The tumour-targeting efficiency of systemically delivered chemodrugs largely dictates the therapeutic outcome of anticancer treatment.Major challenges lie in the complexity of diverse biological barriers that drug delivery systems must hierarchically overcome to reach their cellular/subcellular targets. Herein, an “all-in-one” red blood cell (RBC)- derived microrobot that can hierarchically adapt to five critical stages during systemic drug delivery, that is, circulation, accumulation, release, extravasation, and penetration, is developed. The microrobots behave like natural RBCs in blood circulation, due to their almost identical surface properties, but can be magnetically manipulated to accumulate at regions of interest such as tumours. Next, the microrobots are “immolated” under laser irradiation to release their therapeutic cargoes and, by generating heat, to enhance drug extravasation through vascular barriers. As a coloaded agent, pirfenidone (PFD) can inhibit the formation of extracellular matrix and increase the penetration depth of chemodrugs in the solid tumour. It is demonstrated that this system effectively suppresses both primary and metastatic tumours in mouse models without evident side effects, and may represent a new class of intelligent biomimicking robots for biomedical applications.
Colorectal cancer (CRC) is generally characterized by a high prevalence of Fusobacterium nucleatum (F. nucleatum), a spindle-shaped, Gram-negative anaerobe pathogen derived from the oral cavity. This tumor-resident microorganism has been closely correlated with the occurrence, progression, chemoresistance and immunosuppressive microenvironment of CRC. Furthermore, F. nucleatum can specifically colonize CRC tissues through adhesion on its surface, forming biofilms that are highly resistant to commonly used antibiotics. Accordingly, it is crucial to develop efficacious non-antibiotic approaches to eradicate F. nucleatum and its biofilms for CRC treatment. In recent years, various antimicrobial strategies, such as natural extracts, inorganic chemicals, organic chemicals, polymers, inorganic-organic hybrid materials, bacteriophages, probiotics, and vaccines, have been proposed to combat F. nucleatum and F. nucleatum biofilms. This review summarizes the latest advancements in anti-F. nucleatum research, elucidates the antimicrobial mechanisms employed by these systems, and discusses the benefits and drawbacks of each antimicrobial technology. Additionally, this review also provides an outlook on the antimicrobial specificity, potential clinical implications, challenges, and future improvements of these antimicrobial strategies in the treatment of CRC.
The emergence of drug-resistant bacteria poses a significant threat to people’s lives and health as bacterial infections continue to persist. Currently, antibiotic therapy remains the primary approach for tackling bacterial infections. However, the escalating rates of drug resistance coupled with the lag in the development of novel drugs have led to diminishing effectiveness of conventional treatments. Therefore, the development of nonantibiotic-dependent therapeutic strategies has become imperative to impede the rise of bacterial resistance. The emergence of chemodynamic therapy (CDT) has opened up a new possibility due to the CDT can convert H2O2 into •OH via Fenton/Fenton-like reaction for drug-resistant bacterial treatment. However, the efficacy of CDT is limited by a variety of practical factors. To overcome this limitation, the sterilization efficiency of CDT can be enhanced by introducing the therapeutics with inherent antimicrobial capability. In addition, researchers have explored CDT-based combined therapies to augment its antimicrobial effects andmitigate its potential toxic side effects toward normal tissues. This review examines the research progress of CDT in the antimicrobial field, explores various strategies to enhance CDT efficacy and presents the synergistic effects of CDT in combination with other modalities. And last, the current challenges faced by CDT and the future research directions are discussed.
The ongoing mutations of the SARS-CoV-2 pose serious challenges to the efficacy of the available antiviral drugs, and new drugs with fantastic efficacy are always deserved investigation. Here, a nanobody called IBT-CoV144 is reported, which exhibits broad neutralizing activity against SARS-CoV-2 by inducing the conformation of spike trimer dimers. IBT-CoV144 was isolated from an immunized alpaca using the RBD of wildtype SARS-CoV-2, and it showed strong cross-reactive binding and neutralizing potency against diverse SARS-CoV-2 variants, including Omicron subvariants. Moreover, the prophylactically and therapeutically intranasal administration of IBT-CoV144 confers fantastic protective efficacy against the challenge of Omicron BA.1 variant in BALB/c micemodel. The structure analysis of the complex between spike (S) protein, conducted using Cryo-EM, revealed a special conformation known as the trimer dimers. This conformation is formed by two trimers, with six RBDs in the “up” state and bound by six VHHs. IBT-CoV144 binds to the lateral region of the RBD on the S protein, facilitating the aggregation of S proteins. This aggregation results in steric hindrance,which disrupts the recognition of the virus by ACE2 on host cells. The discovery of IBT-CoV144 will provide valuable insights for the development of advanced therapeutics and the design of next-generation vaccines.
To overcome the overheating phenomena of electronic devices and energy components, developing advanced energy-free cooling coatings with promising radiative property seem an effective and energy-saving way. However, the further application of these coatings is greatly limited by their sustainability because of their fragile and easy contamination. Herein, it is reported that a bioinspired radiative cooling coating (BRCC) displayed sustainably efficient heat dissipation by the combination of high emittance and robust self-cleaning property. With the hierarchical porous structure constructed by multiwalled carbon nanotubes (MWCNTs), modified SiO2 and fluorosilicone (FSi) resin, the involvement of the BRCC improves the cooling performance by increasing ≈25% total heat transfer coefficient. During the abrasion and soiling tests, the BRCCcoated Al alloy heat sink always displays stable radiative cooling performance.Moreover, the simulation and experimental results both revealed that reducing surface coverage of BRCC (≈80.9%) can still keep highly cooling efficiency, leading to a cost-effective avenue. Therefore, this study may guide the design and fabrication of advanced radiative cooling coating.
Thromboelastography (TEG) remains a convenient and effective viscoelastic blood coagulation testing device for guiding blood component transfusion and assessing the risk of thrombosis. Here, a TEG enabled by a non-contact triboelectric angle sensor (NTAS) with a small size (∼7 cm3) is developed for assessing the blood coagulation system. With the assistance of a superelastic torsion wire structure, the NTAS-TEG realizes the detection of blood viscoelasticity. Benefiting from a grating and convex design, the NTAS holds a collection of compelling features, including accurate detection of rotation angles from -2.5° to 2.5°, high linearity (R2 = 0.999), and a resolution of 0.01°. Besides, the NTAS exhibits merits of low cost and simplified fabrication. Based on the NTAS-TEG, a viscoelastic blood coagulation detection and analysis system is successfully constructed, which can provide a graph and parameters associated with clot initiation, formation, and stability for clinicians by using 0.36 mL of whole blood. The system not only validates the feasibility of the triboelectric coagulation testing sensor, but also further expands the application of triboelectric sensors in healthcare.
Myocardial infarction (MI) is a leading cause of death worldwide. Few drugs hold the ability to depress cardiac electrical and structural remodeling simultaneously after MI, which is crucial for the treatment of MI. The aim of this study is to investigate an effective therapy to improve both electrical and structural remodeling of the heart caused by MI. Here, an “ion cocktail therapy” is proposed to simultaneously reverse cardiac structural and electrical remodeling post-MI in rats and minipigs by applying a unique combination of silicate, strontium (Sr) and copper (Cu) ions due to their specific regulatory effects on the behavior of the key cells involved in MI including angiogenesis of endothelial cells, M2 polarization of macrophages and apoptosis of cardiomyocyte. The results demonstrate that ion cocktail treatment attenuates structural remodeling post-MI by ameliorating infarct size, promoting angiogenesis in both peri-infarct and infarct areas.Meantime, to some extent, ion cocktail treatment reverses the deteriorative electrical remodeling by reducing the incidence rate of early/delayed afterdepolarizations and minimizing the heterogeneity of cardiac electrophysiology. This ion cocktail therapy reveals a new strategy to effectively treat MI with great clinical translation potential due to the high effectiveness and safety of the ion cocktail combination.
Reactive oxygen species play a crucial role in cell signaling pathways during wound healing phases. Treatment strategies to balance the redox level in the deep wound tissue are emerging for wound management. In recent years, reactive oxygen species scavenging agents including natural antioxidants, reactive oxygen species (ROS) scavenging nanozymes, and antioxidant delivery systems have been widely employed to inhibit oxidative stress and promote skin regeneration. Here, the importance of reactive oxygen species in different wound healing phases is critically analyzed. Various cutting-edge bioactive ROS nanoscavengers and antioxidant delivery platforms are discussed. This review also highlights the future directions for wound therapies via reactive oxygen species scavenging. This comprehensive review offers a map of the research on ROS scavengers with redox balancing mechanisms of action in the wound healing process, which benefits development and clinical applications of next-generation ROS scavenging-based nanomaterials in skin regeneration.
3D graphene porous materials (3GPM), which have low density, large porosity, excellent compressibility, high conductivity, hold huge promise for a wide range of applications. Nevertheless, most 3GPM have brittle and weak network structures, which limits their widespread use. Therefore, the preparation of a robust and elastic graphene porous network is critical for the functionalization of 3GPM. Herein, the recent research of 3GPM with excellent mechanical properties are summarized and the focus is on the effect factors that affect themechanical properties of 3GPM.Moreover, the applications of elastic 3GPM in various fields, such as adsorption, energy storage, solar steam generation, sensors, flexible electronics, and electromagnetic wave shielding are comprehensively reviewed. At last, the new challenges and perspective for fabrication and functionalization of robust and elastic 3GPM are outlined. It is expected that the perspective will inspire more new ideas in preparation and functionalization of 3GPM.
Revealing and clarifying the chemical reaction processes andmechanisms inside the batteries will bring a great help to the controllable preparation and performancemodulation of batteries. Advanced characterization techniques based on synchrotron radiation (SR) have accelerated the development of various batteries over the past decade. In situ SR techniques have been widely used in the study of electrochemical reactions and mechanisms due to their excellent characteristics. Herein, the three most wide and important synchrotron radiation techniques used in battery research were systematically reviewed, namely X-ray absorption fine structure (XAFS) spectroscopy, small-angle X-ray scattering (SAXS), and X-ray diffraction (XRD). Special attention is paid to how these characterization techniques are used to understand the reactionmechanismof batteries and improve the practical characteristics of batteries. Moreover, the in situ combining techniques advance the acquisition of single scale structure information to the simultaneous characterization ofmultiscale structures,whichwill bring a newperspective to the research of batteries. Finally, the challenges and future opportunities of SR techniques for battery research are featured based on their current development.
Traditional tumour-dynamic therapystill inevitably faces the critical challengeof limited reactive oxygen species (ROS)-generating efficiency due to tumour hypoxia, extreme pH condition for Fenton reaction, and unsustainable mono-catalytic reaction. To fight against these issues, we skilfully develop a tumour-microenvironment-driven yolk-shell nanoreactor to realize the high-efficiency persistent dynamic therapy via cascaderesponsive dual cycling amplification of •SO4−/•OH radicals. The nanoreactor with an ultrahigh payload of free radical initiator is designed by encapsulating the Na2S2O8 nanocrystals into hollow tetra-sulphide-introduced mesoporous silica (HTSMS) and afterward enclosed by epigallocatechin gallate (EG)-Fe(II) cross-linking. Within the tumour microenvironment, the intracellular glutathione (GSH) can trigger the tetrasulphide cleavage of nanoreactors to explosively release Na+/S2O82−/Fe2+ and EG. Then a sequence of cascade reactions will be activated to efficiently generate •SO4− (Fe2+-catalyzed S2O82− oxidation), proton (•SO4--catalyzed H2O decomposition), and •OH (proton-intensified Fenton oxidation). Synchronously, the oxidation-generated Fe3+ will be in turn recovered into Fe2+ by excessive EG to circularly amplify •SO4−/•OH radicals. The nanoreactors can also disrupt the intracellular osmolarity homeostasis by Na+ overload andweaken the ROS-scavenging systems byGSHexhaustion to further amplify oxidative stress. Our yolk–shell nanoreactors can efficiently eradicate tumours via multiple oxidative stress amplification, which will provide a perspective to explore dynamic therapy.
The fibrillation of amyloid-β (Aβ) is the critical causal factor in Alzheimer’s disease (AD), the dissolution and clearance of which are promising for AD therapy. Although many Aβ inhibitors are developed, their low Aβ-binding affinity results in unsatisfactory effect. To solve this challenge, the Aβ sequence-matching strategy is proposed to tail-design dissociable nanosystem (B6-PNi NPs). Herein, B6-PNi NPs aim to improve Aβ-binding affinity for effective dissolution of amyloid fibrils, as well as to interfere with the in vivo fate of amyloid for Aβ clearance. Results show that B6-PNi NPs decompose into small nanostructures and expose Aβ-binding sites in response to AD microenvironment, and then capture Aβ via multiple interactions, including covalent linkage formed by nucleophilic substitution reaction. Such high Aβ-binding affinity disassembles Aβ fibrils into Aβ monomers, and induces the reassembly of Aβ&nanostructure composite, thereby promoting microglial Aβ phogocytosis/clearance via Aβ receptormediated endocytosis. After B6-PNi NPs treatment, the Aβ burden, neuroinflammation and cognitive impairments are relieved in AD transgenic mice. This work provides the Aβ sequence-matching strategy for Aβ inhibitor design in AD treatment, showing meaningful insight in biomedicine.
The current generation of wearable sensors often experiences signal interference and external corrosion, leading to device degradation and failure. To address these challenges, the biomimetic superhydrophobic approach has been developed, which offers self-cleaning, low adhesion, corrosion resistance, anti-interference, and other properties. Such surfaces possess hierarchical nanostructures and low surface energy, resulting in a smaller contact area with the skin or external environment. Liquid droplets can even become suspended outside the flexible electronics, reducing the risk of pollution and signal interference,whichcontributes tothe long-termstabilityof thedevice incomplex environments.Additionally, the coupling of superhydrophobic surfaces and flexible electronics can potentially enhance the device performance due to their large specific surface area and low surface energy. However, the fragility of layered textures in various scenarios and the lack of standardized evaluation and testing methods limit the industrial production of superhydrophobic wearable sensors. This review provides an overview of recent research on superhydrophobic flexible wearable sensors, including the fabrication methodology, evaluation, and specific application targets. The processing, performance, and characteristics of superhydrophobic surfaces are discussed, as well as the working mechanisms and potential challenges of superhydrophobic flexible electronics. Moreover, evaluation strategies for application-oriented superhydrophobic surfaces are presented.
The coupling electrosynthesis involving CO2 upgrade conversion is of great significance for the sustainable development of the environment and energy but is challenging. Herein, we exquisitely constructed the self-supported bimetallic array superstructures from the Cu(OH)2 array architecture precursor, which can enable highperformance coupling electrosynthesis of formate and adipate at the anode and the cathode, respectively. Concretely, the faradaic efficiencies (FEs) of CO2-to-formate and cyclohexanone-to-adipate conversion simultaneously exceed 90% at both electrodes with excellent stabilities. Such high-performance coupling electrosynthesis is highly correlated with the porous nanosheet array superstructure of CuBi alloy as the cathode and the nanosheet-on-nanowire array superstructure of CuNi hydroxide as the anode.Moreover, compared to the conventional electrolysis process, the cell voltage is substantially reduced while maintaining the electrocatalytic performance for coupling electrosynthesis in the two-electrode electrolyzer with the maximal FEformate and FEadipate up to 94.2% and 93.1%, respectively. The experimental results further demonstrate that the bimetal composition modulates the local electronic structures, promoting the reactions toward the target products. Prospectively, our work proposes an instructive strategy for constructing adaptive self-supported superstructures to achieve efficient coupling electrosynthesis.