The molecular characterization and function of miRNAs on mediation of target gene silencing in plants

Chengjin GUO, Juntao GU, Xiaojuan LI, Wenjing LU, Chunying MA, Kai XIAO

PDF(195 KB)
PDF(195 KB)
Front. Agric. China ›› 2011, Vol. 5 ›› Issue (2) : 162-172. DOI: 10.1007/s11703-010-1040-8
REVIEW
REVIEW

The molecular characterization and function of miRNAs on mediation of target gene silencing in plants

Author information +
History +

Abstract

MiRNAs belong to one type of noncoding RNAs involved in developmental regulation, genome maintenance, and defense in eukaryotes. In plants, the miRNAs are involved in many molecular interactions, including interfere with expression of mRNAs encoding factors that control developmental processes, stem cell maintenances, auxin responses, and other developmental and physiologic processes. In this paper, the molecular characterization and the functions of miRNAs on mediation of target gene silencing in plants have been overviewed. Further studies on the miRNAs will be helpful for elucidation of the molecular mechanism of post- transcriptional gene silencing in plants.

Keywords

miRNAs / molecular characterization / RNA-induced silencing complex (RISC) / target gene

Cite this article

Download citation ▾
Chengjin GUO, Juntao GU, Xiaojuan LI, Wenjing LU, Chunying MA, Kai XIAO. The molecular characterization and function of miRNAs on mediation of target gene silencing in plants. Front Agric Chin, 2011, 5(2): 162‒172 https://doi.org/10.1007/s11703-010-1040-8

References

[1]
Abelson J F, Kwan K Y, O’Roak B J, Baek D Y, Stillman A A, Morgan T M, Mathews C A, Pauls D L, Rasin M R, Gunel M, Davis N R, Ercan-Sencicek A G, Guez D H, Spertus J A, Leckman J F, Dure L S 4th, Kurlan R, Singer H S, Gilbert D L, Farhi A, Louvi A, Lifton R P, Sestan N, State M W (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science, 310(5746): 317–320
CrossRef Google scholar
[2]
Achard P, Herr A, Baulcombe D C, Harberd N P (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development, 131(14): 3357–3365
CrossRef Google scholar
[3]
Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 15(1): 78–91
CrossRef Google scholar
[4]
Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2): 207–221
[5]
Allen R D, Webb R P, Schake S A (1997). Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med, 23(3): 473–479
CrossRef Google scholar
[6]
Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein M J, Tuschl T, Margalit H (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res, 33(8): 2697–2706
CrossRef Google scholar
[7]
Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55(1): 373–399
CrossRef Google scholar
[8]
Aukerman M J, Sakai H (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 15(11): 2730–2741
CrossRef Google scholar
[9]
Axtell M J, Bartel D P (2005). Antiquity of microRNAs and their targets in land plants. Plant Cell, 17(6): 1658–1673
CrossRef Google scholar
[10]
Bartels D, Sunka R (2005). Drought and salt tolerance in plants. CRC Crit. Rev. Plant Science, 24(1): 23–58
CrossRef Google scholar
[11]
Baulcombe D (2004). RNA silencing in plants. Nature, 431(7006): 356–363
CrossRef Google scholar
[12]
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 37(7): 766–770
CrossRef Google scholar
[13]
Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818): 363–366
CrossRef Google scholar
[14]
Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 101(31): 11511–11516
CrossRef Google scholar
[15]
Brennecke J, Hipfner D R, Stark A, Russell R B, Cohen S M (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113(1): 25–36
[16]
Brennecke J, Stark A, Russell R B, Cohen S M (2005). Principles of microRNA-target recognition. PLoS Biol, 3(3): e85
CrossRef Google scholar
[17]
Cai X, Hagedorn C H, Cullen B R (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12): 1957–1966
[18]
Carmell M A, Xuan Z, Zhang M Q, Hannon G J (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 16(21): 2733–2742
CrossRef Google scholar
[19]
Carrington J C, Ambros V (2003). Role of microRNAs in plant and animal development. Science, 301(5631): 336–338
CrossRef Google scholar
[20]
Chen C Z, Li L, Lodish H F, Bartel D P (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science, 303(5654): 83–86
CrossRef Google scholar
[21]
Chen K, Rajewsky N (2006). Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet, 38(12): 1452–1456
CrossRef Google scholar
[22]
Chen X (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303(5666): 2022–2025
CrossRef Google scholar
[23]
Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18(2): 412–421
CrossRef Google scholar
[24]
Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen J M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 38(7): 813–818
CrossRef Google scholar
[25]
Cuellar T L, McManus M T (2005). MicroRNAs and endocrine biology. J Endocrinol, 187(3): 327–332
CrossRef Google scholar
[26]
Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993). Cellular organisation of the Arabidopsis thaliana root. Development, 119(1): 71–84
[27]
Ehrenreich I M, Purugganan M D (2008). Sequence variation of MicroRNAs and their binding sites in Arabidopsis. Plant Physiol, 146(4): 1974–1982
CrossRef Google scholar
[28]
Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009). Deadenylation is a widespread effect of miRNA regulation. RNA, 15(1): 21–32
[29]
Fagard M, Boutet S, Morel J B, Bellini C, Vaucheret H (2000). AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA, 97(21): 11650–11654
CrossRef Google scholar
[30]
Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C, Shiu S H (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2(2): e219
CrossRef Google scholar
[31]
Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669): 806–811
CrossRef Google scholar
[32]
Floyd S K, Bowman J L (2004). Gene regulation: ancient microRNA target sequences in plants. Nature, 428(6982): 485–486
CrossRef Google scholar
[33]
Foyer C H, Descourvieres P, Kunert K J (1994). Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Plant Cell Environ, 17(5): 507–523
CrossRef Google scholar
[34]
Foyer C H, Noctor G (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 17(7): 1866–1875
CrossRef Google scholar
[35]
Friedman R C, Farh K K, Burge C B, Bartel D P (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19(1): 92–105
CrossRef Google scholar
[36]
Gottwein E, Cai X, Cullen B R (2006). A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol, 80(11): 5321–5326
CrossRef Google scholar
[37]
Griffiths-Jones S (2004). The microRNA registry. Nucleic Acids Res, 32(90001 Database issue): D109–D111
[38]
Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 34(90001): 140–144
CrossRef Google scholar
[39]
Grosshans H, Slack F J (2002). Micro-RNAs: small is plentiful. J Cell Biol, 156(1): 17–21
CrossRef Google scholar
[40]
Grün D, Wang Y L, Langenberger D, Gunsalus K C, Rajewsky N (2005). microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLOS Comput Biol, 1(1): e13
CrossRef Google scholar
[41]
Hammond J P, Bennett M J, Bowen H C, Broadley M R, Eastwood D C, May S T, Rahn C, Swarup R, Woolaway K E, White P J (2003). Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol, 132(2): 578–596
CrossRef Google scholar
[42]
Harfe B D, McManus M T, Mansfield J H, Hornstein E, Tabin C J (2005). The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA, 102(31): 10898–10903
CrossRef Google scholar
[43]
Hawkins P G, Morris K V (2008). RNA and transcriptional modulation of gene expression. Cell Cycle, 7(5): 602–607
CrossRef Google scholar
[44]
Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T (2005). Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol, 57(2): 173–188
CrossRef Google scholar
[44a]
Hunter C, Sun H, Poethig R S (2003). The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol, 13(19): 1734–1739
CrossRef Google scholar
[45]
Jackson D, Veit B, Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development, 120: 405–413
[46]
Jones-Rhoades M W, Bartel D P (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 14(6): 787-799
CrossRef Google scholar
[47]
Jones-Rhoades M W, Bartel D P, Bartel B (2006). MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 57(1): 19–53
CrossRef Google scholar
[48]
Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell, 4(2): 205–217
CrossRef Google scholar
[49]
Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell, 4(2): 205–217
CrossRef Google scholar
[50]
Kawasaki H, Taira K (2004). MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf), 48(48): 211–212
CrossRef Google scholar
[51]
Kidner C A, Martienssen R A (2003). Macro effects of microRNAs in plants. Trends Genet, 19(1): 13–16
CrossRef Google scholar
[52]
Krek A, Grün D, Poy M N, Wolf R, Rosenberg L, Epstein E J, MacMenamin P, da Piedade I, Gunsalus K C, Stoffel M, Rajewsky N (2005). Combinatorial microRNA target predictions. Nat Genet, 37(5): 495–500
CrossRef Google scholar
[53]
Kren B T, Wong P Y, Sarver A, Zhang X, Zeng Y, Steer C J (2009). MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol, 6(1): 65–72
CrossRef Google scholar
[54]
Kurihara Y, Takashi Y, Watanabe Y (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA, 12(2): 206–212
[55]
Kurihara Y, Watanabe Y (2004). Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA, 101(34): 12753–12758
CrossRef Google scholar
[56]
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543): 853–858
CrossRef Google scholar
[57]
Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003). New microRNAs from mouse and human. RNA, 9(2): 175–179
[58]
Lall S, Grün D, Krek A, Chen K, Wang Y L, Dewey C N, Sood P, Colombo T, Bray N, Macmenamin P, Kao H L, Gunsalus K C, Pachter L, Piano F, Rajewsky N (2006). A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol, 16(5): 460–471
CrossRef Google scholar
[59]
Lau N C, Lim L P, Weinstein E G, Bartel D P (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543): 858–862
CrossRef Google scholar
[60]
Laufs P, Peaucelle A, Morin H, Traas J (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131(17): 4311–4322
CrossRef Google scholar
[61]
Lee C T, Risom T, Strauss W M (2007). Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol, 26(4): 209–218
CrossRef Google scholar
[62]
Lee R C, Ambros V (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science, 294(5543): 862–864
CrossRef Google scholar
[63]
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim V N (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956): 415–419
[64]
Lee Y, Kim M, Han J, Yeom K H, Lee S, Baek S H, Kim V N (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23(20): 4051–4060
CrossRef Google scholar
[65]
Lewis B P, Burge C B, Bartel D P (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1): 15–20
[66]
Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B (2003). Prediction of mammalian microRNA targets. Cell, 115(7): 787–798
[67]
Li A, Mao L (2007). Evolution of plant microRNA gene families. Cell Res, 17(3): 212–218
[68]
Lim L P, Lau N C, Garrett-Engele P, Grimson A, Schelter J M, Castle J, Bartel D P, Linsley P S, Johnson J M (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027): 769–773
CrossRef Google scholar
[69]
Lim L P, Lau N C, Weinstein E G, Abdelhakim A, Yekta S, Rhoades M W, Burge C B, Bartel D P (2003). The microRNAs of Caenorhabditis elegans. Genes Dev, 17(8): 991–1008
CrossRef Google scholar
[70]
Liu B, Li P C, Li X, Liu C Y, Cao S Y, Chu C C, Cao X F (2005). Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol, 139(1): 296–305
CrossRef Google scholar
[71]
Llave C, Kasschau K D, Rector M A, Carrington J C (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14(7): 1605–1619
CrossRef Google scholar
[72]
Llave C, Xie Z, Kasschau K D, Carrington J C (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589): 2053–2056
CrossRef Google scholar
[73]
Lu C, Fedoroff N V (2000). A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell, 12(12): 2351–2366
[74]
Lu C, Tej S S, Luo S, Haudenschild C D, Meyers B C, Green P J (2005). Elucidation of the small RNA component of the transcriptome. Science, 309(5740): 1567–1569
CrossRef Google scholar
[75]
Lund E, Güttinger S, Calado A, Dahlberg J E, Kutay U (2004). Nuclear export of microRNA precursors. Science, 303(5654): 95–98
CrossRef Google scholar
[76]
Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton M K (1999). The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development, 126(3): 469–481
[77]
Mallory A C, Bartel D P, Bartel B (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 17(5): 1360–1375
CrossRef Google scholar
[78]
Mazière P, Enright A J (2007). Prediction of microRNA targets. Drug Discov Today, 12(11-12): 452–458
CrossRef Google scholar
[79]
McHale N A, Koning R E (2004). MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell, 16(7): 1730–1740
CrossRef Google scholar
[80]
Millar A A, Gubler F (2005). The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell, 17(3): 705–721
CrossRef Google scholar
[81]
Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 102(33): 11934–11939
CrossRef Google scholar
[82]
Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 7(9): 405–410
CrossRef Google scholar
[83]
Molnár A, Schwach F, Studholme D J, Thuenemann E C, Baulcombe D C (2007). miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature, 447(7148): 1126–1129
CrossRef Google scholar
[84]
Morel J B, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002). Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell, 14(3): 629–639
CrossRef Google scholar
[85]
Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J B, Jouette D, Lacombe A M, Nikic S, Picault N, Rémoué K, Sanial M, Vo T A, Vaucheret H (2000).Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 101(5): 533–542
[86]
Moussian B, Schoof H, Haecker A, Jürgens G, Laux T (1998). Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J, 17(6): 1799–1809
CrossRef Google scholar
[87]
Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher R L, Moulton V, Dalmay T (2008). Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res, 18(10): 1602–1609
CrossRef Google scholar
[88]
Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955): 257–263
CrossRef Google scholar
[89]
Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 12(17): 1484–1495
CrossRef Google scholar
[90]
Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 12(17): 1484–1495
CrossRef Google scholar
[91]
Pasquinelli A E, Reinhart B J, Slack F, Martindale M Q, Kuroda M I, Maller B, Hayward D C, Ball E E, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808): 86–89
CrossRef Google scholar
[92]
Peragine A, Yoshikawa M, Wu G, Albrecht H L, Poethig R S (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev, 18(19): 2368–2379
CrossRef Google scholar
[93]
Poirier Y, Bucher M (2002). Phosphate transport and homeostasis in Arabidopsis. In: Somerville C R, Meyerowitz E M, eds. The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists
[94]
Poy M N, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald P E, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014): 226–230
CrossRef Google scholar
[95]
Raghothama K G (1999). Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 50(1): 665–693
CrossRef Google scholar
[96]
Rajagopalan R, Vaucheret H, Trejo J, Bartel D P (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 20(24): 3407–3425
CrossRef Google scholar
[97]
Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P (2002). MicroRNAs in plants. Genes Dev, 16(13): 1616–1626
CrossRef Google scholar
[98]
Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P (2002). Prediction of plant microRNA targets. Cell, 110(4): 513–520
[99]
Rodriguez A, Griffiths-Jones S, Ashurst J L, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res, 14(10A): 1902–1910
CrossRef Google scholar
[100]
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 99(5): 463–472
[101]
Saunders M A, Liang H, Li W H (2007). Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA, 104(9): 3300–3305
CrossRef Google scholar
[102]
Schauer S E, Jacobsen S E, Meinke D W, Ray A (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci, 7(11): 487–491
CrossRef Google scholar
[103]
Schwab R, Palatnik J F, Riester M, Schommer C, Schmid M, Weigel D (2005). Specific effects of microRNAs on the plant transcriptome. Dev Cell, 8(4): 517–527
CrossRef Google scholar
[104]
Sunkar R, Girke T, Jain P K, Zhu J K (2005). Cloning and characterization of microRNAs from rice. Plant Cell, 17(5): 1397–1411
CrossRef Google scholar
[105]
Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 18(8): 2051–2065
CrossRef Google scholar
[106]
Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16(8): 2001–2019
CrossRef Google scholar
[107]
Tan Y, Zhang B, Wu T, Skogerbθ G, Zhu X, Guo X, He S, Chen R (2009). Transcriptional inhibition of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol, 10(1): 12–17
CrossRef Google scholar
[108]
Tanzer A, Stadler P F (2004). Molecular evolution of a microRNA cluster. J Mol Biol, 339(2): 327–335
CrossRef Google scholar
[109]
Tijsterman M, Ketting R F, Plasterk R H (2002). The genetics of RNA silencing. Annu Rev Genet, 36(1): 489–519
CrossRef Google scholar
[110]
Vaucheret H, Vazquez F, Crété P, Bartel D P (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 18(10): 1187–1197
CrossRef Google scholar
[111]
Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 16(1): 69–79
CrossRef Google scholar
[112]
Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 16(1): 69–79
CrossRef Google scholar
[113]
Voinnet O, Pinto Y M, Baulcombe D C (1999). Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA, 96(24): 14147–14152
CrossRef Google scholar
[114]
Volpe T A, Kidner C, Hall I M, Teng G, Grewal S I, Martienssen R A (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297(5588): 1833–1837
CrossRef Google scholar
[115]
Wang J W, Wang L J, Mao Y B, Cai W J, Xue H W, Chen X Y (2005). Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 17(8): 2204–2216
CrossRef Google scholar
[116]
Wang X J, Reyes J L, Chua N H, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 5(9): R65
CrossRef Google scholar
[117]
Wasaki J, Yonetani R, Kurodas S, Shinano T, Yazaki J, (2003). Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ, 26(9): 1515–1523
CrossRef Google scholar
[118]
Waterhouse P M, Graham M W, Wang M B (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA, 95(23): 13959–13964
CrossRef Google scholar
[119]
Weber M J (2005). New human and mouse microRNA genes found by homology search. FEBS J, 272(1): 59–73
CrossRef Google scholar
[120]
Wilfred B R, Wang W X, Nelson P T (2007). Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab, 91(3): 209–217
CrossRef Google scholar
[121]
Williams A E (2008). Functional aspects of animal microRNAs. Cell Mol Life Sci, 65(4): 545–562
CrossRef Google scholar
[122]
Williams L, Grigg S P, Xie M, Christensen S, Fletcher J C (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 132(16): 3657–3668
CrossRef Google scholar
[123]
Wu F, Yu L, Cao W G, Mao Y F, Liu Z Y, He Y (2007). The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. Plant Cell, 19(3): 914–925
CrossRef Google scholar
[124]
Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng X W (2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol, 132(3): 1260–1271
CrossRef Google scholar
[125]
Xie Z, Kasschau K D, Carrington J C (2003). Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol, 13(9): 784–789
CrossRef Google scholar
[126]
Yi R, Qin Y, Macara I G, Cullen B R (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17(24): 3011–3016
CrossRef Google scholar
[127]
Zhou G K, Kubo M, Zhong R, Demura T, Ye Z H (2007). Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol, 48(3): 391–404
CrossRef Google scholar
[128]
Zhou X, Ruan J, Wang G, Zhang W (2007). Characterization and identification of microRNA core promoters in four model species. PLOS Comput Biol, 3(3): e37
CrossRef Google scholar
[129]
Zilberman D, Cao X, Jacobsen S E (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 299(5607): 716–719
CrossRef Google scholar
[130]
Zilberman D, Cao X, Johansen L K, Xie Z, Carrington J C, Jacobsen S E (2004). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol, 14(13): 1214–1220
CrossRef Google scholar

Acknowledgements

This work was supported by the National Transgenic Major Program of China (No. 2009ZX08009-011B), the National Basic Research Program of China (973 Program) in the early stage (No. 2007CB116209), and the Foundation of Crop Growth Regulation Laboratory of Hebei Province, China.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(195 KB)

Accesses

Citations

Detail

Sections
Recommended

/