REVIEW

The molecular characterization and function of miRNAs on mediation of target gene silencing in plants

  • Chengjin GUO 1 ,
  • Juntao GU 2 ,
  • Xiaojuan LI 2 ,
  • Wenjing LU 2 ,
  • Chunying MA 1 ,
  • Kai XIAO , 1
Expand
  • 1. College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
  • 2. College of Life Science, Agricultural University of Hebei, Baoding 071001, China

Received date: 24 May 2010

Accepted date: 12 Jun 2010

Published date: 05 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

MiRNAs belong to one type of noncoding RNAs involved in developmental regulation, genome maintenance, and defense in eukaryotes. In plants, the miRNAs are involved in many molecular interactions, including interfere with expression of mRNAs encoding factors that control developmental processes, stem cell maintenances, auxin responses, and other developmental and physiologic processes. In this paper, the molecular characterization and the functions of miRNAs on mediation of target gene silencing in plants have been overviewed. Further studies on the miRNAs will be helpful for elucidation of the molecular mechanism of post- transcriptional gene silencing in plants.

Cite this article

Chengjin GUO , Juntao GU , Xiaojuan LI , Wenjing LU , Chunying MA , Kai XIAO . The molecular characterization and function of miRNAs on mediation of target gene silencing in plants[J]. Frontiers of Agriculture in China, 2011 , 5(2) : 162 -172 . DOI: 10.1007/s11703-010-1040-8

Acknowledgements

This work was supported by the National Transgenic Major Program of China (No. 2009ZX08009-011B), the National Basic Research Program of China (973 Program) in the early stage (No. 2007CB116209), and the Foundation of Crop Growth Regulation Laboratory of Hebei Province, China.
1
Abelson J F, Kwan K Y, O’Roak B J, Baek D Y, Stillman A A, Morgan T M, Mathews C A, Pauls D L, Rasin M R, Gunel M, Davis N R, Ercan-Sencicek A G, Guez D H, Spertus J A, Leckman J F, Dure L S 4th, Kurlan R, Singer H S, Gilbert D L, Farhi A, Louvi A, Lifton R P, Sestan N, State M W (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science, 310(5746): 317–320

DOI

2
Achard P, Herr A, Baulcombe D C, Harberd N P (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development, 131(14): 3357–3365

DOI

3
Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 15(1): 78–91

DOI

4
Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2): 207–221

5
Allen R D, Webb R P, Schake S A (1997). Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med, 23(3): 473–479

DOI

6
Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein M J, Tuschl T, Margalit H (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res, 33(8): 2697–2706

DOI

7
Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55(1): 373–399

DOI

8
Aukerman M J, Sakai H (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 15(11): 2730–2741

DOI

9
Axtell M J, Bartel D P (2005). Antiquity of microRNAs and their targets in land plants. Plant Cell, 17(6): 1658–1673

DOI

10
Bartels D, Sunka R (2005). Drought and salt tolerance in plants. CRC Crit. Rev. Plant Science, 24(1): 23–58

DOI

11
Baulcombe D (2004). RNA silencing in plants. Nature, 431(7006): 356–363

DOI

12
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 37(7): 766–770

DOI

13
Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818): 363–366

DOI

14
Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 101(31): 11511–11516

DOI

15
Brennecke J, Hipfner D R, Stark A, Russell R B, Cohen S M (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113(1): 25–36

16
Brennecke J, Stark A, Russell R B, Cohen S M (2005). Principles of microRNA-target recognition. PLoS Biol, 3(3): e85

DOI

17
Cai X, Hagedorn C H, Cullen B R (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12): 1957–1966

18
Carmell M A, Xuan Z, Zhang M Q, Hannon G J (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 16(21): 2733–2742

DOI

19
Carrington J C, Ambros V (2003). Role of microRNAs in plant and animal development. Science, 301(5631): 336–338

DOI

20
Chen C Z, Li L, Lodish H F, Bartel D P (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science, 303(5654): 83–86

DOI

21
Chen K, Rajewsky N (2006). Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet, 38(12): 1452–1456

DOI

22
Chen X (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303(5666): 2022–2025

DOI

23
Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18(2): 412–421

DOI

24
Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen J M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 38(7): 813–818

DOI

25
Cuellar T L, McManus M T (2005). MicroRNAs and endocrine biology. J Endocrinol, 187(3): 327–332

DOI

26
Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993). Cellular organisation of the Arabidopsis thaliana root. Development, 119(1): 71–84

27
Ehrenreich I M, Purugganan M D (2008). Sequence variation of MicroRNAs and their binding sites in Arabidopsis. Plant Physiol, 146(4): 1974–1982

DOI

28
Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009). Deadenylation is a widespread effect of miRNA regulation. RNA, 15(1): 21–32

29
Fagard M, Boutet S, Morel J B, Bellini C, Vaucheret H (2000). AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA, 97(21): 11650–11654

DOI

30
Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C, Shiu S H (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2(2): e219

DOI

31
Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669): 806–811

DOI

32
Floyd S K, Bowman J L (2004). Gene regulation: ancient microRNA target sequences in plants. Nature, 428(6982): 485–486

DOI

33
Foyer C H, Descourvieres P, Kunert K J (1994). Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Plant Cell Environ, 17(5): 507–523

DOI

34
Foyer C H, Noctor G (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 17(7): 1866–1875

DOI

35
Friedman R C, Farh K K, Burge C B, Bartel D P (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19(1): 92–105

DOI

36
Gottwein E, Cai X, Cullen B R (2006). A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol, 80(11): 5321–5326

DOI

37
Griffiths-Jones S (2004). The microRNA registry. Nucleic Acids Res, 32(90001 Database issue): D109–D111

38
Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 34(90001): 140–144

DOI

39
Grosshans H, Slack F J (2002). Micro-RNAs: small is plentiful. J Cell Biol, 156(1): 17–21

DOI

40
Grün D, Wang Y L, Langenberger D, Gunsalus K C, Rajewsky N (2005). microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLOS Comput Biol, 1(1): e13

DOI

41
Hammond J P, Bennett M J, Bowen H C, Broadley M R, Eastwood D C, May S T, Rahn C, Swarup R, Woolaway K E, White P J (2003). Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol, 132(2): 578–596

DOI

42
Harfe B D, McManus M T, Mansfield J H, Hornstein E, Tabin C J (2005). The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA, 102(31): 10898–10903

DOI

43
Hawkins P G, Morris K V (2008). RNA and transcriptional modulation of gene expression. Cell Cycle, 7(5): 602–607

DOI

44
Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T (2005). Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol, 57(2): 173–188

DOI

44a
Hunter C, Sun H, Poethig R S (2003). The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol, 13(19): 1734–1739

DOI

45
Jackson D, Veit B, Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development, 120: 405–413

46
Jones-Rhoades M W, Bartel D P (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 14(6): 787-799

DOI

47
Jones-Rhoades M W, Bartel D P, Bartel B (2006). MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 57(1): 19–53

DOI

48
Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell, 4(2): 205–217

DOI

49
Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell, 4(2): 205–217

DOI

50
Kawasaki H, Taira K (2004). MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf), 48(48): 211–212

DOI

51
Kidner C A, Martienssen R A (2003). Macro effects of microRNAs in plants. Trends Genet, 19(1): 13–16

DOI

52
Krek A, Grün D, Poy M N, Wolf R, Rosenberg L, Epstein E J, MacMenamin P, da Piedade I, Gunsalus K C, Stoffel M, Rajewsky N (2005). Combinatorial microRNA target predictions. Nat Genet, 37(5): 495–500

DOI

53
Kren B T, Wong P Y, Sarver A, Zhang X, Zeng Y, Steer C J (2009). MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol, 6(1): 65–72

DOI

54
Kurihara Y, Takashi Y, Watanabe Y (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA, 12(2): 206–212

55
Kurihara Y, Watanabe Y (2004). Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA, 101(34): 12753–12758

DOI

56
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543): 853–858

DOI

57
Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003). New microRNAs from mouse and human. RNA, 9(2): 175–179

58
Lall S, Grün D, Krek A, Chen K, Wang Y L, Dewey C N, Sood P, Colombo T, Bray N, Macmenamin P, Kao H L, Gunsalus K C, Pachter L, Piano F, Rajewsky N (2006). A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol, 16(5): 460–471

DOI

59
Lau N C, Lim L P, Weinstein E G, Bartel D P (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543): 858–862

DOI

60
Laufs P, Peaucelle A, Morin H, Traas J (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131(17): 4311–4322

DOI

61
Lee C T, Risom T, Strauss W M (2007). Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol, 26(4): 209–218

DOI

62
Lee R C, Ambros V (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science, 294(5543): 862–864

DOI

63
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim V N (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956): 415–419

64
Lee Y, Kim M, Han J, Yeom K H, Lee S, Baek S H, Kim V N (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23(20): 4051–4060

DOI

65
Lewis B P, Burge C B, Bartel D P (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1): 15–20

66
Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B (2003). Prediction of mammalian microRNA targets. Cell, 115(7): 787–798

67
Li A, Mao L (2007). Evolution of plant microRNA gene families. Cell Res, 17(3): 212–218

68
Lim L P, Lau N C, Garrett-Engele P, Grimson A, Schelter J M, Castle J, Bartel D P, Linsley P S, Johnson J M (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027): 769–773

DOI

69
Lim L P, Lau N C, Weinstein E G, Abdelhakim A, Yekta S, Rhoades M W, Burge C B, Bartel D P (2003). The microRNAs of Caenorhabditis elegans. Genes Dev, 17(8): 991–1008

DOI

70
Liu B, Li P C, Li X, Liu C Y, Cao S Y, Chu C C, Cao X F (2005). Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol, 139(1): 296–305

DOI

71
Llave C, Kasschau K D, Rector M A, Carrington J C (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14(7): 1605–1619

DOI

72
Llave C, Xie Z, Kasschau K D, Carrington J C (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589): 2053–2056

DOI

73
Lu C, Fedoroff N V (2000). A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell, 12(12): 2351–2366

74
Lu C, Tej S S, Luo S, Haudenschild C D, Meyers B C, Green P J (2005). Elucidation of the small RNA component of the transcriptome. Science, 309(5740): 1567–1569

DOI

75
Lund E, Güttinger S, Calado A, Dahlberg J E, Kutay U (2004). Nuclear export of microRNA precursors. Science, 303(5654): 95–98

DOI

76
Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton M K (1999). The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development, 126(3): 469–481

77
Mallory A C, Bartel D P, Bartel B (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 17(5): 1360–1375

DOI

78
Mazière P, Enright A J (2007). Prediction of microRNA targets. Drug Discov Today, 12(11-12): 452–458

DOI

79
McHale N A, Koning R E (2004). MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell, 16(7): 1730–1740

DOI

80
Millar A A, Gubler F (2005). The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell, 17(3): 705–721

DOI

81
Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 102(33): 11934–11939

DOI

82
Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 7(9): 405–410

DOI

83
Molnár A, Schwach F, Studholme D J, Thuenemann E C, Baulcombe D C (2007). miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature, 447(7148): 1126–1129

DOI

84
Morel J B, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002). Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell, 14(3): 629–639

DOI

85
Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J B, Jouette D, Lacombe A M, Nikic S, Picault N, Rémoué K, Sanial M, Vo T A, Vaucheret H (2000).Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 101(5): 533–542

86
Moussian B, Schoof H, Haecker A, Jürgens G, Laux T (1998). Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J, 17(6): 1799–1809

DOI

87
Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher R L, Moulton V, Dalmay T (2008). Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res, 18(10): 1602–1609

DOI

88
Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955): 257–263

DOI

89
Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 12(17): 1484–1495

DOI

90
Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 12(17): 1484–1495

DOI

91
Pasquinelli A E, Reinhart B J, Slack F, Martindale M Q, Kuroda M I, Maller B, Hayward D C, Ball E E, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808): 86–89

DOI

92
Peragine A, Yoshikawa M, Wu G, Albrecht H L, Poethig R S (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev, 18(19): 2368–2379

DOI

93
Poirier Y, Bucher M (2002). Phosphate transport and homeostasis in Arabidopsis. In: Somerville C R, Meyerowitz E M, eds. The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists

94
Poy M N, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald P E, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014): 226–230

DOI

95
Raghothama K G (1999). Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 50(1): 665–693

DOI

96
Rajagopalan R, Vaucheret H, Trejo J, Bartel D P (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 20(24): 3407–3425

DOI

97
Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P (2002). MicroRNAs in plants. Genes Dev, 16(13): 1616–1626

DOI

98
Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P (2002). Prediction of plant microRNA targets. Cell, 110(4): 513–520

99
Rodriguez A, Griffiths-Jones S, Ashurst J L, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res, 14(10A): 1902–1910

DOI

100
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 99(5): 463–472

101
Saunders M A, Liang H, Li W H (2007). Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA, 104(9): 3300–3305

DOI

102
Schauer S E, Jacobsen S E, Meinke D W, Ray A (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci, 7(11): 487–491

DOI

103
Schwab R, Palatnik J F, Riester M, Schommer C, Schmid M, Weigel D (2005). Specific effects of microRNAs on the plant transcriptome. Dev Cell, 8(4): 517–527

DOI

104
Sunkar R, Girke T, Jain P K, Zhu J K (2005). Cloning and characterization of microRNAs from rice. Plant Cell, 17(5): 1397–1411

DOI

105
Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 18(8): 2051–2065

DOI

106
Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16(8): 2001–2019

DOI

107
Tan Y, Zhang B, Wu T, Skogerbθ G, Zhu X, Guo X, He S, Chen R (2009). Transcriptional inhibition of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol, 10(1): 12–17

DOI

108
Tanzer A, Stadler P F (2004). Molecular evolution of a microRNA cluster. J Mol Biol, 339(2): 327–335

DOI

109
Tijsterman M, Ketting R F, Plasterk R H (2002). The genetics of RNA silencing. Annu Rev Genet, 36(1): 489–519

DOI

110
Vaucheret H, Vazquez F, Crété P, Bartel D P (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 18(10): 1187–1197

DOI

111
Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 16(1): 69–79

DOI

112
Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 16(1): 69–79

DOI

113
Voinnet O, Pinto Y M, Baulcombe D C (1999). Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA, 96(24): 14147–14152

DOI

114
Volpe T A, Kidner C, Hall I M, Teng G, Grewal S I, Martienssen R A (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297(5588): 1833–1837

DOI

115
Wang J W, Wang L J, Mao Y B, Cai W J, Xue H W, Chen X Y (2005). Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 17(8): 2204–2216

DOI

116
Wang X J, Reyes J L, Chua N H, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 5(9): R65

DOI

117
Wasaki J, Yonetani R, Kurodas S, Shinano T, Yazaki J, (2003). Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ, 26(9): 1515–1523

DOI

118
Waterhouse P M, Graham M W, Wang M B (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA, 95(23): 13959–13964

DOI

119
Weber M J (2005). New human and mouse microRNA genes found by homology search. FEBS J, 272(1): 59–73

DOI

120
Wilfred B R, Wang W X, Nelson P T (2007). Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab, 91(3): 209–217

DOI

121
Williams A E (2008). Functional aspects of animal microRNAs. Cell Mol Life Sci, 65(4): 545–562

DOI

122
Williams L, Grigg S P, Xie M, Christensen S, Fletcher J C (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 132(16): 3657–3668

DOI

123
Wu F, Yu L, Cao W G, Mao Y F, Liu Z Y, He Y (2007). The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. Plant Cell, 19(3): 914–925

DOI

124
Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng X W (2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol, 132(3): 1260–1271

DOI

125
Xie Z, Kasschau K D, Carrington J C (2003). Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol, 13(9): 784–789

DOI

126
Yi R, Qin Y, Macara I G, Cullen B R (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17(24): 3011–3016

DOI

127
Zhou G K, Kubo M, Zhong R, Demura T, Ye Z H (2007). Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol, 48(3): 391–404

DOI

128
Zhou X, Ruan J, Wang G, Zhang W (2007). Characterization and identification of microRNA core promoters in four model species. PLOS Comput Biol, 3(3): e37

DOI

129
Zilberman D, Cao X, Jacobsen S E (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 299(5607): 716–719

DOI

130
Zilberman D, Cao X, Johansen L K, Xie Z, Carrington J C, Jacobsen S E (2004). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol, 14(13): 1214–1220

DOI

Outlines

/