossRef Pubmed Google scholar
[38]
Ingram J, Bartels D (1996). The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 47(1): 377–403
CrossRef Pubmed Google scholar
[39]
Irish V F, Sussex I M (1990). Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell, 2(8): 741–753
Pubmed
[40]
Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol, 47(1): 141–153
CrossRef Pubmed Google scholar
[41]
Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thomashow M F (2001). Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 127(3): 910–917
CrossRef Pubmed Google scholar
[42]
Jang I C, Oh S J, Seo J S, Choi W B, Song S I, Kim C H, Kim Y S, Seo H S, Choi Y D, Nahm B H, Kim J K (2003). Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol, 131(2): 516–524
CrossRef Pubmed Google scholar
[43]
Jiang C, Iu B, Singh J (1996). Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol, 30(3): 679–684
CrossRef Pubmed Google scholar
[44]
Jofuku K D, den Boer B G, Van Montagu M, Okamuro J K (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 6(9): 1211–1225
Pubmed
[45]
Jung J, Won S Y, Suh S C, Kim H, Wing R, Jeong Y, Hwang I, Kim M (2006). The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta, 225(3): 575–588
CrossRef Pubmed Google scholar
[46]
Kagaya Y, Ohmiya K, Hattori T (1999). RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res, 27(2): 470–478
CrossRef Pubmed Google scholar
[47]
Karin M (1990). Too many transcription factors: positive and negative interactions. New Biol, 2(2): 126–131
Pubmed
[48]
Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004). A combination of the ArabidopsisDREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol, 45(3): 346–350
CrossRef Pubmed Google scholar
[49]
Khandelwal A, Elvitigala T, Ghosh B, Quatrano R S (2008). Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor. Plant Physiol, 148(4): 2050–2058
CrossRef Pubmed Google scholar
[50]
Rice Full-Length cDNA Consortium; National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team, Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T; Foundation of Advancement of International Science Genome Sequencing & Analysis Group, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K; RIKEN, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003). Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science, 301(5631): 376–379
CrossRef Pubmed Google scholar
[51]
Kizis D, Pagès M (2002). Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J, 30(6): 679–689
CrossRef Pubmed Google scholar
[52]
Klucher K M, Chow H, Reiser L, Fischer R L (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 8(2): 137–153
Pubmed
[53]
Koornneef M, Reuling G, Karssen C M (1984). The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant, 61(3): 377–383
CrossRef Google scholar
[54]
Krizek B A (2003). AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic Acids Res, 31(7): 1859–1868
CrossRef Pubmed Google scholar
[55]
Latchman D S (1997). Transcription factors: an overview. Int J Biochem Cell Biol, 29(12): 1305–1312
CrossRef Pubmed Google scholar
[56]
Lee J H, Hong J P, Oh S K, Lee S, Choi D, Kim W T (2004). The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol, 55(1): 61–81
CrossRef Pubmed Google scholar
[57]
Lee T I, Young R A (2000). Transcription of eukaryotic protein-coding genes. Annu Rev Genet, 34(1): 77–137
CrossRef Pubmed Google scholar
[58]
Leung J, Giraudat J (1998). Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 49(1): 199–222
CrossRef Pubmed Google scholar
[59]
Leung J, Merlot S, Giraudat J (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 9(5): 759–771
Pubmed
[60]
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10(8): 1391–1406
Pubmed
[61]
Lu C, Fedoroff N (2000). A mutation in the ArabidopsisHYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell, 12(12): 2351–2366
Pubmed
[62]
Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004). dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J, 37(5): 720–729
CrossRef Pubmed Google scholar
[63]
Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J, 25(3): 295–303
CrossRef Pubmed Google scholar
[64]
Meyerowitz E M (1994). Flower development and evolution: new answers and new questions. Proc Natl Acad Sci USA, 91(13): 5735–5737
CrossRef Pubmed Google scholar
[65]
Moose S P, Sisco P H (1996). Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev, 10(23): 3018–3027
CrossRef Pubmed Google scholar
[66]
Murzin A G, Brenner S E, Hubbard T, Chothia C (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 247(4): 536–540
CrossRef Pubmed Google scholar
[67]
Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14(12): 3089–3099
CrossRef Pubmed Google scholar
[68]
Nakano T, Suzuki K, Fujimura T, Shinshi H (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 140(2): 411–432
CrossRef Pubmed Google scholar
[69]
Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 51(4): 617–630
CrossRef Pubmed Google scholar
[70]
Nikolov D B, Burley S K (1997). RNA polymerase II transcription initiation: a structural view. Proc Natl Acad Sci USA, 94(1): 15–22
CrossRef Pubmed Google scholar
[71]
Nole-Wilson S, Krizek B A (2000). DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res, 28(21): 4076–4082
CrossRef Pubmed Google scholar
[72]
Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K (2009). Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol, 150(3): 1368–1379
CrossRef Pubmed Google scholar
[73]
Oh S J, Kwon C W, Choi D W, Song S I, Kim J K (2007). Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J, 5(5): 646–656
CrossRef Pubmed Google scholar
[74]
Oh S J, Song S I, Kim Y S, Jang H J, Kim S Y, Kim M, Kim Y K, Nahm B H, Kim J K (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol, 138(1): 341–351
CrossRef Pubmed Google scholar
[75]
Ohki I, Shimotake N, Fujita N, Nakao M, Shirakawa M (1999). Solution structure of the methyl-CpG-binding domain of the methylation-dependent transcriptional repressor MBD1. EMBO J, 18(23): 6653–6661
CrossRef Pubmed Google scholar
[76]
Ohme-Takagi M, Shinshi H (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 7(2): 173–182
Pubmed
[77]
Ohto M A, Fischer R L, Goldberg R B, Nakamura K, Harada J J (2005). Control of seed mass by APETALA2. Proc Natl Acad Sci USA, 102(8): 3123–3128
CrossRef Pubmed Google scholar
[78]
Okamuro J K, Caster B, Villarroel R, Van Montagu M, Jofuku K D (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 94(13): 7076–7081
CrossRef Pubmed Google scholar
[79]
Park J M, Park C J, Lee S B, Ham B K, Shin R, Paek K H (2001). Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 13(5): 1035–1046
Pubmed
[80]
Pawson T (1993). Signal transduction—a conserved pathway from the membrane to the nucleus. Dev Genet, 14(5): 333–338
CrossRef Pubmed Google scholar
[81]
Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290(5499): 2105–2110
CrossRef Pubmed Google scholar
[82]
Riechmann J L, Meyerowitz E M (1998). The AP2/EREBP family of plant transcription factors. Biol Chem, 379(6): 633–646
Pubmed
[83]
Roeder R G (1996). The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci, 21(9): 327–335
Pubmed
[84]
Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 290(3): 998–1009
CrossRef Pubmed Google scholar
[85]
Schroeder J I, Kwak J M, Allen G J (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 410(6826): 327–330
CrossRef Pubmed Google scholar
[86]
Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002). Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics, 2(6): 282–291
CrossRef Pubmed Google scholar
[87]
Shen Y G, Zhang W K, Yan D Q, Du B X, Zhang J S, Liu Q, Chen S Y (2003). Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet, 107(1): 155–161
Pubmed
[88]
Shinozaki K, Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol, 115(2): 327–334
CrossRef Pubmed Google scholar
[89]
Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 6(5): 410–417
CrossRef Pubmed Google scholar
[90]
Shukla R K, Raha S, Tripathi V, Chattopadhyay D (2006). Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol, 142(1): 113–123
CrossRef Pubmed Google scholar
[91]
Skinner J S, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger E J, Thomashow M F, Chen T H, Hayes P M (2005). Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol, 59(4): 533–551
CrossRef Pubmed Google scholar
[92]
Sohn K H, Lee S C, Jung H W, Hong J K, Hwang B K (2006). Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol, 61(6): 897–915
CrossRef Pubmed Google scholar
[93]
Song C P, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu J K (2005). Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell, 17(8): 2384–2396
CrossRef Pubmed Google scholar
[94]
Stockinger E J, Gilmour S J, Thomashow M F (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 94(3): 1035–1040
CrossRef Pubmed Google scholar
[95]
Thomashow M F (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 50(1): 571–599
CrossRef Pubmed Google scholar
[96]
Trujillo L E, Sotolongo M, Menéndez C, Ochogavía M E, Coll Y, Hernández I, Borrás-Hidalgo O, Thomma B P H J, Vera P, Hernández L (2008). SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol, 49(4): 512–525
CrossRef Pubmed Google scholar
[97]
van der Fits L, Memelink J (2000). ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 289(5477): 295–297
CrossRef Pubmed Google scholar
[98]
Wang X Q, Ullah H, Jones A M, Assmann S M (2001). G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science, 292(5524): 2070–2072
CrossRef Pubmed Google scholar
[99]
Wojciak J M, Sarkar D, Landy A, Clubb R T (2002). Arm-site binding by lambda-integrase: solution structure and functional characterization of its amino-terminal domain. Proc Natl Acad Sci USA, 99(6): 3434–3439
CrossRef Pubmed Google scholar
[100]
Xiao B, Huang Y, Tang N, Xiong L (2007). Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet, 115(1): 35–46
CrossRef Pubmed Google scholar
[101]
Xiong L, Gong Z, Rock C D, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu J K (2001b). Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell, 1(6): 771–781
CrossRef Pubmed Google scholar
[102]
Xiong L, Lee Bh, Ishitani M, Lee H, Zhang C, Zhu J K (2001a). FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev, 15(15): 1971–1984
CrossRef Pubmed Google scholar
[103]
Xiong L, Schumaker K S, Zhu J K (2002). Cell signaling during cold, drought, and salt stress. Plant Cell, 14(Suppl): S165–S183
Pubmed
[104]
Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996). Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 110(1): 249–257
Pubmed
[105]
Xu Z S, Xia L Q, Chen M, Cheng X G, Zhang R Y, Li L C, Zhao Y X, Lu Y, Ni Z Y, Liu L, Qiu Z G, Ma Y Z (2007). Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol, 65(6): 719–732
CrossRef Pubmed Google scholar
[106]
Xue G P (2003). The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J, 33(2): 373–383
CrossRef Pubmed Google scholar
[107]
Yamaguchi-Shinozaki K, Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 6(2): 251–264
Pubmed
[108]
Yamaguchi-Shinozaki K, Shinozaki K (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 57(1): 781–803
CrossRef Pubmed Google scholar
[109]
Yamamoto S, Suzuki K, Shinshi H (1999). Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J, 20(5): 571–579
CrossRef Pubmed Google scholar
[110]
Yi S Y, Kim J H, Joung Y H, Lee S, Kim W T, Yu S H, Choi D (2004). The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol, 136(1): 2862–2874
CrossRef Pubmed Google scholar
[111]
Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K, Sumner L W, Wang Z Y (2005). Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J, 42(5): 689–707
CrossRef Pubmed Google scholar
[112]
Zhou J, Tang X, Martin G B (1997). The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 16(11): 3207–3218
CrossRef Pubmed Google scholar
[113]
Zhu J K (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53(1): 247–273
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei, China (No. C2010000752), the National Transgenic Major Program, China (No. 2009ZX08002-012B) and the Key Crop Growth Regulation Laboratory of Hebei Province, China.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(192 KB)

Accesses

Citations

Detail

Sections
Recommended

/