Frontiers of Agriculture in China >
The molecular characterization and function of miRNAs on mediation of target gene silencing in plants
Received date: 24 May 2010
Accepted date: 12 Jun 2010
Published date: 05 Jun 2011
Copyright
MiRNAs belong to one type of noncoding RNAs involved in developmental regulation, genome maintenance, and defense in eukaryotes. In plants, the miRNAs are involved in many molecular interactions, including interfere with expression of mRNAs encoding factors that control developmental processes, stem cell maintenances, auxin responses, and other developmental and physiologic processes. In this paper, the molecular characterization and the functions of miRNAs on mediation of target gene silencing in plants have been overviewed. Further studies on the miRNAs will be helpful for elucidation of the molecular mechanism of post- transcriptional gene silencing in plants.
Chengjin GUO , Juntao GU , Xiaojuan LI , Wenjing LU , Chunying MA , Kai XIAO . The molecular characterization and function of miRNAs on mediation of target gene silencing in plants[J]. Frontiers of Agriculture in China, 2011 , 5(2) : 162 -172 . DOI: 10.1007/s11703-010-1040-8
1 |
Abelson J F, Kwan K Y, O’Roak B J, Baek D Y, Stillman A A, Morgan T M, Mathews C A, Pauls D L, Rasin M R, Gunel M, Davis N R, Ercan-Sencicek A G, Guez D H, Spertus J A, Leckman J F, Dure L S 4th, Kurlan R, Singer H S, Gilbert D L, Farhi A, Louvi A, Lifton R P, Sestan N, State M W (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science, 310(5746): 317–320
|
2 |
Achard P, Herr A, Baulcombe D C, Harberd N P (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development, 131(14): 3357–3365
|
3 |
Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 15(1): 78–91
|
4 |
Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2): 207–221
|
5 |
Allen R D, Webb R P, Schake S A (1997). Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med, 23(3): 473–479
|
6 |
Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein M J, Tuschl T, Margalit H (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res, 33(8): 2697–2706
|
7 |
Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55(1): 373–399
|
8 |
Aukerman M J, Sakai H (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 15(11): 2730–2741
|
9 |
Axtell M J, Bartel D P (2005). Antiquity of microRNAs and their targets in land plants. Plant Cell, 17(6): 1658–1673
|
10 |
Bartels D, Sunka R (2005). Drought and salt tolerance in plants. CRC Crit. Rev. Plant Science, 24(1): 23–58
|
11 |
Baulcombe D (2004). RNA silencing in plants. Nature, 431(7006): 356–363
|
12 |
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 37(7): 766–770
|
13 |
Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818): 363–366
|
14 |
Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 101(31): 11511–11516
|
15 |
Brennecke J, Hipfner D R, Stark A, Russell R B, Cohen S M (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113(1): 25–36
|
16 |
Brennecke J, Stark A, Russell R B, Cohen S M (2005). Principles of microRNA-target recognition. PLoS Biol, 3(3): e85
|
17 |
Cai X, Hagedorn C H, Cullen B R (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12): 1957–1966
|
18 |
Carmell M A, Xuan Z, Zhang M Q, Hannon G J (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 16(21): 2733–2742
|
19 |
Carrington J C, Ambros V (2003). Role of microRNAs in plant and animal development. Science, 301(5631): 336–338
|
20 |
Chen C Z, Li L, Lodish H F, Bartel D P (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science, 303(5654): 83–86
|
21 |
Chen K, Rajewsky N (2006). Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet, 38(12): 1452–1456
|
22 |
Chen X (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303(5666): 2022–2025
|
23 |
Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18(2): 412–421
|
24 |
Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen J M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 38(7): 813–818
|
25 |
Cuellar T L, McManus M T (2005). MicroRNAs and endocrine biology. J Endocrinol, 187(3): 327–332
|
26 |
Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993). Cellular organisation of the Arabidopsis thaliana root. Development, 119(1): 71–84
|
27 |
Ehrenreich I M, Purugganan M D (2008). Sequence variation of MicroRNAs and their binding sites in Arabidopsis. Plant Physiol, 146(4): 1974–1982
|
28 |
Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009). Deadenylation is a widespread effect of miRNA regulation. RNA, 15(1): 21–32
|
29 |
Fagard M, Boutet S, Morel J B, Bellini C, Vaucheret H (2000). AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA, 97(21): 11650–11654
|
30 |
Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C, Shiu S H (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2(2): e219
|
31 |
Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669): 806–811
|
32 |
Floyd S K, Bowman J L (2004). Gene regulation: ancient microRNA target sequences in plants. Nature, 428(6982): 485–486
|
33 |
Foyer C H, Descourvieres P, Kunert K J (1994). Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Plant Cell Environ, 17(5): 507–523
|
34 |
Foyer C H, Noctor G (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 17(7): 1866–1875
|
35 |
Friedman R C, Farh K K, Burge C B, Bartel D P (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19(1): 92–105
|
36 |
Gottwein E, Cai X, Cullen B R (2006). A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol, 80(11): 5321–5326
|
37 |
Griffiths-Jones S (2004). The microRNA registry. Nucleic Acids Res, 32(90001 Database issue): D109–D111
|
38 |
Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 34(90001): 140–144
|
39 |
Grosshans H, Slack F J (2002). Micro-RNAs: small is plentiful. J Cell Biol, 156(1): 17–21
|
40 |
Grün D, Wang Y L, Langenberger D, Gunsalus K C, Rajewsky N (2005). microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLOS Comput Biol, 1(1): e13
|
41 |
Hammond J P, Bennett M J, Bowen H C, Broadley M R, Eastwood D C, May S T, Rahn C, Swarup R, Woolaway K E, White P J (2003). Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol, 132(2): 578–596
|
42 |
Harfe B D, McManus M T, Mansfield J H, Hornstein E, Tabin C J (2005). The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA, 102(31): 10898–10903
|
43 |
Hawkins P G, Morris K V (2008). RNA and transcriptional modulation of gene expression. Cell Cycle, 7(5): 602–607
|
44 |
Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T (2005). Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol, 57(2): 173–188
|
44a |
Hunter C, Sun H, Poethig R S (2003). The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol, 13(19): 1734–1739
|
45 |
Jackson D, Veit B, Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development, 120: 405–413
|
46 |
Jones-Rhoades M W, Bartel D P (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 14(6): 787-799
|
47 |
Jones-Rhoades M W, Bartel D P, Bartel B (2006). MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 57(1): 19–53
|
48 |
Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell, 4(2): 205–217
|
49 |
Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell, 4(2): 205–217
|
50 |
Kawasaki H, Taira K (2004). MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf), 48(48): 211–212
|
51 |
Kidner C A, Martienssen R A (2003). Macro effects of microRNAs in plants. Trends Genet, 19(1): 13–16
|
52 |
Krek A, Grün D, Poy M N, Wolf R, Rosenberg L, Epstein E J, MacMenamin P, da Piedade I, Gunsalus K C, Stoffel M, Rajewsky N (2005). Combinatorial microRNA target predictions. Nat Genet, 37(5): 495–500
|
53 |
Kren B T, Wong P Y, Sarver A, Zhang X, Zeng Y, Steer C J (2009). MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol, 6(1): 65–72
|
54 |
Kurihara Y, Takashi Y, Watanabe Y (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA, 12(2): 206–212
|
55 |
Kurihara Y, Watanabe Y (2004). Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA, 101(34): 12753–12758
|
56 |
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543): 853–858
|
57 |
Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003). New microRNAs from mouse and human. RNA, 9(2): 175–179
|
58 |
Lall S, Grün D, Krek A, Chen K, Wang Y L, Dewey C N, Sood P, Colombo T, Bray N, Macmenamin P, Kao H L, Gunsalus K C, Pachter L, Piano F, Rajewsky N (2006). A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol, 16(5): 460–471
|
59 |
Lau N C, Lim L P, Weinstein E G, Bartel D P (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543): 858–862
|
60 |
Laufs P, Peaucelle A, Morin H, Traas J (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131(17): 4311–4322
|
61 |
Lee C T, Risom T, Strauss W M (2007). Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol, 26(4): 209–218
|
62 |
Lee R C, Ambros V (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science, 294(5543): 862–864
|
63 |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim V N (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956): 415–419
|
64 |
Lee Y, Kim M, Han J, Yeom K H, Lee S, Baek S H, Kim V N (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23(20): 4051–4060
|
65 |
Lewis B P, Burge C B, Bartel D P (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1): 15–20
|
66 |
Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B (2003). Prediction of mammalian microRNA targets. Cell, 115(7): 787–798
|
67 |
Li A, Mao L (2007). Evolution of plant microRNA gene families. Cell Res, 17(3): 212–218
|
68 |
Lim L P, Lau N C, Garrett-Engele P, Grimson A, Schelter J M, Castle J, Bartel D P, Linsley P S, Johnson J M (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027): 769–773
|
69 |
Lim L P, Lau N C, Weinstein E G, Abdelhakim A, Yekta S, Rhoades M W, Burge C B, Bartel D P (2003). The microRNAs of Caenorhabditis elegans. Genes Dev, 17(8): 991–1008
|
70 |
Liu B, Li P C, Li X, Liu C Y, Cao S Y, Chu C C, Cao X F (2005). Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol, 139(1): 296–305
|
71 |
Llave C, Kasschau K D, Rector M A, Carrington J C (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14(7): 1605–1619
|
72 |
Llave C, Xie Z, Kasschau K D, Carrington J C (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589): 2053–2056
|
73 |
Lu C, Fedoroff N V (2000). A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell, 12(12): 2351–2366
|
74 |
Lu C, Tej S S, Luo S, Haudenschild C D, Meyers B C, Green P J (2005). Elucidation of the small RNA component of the transcriptome. Science, 309(5740): 1567–1569
|
75 |
Lund E, Güttinger S, Calado A, Dahlberg J E, Kutay U (2004). Nuclear export of microRNA precursors. Science, 303(5654): 95–98
|
76 |
Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton M K (1999). The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development, 126(3): 469–481
|
77 |
Mallory A C, Bartel D P, Bartel B (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 17(5): 1360–1375
|
78 |
Mazière P, Enright A J (2007). Prediction of microRNA targets. Drug Discov Today, 12(11-12): 452–458
|
79 |
McHale N A, Koning R E (2004). MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell, 16(7): 1730–1740
|
80 |
Millar A A, Gubler F (2005). The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell, 17(3): 705–721
|
81 |
Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 102(33): 11934–11939
|
82 |
Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 7(9): 405–410
|
83 |
Molnár A, Schwach F, Studholme D J, Thuenemann E C, Baulcombe D C (2007). miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature, 447(7148): 1126–1129
|
84 |
Morel J B, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002). Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell, 14(3): 629–639
|
85 |
Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J B, Jouette D, Lacombe A M, Nikic S, Picault N, Rémoué K, Sanial M, Vo T A, Vaucheret H (2000).Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 101(5): 533–542
|
86 |
Moussian B, Schoof H, Haecker A, Jürgens G, Laux T (1998). Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J, 17(6): 1799–1809
|
87 |
Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher R L, Moulton V, Dalmay T (2008). Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res, 18(10): 1602–1609
|
88 |
Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955): 257–263
|
89 |
Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 12(17): 1484–1495
|
90 |
Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 12(17): 1484–1495
|
91 |
Pasquinelli A E, Reinhart B J, Slack F, Martindale M Q, Kuroda M I, Maller B, Hayward D C, Ball E E, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808): 86–89
|
92 |
Peragine A, Yoshikawa M, Wu G, Albrecht H L, Poethig R S (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev, 18(19): 2368–2379
|
93 |
Poirier Y, Bucher M (2002). Phosphate transport and homeostasis in Arabidopsis. In: Somerville C R, Meyerowitz E M, eds. The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists
|
94 |
Poy M N, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald P E, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014): 226–230
|
95 |
Raghothama K G (1999). Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 50(1): 665–693
|
96 |
Rajagopalan R, Vaucheret H, Trejo J, Bartel D P (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 20(24): 3407–3425
|
97 |
Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P (2002). MicroRNAs in plants. Genes Dev, 16(13): 1616–1626
|
98 |
Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P (2002). Prediction of plant microRNA targets. Cell, 110(4): 513–520
|
99 |
Rodriguez A, Griffiths-Jones S, Ashurst J L, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res, 14(10A): 1902–1910
|
100 |
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 99(5): 463–472
|
101 |
Saunders M A, Liang H, Li W H (2007). Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA, 104(9): 3300–3305
|
102 |
Schauer S E, Jacobsen S E, Meinke D W, Ray A (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci, 7(11): 487–491
|
103 |
Schwab R, Palatnik J F, Riester M, Schommer C, Schmid M, Weigel D (2005). Specific effects of microRNAs on the plant transcriptome. Dev Cell, 8(4): 517–527
|
104 |
Sunkar R, Girke T, Jain P K, Zhu J K (2005). Cloning and characterization of microRNAs from rice. Plant Cell, 17(5): 1397–1411
|
105 |
Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 18(8): 2051–2065
|
106 |
Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16(8): 2001–2019
|
107 |
Tan Y, Zhang B, Wu T, Skogerbθ G, Zhu X, Guo X, He S, Chen R (2009). Transcriptional inhibition of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol, 10(1): 12–17
|
108 |
Tanzer A, Stadler P F (2004). Molecular evolution of a microRNA cluster. J Mol Biol, 339(2): 327–335
|
109 |
Tijsterman M, Ketting R F, Plasterk R H (2002). The genetics of RNA silencing. Annu Rev Genet, 36(1): 489–519
|
110 |
Vaucheret H, Vazquez F, Crété P, Bartel D P (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 18(10): 1187–1197
|
111 |
Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 16(1): 69–79
|
112 |
Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 16(1): 69–79
|
113 |
Voinnet O, Pinto Y M, Baulcombe D C (1999). Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA, 96(24): 14147–14152
|
114 |
Volpe T A, Kidner C, Hall I M, Teng G, Grewal S I, Martienssen R A (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297(5588): 1833–1837
|
115 |
Wang J W, Wang L J, Mao Y B, Cai W J, Xue H W, Chen X Y (2005). Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 17(8): 2204–2216
|
116 |
Wang X J, Reyes J L, Chua N H, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 5(9): R65
|
117 |
Wasaki J, Yonetani R, Kurodas S, Shinano T, Yazaki J,
|
118 |
Waterhouse P M, Graham M W, Wang M B (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA, 95(23): 13959–13964
|
119 |
Weber M J (2005). New human and mouse microRNA genes found by homology search. FEBS J, 272(1): 59–73
|
120 |
Wilfred B R, Wang W X, Nelson P T (2007). Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab, 91(3): 209–217
|
121 |
Williams A E (2008). Functional aspects of animal microRNAs. Cell Mol Life Sci, 65(4): 545–562
|
122 |
Williams L, Grigg S P, Xie M, Christensen S, Fletcher J C (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 132(16): 3657–3668
|
123 |
Wu F, Yu L, Cao W G, Mao Y F, Liu Z Y, He Y (2007). The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. Plant Cell, 19(3): 914–925
|
124 |
Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng X W (2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol, 132(3): 1260–1271
|
125 |
Xie Z, Kasschau K D, Carrington J C (2003). Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol, 13(9): 784–789
|
126 |
Yi R, Qin Y, Macara I G, Cullen B R (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17(24): 3011–3016
|
127 |
Zhou G K, Kubo M, Zhong R, Demura T, Ye Z H (2007). Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol, 48(3): 391–404
|
128 |
Zhou X, Ruan J, Wang G, Zhang W (2007). Characterization and identification of microRNA core promoters in four model species. PLOS Comput Biol, 3(3): e37
|
129 |
Zilberman D, Cao X, Jacobsen S E (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 299(5607): 716–719
|
130 |
Zilberman D, Cao X, Johansen L K, Xie Z, Carrington J C, Jacobsen S E (2004). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol, 14(13): 1214–1220
|
/
〈 | 〉 |