RESEARCH ARTICLE

The physical interaction between LdPLCs and Arabidopsis G beta in a yeast two-hybrid system

  • Jinglei SUN 1 ,
  • Xiuhua LIU 2 ,
  • Yanyun PAN , 1
Expand
  • 1. College of Life Science, Agricultural University of Hebei, Baoding 071001, China
  • 2. College of Basic Medical, Hebei University, Baoding 071002, China

Received date: 03 May 2010

Accepted date: 20 May 2010

Published date: 05 Mar 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Phosphoinositide-specific phospholipase C plays pivotal roles in a host of physiologic processes in both animals and plants. Animal PI-PLC is regulated by heterotrimeric G-protein. Plant PI-PLCs are structurally close to the mammalian PI-PLC-ζ isoform, and it is not testified what regulated this isoform enzyme. In this paper, two isoform genes of LdPLC (Pan, 2005) and three subunits of heterotrimeric G-protein in BoldItalic were amplified and recombinated with plasmids of a yeast two-hybrid system. Using this system, we provided the evidence that LdPLC1 and Gβ subunit could be able to interact with each other. This result indicated that LdPLC1 might be regulated by G-protein.

Cite this article

Jinglei SUN , Xiuhua LIU , Yanyun PAN . The physical interaction between LdPLCs and Arabidopsis G beta in a yeast two-hybrid system[J]. Frontiers of Agriculture in China, 2011 , 5(1) : 64 -71 . DOI: 10.1007/s11703-011-1063-9

Acknowledgements

We are grateful to the Cell Biology Department of College of Life Science, Hebei Normal University, China, for their help in technical assistance. This research was financially supported by the National Natural Science Foundation of China (Grant No. 30570993) and Hebei Natural Science Foundation Program, Hebei Province, China (No. C2008000292).
1
Adjobo-Hermans M J, Goedhart J, Gadella T W J Jr (2006). Plant G protein heterotrimers require dual lipidation motifs of Gα and Gγ and do not dissociate upon activation. J Cell Sci, 119(24): 5087–5097

DOI PMID

2
Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999). Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 96(18): 10284–10289

DOI PMID

3
Chapman K D (1998). Phospholipase activity during plant growth and development and in response to environmental stress. Trends in Plant Science, 3(11): 419–426

DOI

4
Chen J G (2008). Heterotrimeric G-proteins in plant development. Front Biosci, 13: 3321–3333

DOI PMID

5
Chen J G, Gao Y, Jones A M (2006). Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol, 141(3): 887–897

DOI PMID

6
Chen J G, Pandey S, Huang J, Alonso J M, Ecker J R, Assmann S M, Jones A M (2004). GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol, 135(2): 907–915

DOI PMID

7
Coursol S, Giglioli-Guivarc’h N, Vidal J, Pierre J N (2000). An increase in phosphoinositide-specific phospholipase C activity precedes induction of C4 phosphoenolpyruvate carboxylase phosphorylation in illuminated and NH4Cl-treated protoplasts from Digitaria sanguinalis. Plant J, 23(4): 497–506

DOI PMID

8
Dowd P E, Coursol S, Skirpan A L, Kao T H, Gilroy S (2006). Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell, 18(6): 1438–1453

DOI PMID

9
Franklin-Tong V E, Drobak B K, Allan A C, Watkins P, Trewavas A J (1996). Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell, 8(8): 1305–1321

DOI PMID

10
Friedman E J, Temple B R, Hicks S N, Sondek J, Jones C D, Jones A M (2009). Prediction of protein-protein interfaces on G-protein β subunits reveals a novel phospholipase C β2 binding domain. J Mol Biol, 392(4): 1044–1054

DOI PMID

11
Helling D, Possart A, Cottier S, Klahre U, Kost B (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell, 18(12): 3519–3534

DOI PMID

12
Helsper J P F G, Heemskerk J W Z M, Veerkamp J H (1987). Cytosolic and particulate phosphatidylinositol phospholipase C activities in pollen tubes of Lilium longiglorum. Plant Physiol, 71(1): 120–126

DOI

13
Kowalczyk S, Hetmann A (2008). G-protein-coupled receptors, heterotrimeric G-proteins and protein effectors in plants. Postepy Biochem, 54(4): 412–422

PMID

14
Li J H, Liu Y Q, Lü P, Lin H F, Bai Y, Wang X C, Chen Y L (2009). A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiol, 150(1): 114–124

DOI PMID

15
Ma H, Yanofsky M F, Meyerowitz E M (1990). Molecular cloning and characterization of GPA1, a G protein α subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci USA, 87(10): 3821–3825

DOI PMID

16
Mason M G, Botella J R (2000).Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein gamma-subunit cDNA. Proc Natl Acad Sci USA, 97(26): 14784–14788

DOI PMID

17
Mason M G, Botella J R (2001). Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with Gbeta. Biochim Biophys Acta, 1520(2): 147–153

PMID

18
Meijer H J, Munnik T (2003). Phospholipid-based signaling in plants. Annu Rev Plant Biol, 54(1): 265–306

DOI PMID

19
Misra S, Wu Y, Venkataraman G, Sopory S K, Tuteja N (2007). Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): Role in salinity and heat stress and cross-talk with phospholipase C. Plant J, 51(4): 656–669

DOI PMID

20
Munnik T, Irvine R F, Musgrave A (1998). Phospholipid signalling in plants. Biochim Biophys Acta, 1389(3): 222–272

PMID

21
Nilson S E, Assmann S M (2010). The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency. Plant Physiol, 152(4): 2067–2077

DOI PMID

22
Oki K, Fujisawa Y, Kato H, Iwasaki Y (2005). Study of the constitutively active form of the α subunit of rice heterotrimeric G proteins. Plant Cell Physiol, 46(2): 381–386

DOI PMID

23
Pan Y Y, Wang X, Ma L G, Sun D Y (2005). Characterization of phosphatidylinositol-specific phospholipase C (PI-PLC) from Lilium daviddi pollen. Plant Cell Physiol, 46(10): 1657–1665

DOI PMID

24
Pandey S, Chen J G, Jones A M, Assmann S M (2006). G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol, 141(1): 243–256

DOI PMID

25
Perera I Y, Heilmann I, Boss W F (1999). Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci USA, 96(10): 5838–5843

DOI PMID

26
Perera I Y, Heilmann I, Chang S C, Boss W F, Kaufman P B (2001). A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol, 125(3): 1499–1507

DOI PMID

27
Peškan-Berghöfer T, Neuwirth J, Kusnetsov V, Oelmüller R (2005). Suppression of heterotrimeric G-protein β-subunit affects anther shape, pollen development and inflorescence architecture in tobacco. Planta, 220(5): 737–746

DOI PMID

28
Poon L S, Chan A S, Wong Y H (2009). Gbeta3 forms distinct dimers with specific Ggamma subunits and preferentially activates the β3 isoform of phospholipase C. Cell Signal, 21(5): 737–744

DOI PMID

29
Sanchez J P, Chua N H (2001). Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell, 13(5): 1143–1154

PMID

30
Tasma I M, Brendel V, Whitham S A, Bhattacharyya M K (2008). Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem, 46(7): 627–637

DOI PMID

31
Trusov Y, Rookes J E, Tilbrook K, Chakravorty D, Mason M G, Anderson D, Chen J G, Jones A M, Botella J R (2007). Heterotrimeric G protein γ subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis. Plant Cell, 19(4): 1235–1250

DOI PMID

32
Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000). Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 97(21): 11638–11643

DOI PMID

33
Ullah H, Chen J G, Wang S, Jones A M (2002). Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol, 129(2): 897–907

DOI PMID

34
Vossen J H, Abd-El-Haliem A, Fradin E F, van den Berg G C, Ekengren S K, Meijer H J, Seifi A, Bai Y, Ten Have A, Munnik T, Thomma B P, Joosten M H (2010). Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J (in press)

35
Wang H X, Weerasinghe R R, Perdue T D, Cakmakci N G, Taylor J P, Marzluff W F, Jones A M (2006). A Golgi-localized hexose transporter is involved in heterotrimeric G protein-mediated early development in Arabidopsis. Mol Biol Cell, 17(10): 4257–4269

DOI PMID

36
Weiss C A, Huang H, Ma H (1993). Immunolocalization of the G protein α subunit encoded by the GPA1 gene in Arabidopsis. Plant Cell, 5(11): 1513–1528

PMID

37
Wing M R, Houston D, Kelley G G, Der C J, Siderovski D P, Harden T K (2001). Activation of phospholipase C-ϵ by heterotrimeric G protein betagamma-subunits. J Biol Chem, 276(51): 48257–48261

PMID

38
Zhang L, Hu G, Cheng Y, Huang J (2008). Heterotrimeric G protein alpha and β subunits antagonistically modulate stomatal density in Arabidopsis thaliana. Dev Biol, 324(1): 68–75

DOI PMID

39
Zhou Y, Sondek J, Harden T K (2008). Activation of human phospholipase C-eta2 by Gbetagamma. Biochemistry, 47(15): 4410–4417

DOI PMID

Outlines

/