The physical interaction between LdPLCs and
Jinglei SUN, Xiuhua LIU, Yanyun PAN
The physical interaction between LdPLCs and
Phosphoinositide-specific phospholipase C plays pivotal roles in a host of physiologic processes in both animals and plants. Animal PI-PLC is regulated by heterotrimeric G-protein. Plant PI-PLCs are structurally close to the mammalian PI-PLC-ζ isoform, and it is not testified what regulated this isoform enzyme. In this paper, two isoform genes of LdPLC (
phosphoinositide-specific phospholipase C (PI-PLC) / heterotrimeric G-protein / yeast two-hybrid
[1] |
Adjobo-Hermans M J, Goedhart J, Gadella T W J Jr (2006). Plant G protein heterotrimers require dual lipidation motifs of Gα and Gγ and do not dissociate upon activation. J Cell Sci, 119(24): 5087–5097
CrossRef
Pubmed
Google scholar
|
[2] |
Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999). Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 96(18): 10284–10289
CrossRef
Pubmed
Google scholar
|
[3] |
Chapman K D (1998). Phospholipase activity during plant growth and development and in response to environmental stress. Trends in Plant Science, 3(11): 419–426
CrossRef
Google scholar
|
[4] |
Chen J G (2008). Heterotrimeric G-proteins in plant development. Front Biosci, 13: 3321–3333
CrossRef
Pubmed
Google scholar
|
[5] |
Chen J G, Gao Y, Jones A M (2006). Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol, 141(3): 887–897
CrossRef
Pubmed
Google scholar
|
[6] |
Chen J G, Pandey S, Huang J, Alonso J M, Ecker J R, Assmann S M, Jones A M (2004). GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol, 135(2): 907–915
CrossRef
Pubmed
Google scholar
|
[7] |
Coursol S, Giglioli-Guivarc’h N, Vidal J, Pierre J N (2000). An increase in phosphoinositide-specific phospholipase C activity precedes induction of C4 phosphoenolpyruvate carboxylase phosphorylation in illuminated and NH4Cl-treated protoplasts from Digitaria sanguinalis. Plant J, 23(4): 497–506
CrossRef
Pubmed
Google scholar
|
[8] |
Dowd P E, Coursol S, Skirpan A L, Kao T H, Gilroy S (2006). Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell, 18(6): 1438–1453
CrossRef
Pubmed
Google scholar
|
[9] |
Franklin-Tong V E, Drobak B K, Allan A C, Watkins P, Trewavas A J (1996). Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell, 8(8): 1305–1321
CrossRef
Pubmed
Google scholar
|
[10] |
Friedman E J, Temple B R, Hicks S N, Sondek J, Jones C D, Jones A M (2009). Prediction of protein-protein interfaces on G-protein β subunits reveals a novel phospholipase C β2 binding domain. J Mol Biol, 392(4): 1044–1054
CrossRef
Pubmed
Google scholar
|
[11] |
Helling D, Possart A, Cottier S, Klahre U, Kost B (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell, 18(12): 3519–3534
CrossRef
Pubmed
Google scholar
|
[12] |
Helsper J P F G, Heemskerk J W Z M, Veerkamp J H (1987). Cytosolic and particulate phosphatidylinositol phospholipase C activities in pollen tubes of Lilium longiglorum. Plant Physiol, 71(1): 120–126
CrossRef
Google scholar
|
[13] |
Kowalczyk S, Hetmann A (2008). G-protein-coupled receptors, heterotrimeric G-proteins and protein effectors in plants. Postepy Biochem, 54(4): 412–422
Pubmed
|
[14] |
Li J H, Liu Y Q, Lü P, Lin H F, Bai Y, Wang X C, Chen Y L (2009). A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiol, 150(1): 114–124
CrossRef
Pubmed
Google scholar
|
[15] |
Ma H, Yanofsky M F, Meyerowitz E M (1990). Molecular cloning and characterization of GPA1, a G protein α subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci USA, 87(10): 3821–3825
CrossRef
Pubmed
Google scholar
|
[16] |
Mason M G, Botella J R (2000).Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein gamma-subunit cDNA. Proc Natl Acad Sci USA, 97(26): 14784–14788
CrossRef
Pubmed
Google scholar
|
[17] |
Mason M G, Botella J R (2001). Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with Gbeta. Biochim Biophys Acta, 1520(2): 147–153
Pubmed
|
[18] |
Meijer H J, Munnik T (2003). Phospholipid-based signaling in plants. Annu Rev Plant Biol, 54(1): 265–306
CrossRef
Pubmed
Google scholar
|
[19] |
Misra S, Wu Y, Venkataraman G, Sopory S K, Tuteja N (2007). Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): Role in salinity and heat stress and cross-talk with phospholipase C. Plant J, 51(4): 656–669
CrossRef
Pubmed
Google scholar
|
[20] |
Munnik T, Irvine R F, Musgrave A (1998). Phospholipid signalling in plants. Biochim Biophys Acta, 1389(3): 222–272
Pubmed
|
[21] |
Nilson S E, Assmann S M (2010). The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency. Plant Physiol, 152(4): 2067–2077
CrossRef
Pubmed
Google scholar
|
[22] |
Oki K, Fujisawa Y, Kato H, Iwasaki Y (2005). Study of the constitutively active form of the α subunit of rice heterotrimeric G proteins. Plant Cell Physiol, 46(2): 381–386
CrossRef
Pubmed
Google scholar
|
[23] |
Pan Y Y, Wang X, Ma L G, Sun D Y (2005). Characterization of phosphatidylinositol-specific phospholipase C (PI-PLC) from Lilium daviddi pollen. Plant Cell Physiol, 46(10): 1657–1665
CrossRef
Pubmed
Google scholar
|
[24] |
Pandey S, Chen J G, Jones A M, Assmann S M (2006). G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol, 141(1): 243–256
CrossRef
Pubmed
Google scholar
|
[25] |
Perera I Y, Heilmann I, Boss W F (1999). Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci USA, 96(10): 5838–5843
CrossRef
Pubmed
Google scholar
|
[26] |
Perera I Y, Heilmann I, Chang S C, Boss W F, Kaufman P B (2001). A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol, 125(3): 1499–1507
CrossRef
Pubmed
Google scholar
|
[27] |
Peškan-Berghöfer T, Neuwirth J, Kusnetsov V, Oelmüller R (2005). Suppression of heterotrimeric G-protein β-subunit affects anther shape, pollen development and inflorescence architecture in tobacco. Planta, 220(5): 737–746
CrossRef
Pubmed
Google scholar
|
[28] |
Poon L S, Chan A S, Wong Y H (2009). Gbeta3 forms distinct dimers with specific Ggamma subunits and preferentially activates the β3 isoform of phospholipase C. Cell Signal, 21(5): 737–744
CrossRef
Pubmed
Google scholar
|
[29] |
Sanchez J P, Chua N H (2001). Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell, 13(5): 1143–1154
Pubmed
|
[30] |
Tasma I M, Brendel V, Whitham S A, Bhattacharyya M K (2008). Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem, 46(7): 627–637
CrossRef
Pubmed
Google scholar
|
[31] |
Trusov Y, Rookes J E, Tilbrook K, Chakravorty D, Mason M G, Anderson D, Chen J G, Jones A M, Botella J R (2007). Heterotrimeric G protein γ subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis. Plant Cell, 19(4): 1235–1250
CrossRef
Pubmed
Google scholar
|
[32] |
Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000). Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 97(21): 11638–11643
CrossRef
Pubmed
Google scholar
|
[33] |
Ullah H, Chen J G, Wang S, Jones A M (2002). Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol, 129(2): 897–907
CrossRef
Pubmed
Google scholar
|
[34] |
Vossen J H, Abd-El-Haliem A, Fradin E F, van den Berg G C, Ekengren S K, Meijer H J, Seifi A, Bai Y, Ten Have A, Munnik T, Thomma B P, Joosten M H (2010). Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J (in press)
|
[35] |
Wang H X, Weerasinghe R R, Perdue T D, Cakmakci N G, Taylor J P, Marzluff W F, Jones A M (2006). A Golgi-localized hexose transporter is involved in heterotrimeric G protein-mediated early development in Arabidopsis. Mol Biol Cell, 17(10): 4257–4269
CrossRef
Pubmed
Google scholar
|
[36] |
Weiss C A, Huang H, Ma H (1993). Immunolocalization of the G protein α subunit encoded by the GPA1 gene in Arabidopsis. Plant Cell, 5(11): 1513–1528
Pubmed
|
[37] |
Wing M R, Houston D, Kelley G G, Der C J, Siderovski D P, Harden T K (2001). Activation of phospholipase C-ϵ by heterotrimeric G protein betagamma-subunits. J Biol Chem, 276(51): 48257–48261
Pubmed
|
[38] |
Zhang L, Hu G, Cheng Y, Huang J (2008). Heterotrimeric G protein alpha and β subunits antagonistically modulate stomatal density in Arabidopsis thaliana. Dev Biol, 324(1): 68–75
CrossRef
Pubmed
Google scholar
|
[39] |
Zhou Y, Sondek J, Harden T K (2008). Activation of human phospholipase C-eta2 by Gbetagamma. Biochemistry, 47(15): 4410–4417
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |