Morphology Engineering of SnS2 Nanostructures to Stimulate PICT Resonance for Ultra-Sensitive SERS Sensors

Yusi Peng , Weida Zhang , Meimei Xu , Shuai Zhao , Lili Yang , Dan Li , Masaki Tanemura , Zhengren Huang , Yong Yang

Exploration ›› 2025, Vol. 5 ›› Issue (3) : 270016

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (3) : 270016 DOI: 10.1002/EXP.70016
RESEARCH ARTICLE

Morphology Engineering of SnS2 Nanostructures to Stimulate PICT Resonance for Ultra-Sensitive SERS Sensors

Author information +
History +
PDF

Abstract

Recent advances indicate the surface-enhanced Raman scattering (SERS) sensitivity of semiconductors is generally lower than that of noble metal substrates, and developing ultra-sensitive semiconductor SERS substrates is an urgent task. Here, SnS2 with better SERS performance is screened out from sulfides and selenides by density functional theory (DFT) calculations. Through adjusting the concentration of reactants to control the growth driving force without any surfactants or templates, SnS2 nanostrctures of stacked nanosheets (SNSs), microspheres (MSs) and microflowers (MFs) are developed, which all exhibit ultra-low limit of detections (LODs) of 10−12, 10−13, and 10−11 M, respectively. To the best of our knowledge, the SERS sensitivity of these three kinds of SnS2 nanostrctures are superior to most of the reported pure semiconductors and even can be parallel to the noble metals with a “hot spot” effect. This extraordinary SERS enhancement of SnS2 nanostrctures is originated from the dominated contribution of photo-induced charge transfer (PICT) resonance with different wavelength excitation lasers. Benefitting to the excellent SERS enhanced uniformity, generality, stability, ultra-high sensitivity of SnS2 nanostrctures, and the advantages that the PICT resonance enhancement excited for different probe molecules is not limited by its morphology, it is expected to provide a class of potential commercial SERS-active materials for the practical application of semiconductor-based SERS technology.

Keywords

morphology engineering / PICT resonance / SnS2 nanostructures / ultra-high SERS sensitivity

Cite this article

Download citation ▾
Yusi Peng, Weida Zhang, Meimei Xu, Shuai Zhao, Lili Yang, Dan Li, Masaki Tanemura, Zhengren Huang, Yong Yang. Morphology Engineering of SnS2 Nanostructures to Stimulate PICT Resonance for Ultra-Sensitive SERS Sensors. Exploration, 2025, 5(3): 270016 DOI:10.1002/EXP.70016

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chemical Reviews 111 (2011): 3828-3857. b) A. Agrawal, S. H. Cho, O. Zandi, S. Ghosh, R. W. Johns, and D. J. Milliron, “Localized Surface Plasmon Resonance in Semiconductor Nanocrystals,” Chemical Reviews 118 (2018): 3121–3207. c) Y. W. Liu, H. Ma, X. X. Han, and B. Zhao, “Metal–Semiconductor Heterostructures for Surface-Enhanced Raman Scattering: Synergistic Contribution of Plasmons and Charge Transfer,” Materials Horizons 8 (2021): 370–382.

[2]

a) L. Tao, K. Chen, Z. F. Chen, et al., “1T′ Transition Metal Telluride Atomic Layers for Plasmon-Free SERS at Femtomolar Levels,” Journal of the American Chemical Society 140 (2018): 8696-8704. b) H. Bai, W. Liu, W. C. Yi, et al., “Metallic Carbide Nanoparticles as Stable and Reusable Substrates for Sensitive Surface-Enhanced Raman Spectroscopy,” Chemical Communications 54 (2018): 10843–10846. c) Q. Zhu, S. L. Jiang, K. Ye, et al., “Hydrogen-Doping-Induced Metal-Like Ultrahigh Free-Carrier Concentration in Metal-Oxide Material for Giant and Tunable Plasmon Resonance,” Advanced Materials 32 (2020): 2004059. d) W. Ji, L. F. Li, W. Song, X. N. Wang, B. Zhao, and Y. Ozaki, “Enhanced Raman Scattering by ZnO Superstructures: Synergistic Effect of Charge Transfer and Mie Resonances,” Angewandte Chemie International Edition 58 (2019): 14452. e) C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, “Ultrahigh Raman Enhancement on Monolayer MoS2,” ACS Photonics 3 (2016): 1164–1169.

[3]

Q. Lv, X. Wu, J. Y. Tan, et al., “Ultrasensitive Molecular Sensing of Few-Layer Niobium Diselenide,” Journal of Materials Chemistry A 9 (2021): 2725-2733.

[4]

Y. Yin, P. Miao, Y. M. Zhang, et al., “Significantly Increased Raman Enhancement on MoX 2 (X = S, Se) Monolayers Upon Phase Transition,” Advanced Functional Materials 27 (2017): 1606694.

[5]

J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “Ultrasensitive SERS Detection by Defect Engineering on Single Cu2O Superstructure Particle,” Advanced Materials 29 (2017): 1604797.

[6]

X. Song, W. C. Yi, J. F. Li, Q. H. Kong, H. Bai, and G. C. Xi, “Selective Preparation of Mo2N and MoN With High Surface Area for Flexible SERS Sensing,” Nano Letters 21 (2021): 4410-4414.

[7]

B. Yang, S. L. Jin, S. Guo, et al., “Recent Development of SERS Technology: Semiconductor-Based Study,” ACSO Mega 4 (2019): 20101-20108.

[8]

a) X. Tang, Q. Hao, X. Y. Hou, et al., “Exploring and Engineering 2D Transition Metal Dichalcogenides Toward Ultimate SERS Performance,” Advanced Materials 36 (2024): 2312348. b) V. R. Samriti, R. K. Gupta, and J. Prakash, “Engineering Metal Oxide Semiconductor Nanostructures for Enhanced Charge Transfer: Fundamentals and Emerging SERS Applications,” Journal of Materials Chemistry C 10 (2022): 73–95. c) X. J. Wang, E. J. Zhang, H. M. Shi, Y. F. Tao, and X. D. Ren, “Semiconductor-Based Surface Enhanced Raman Scattering (SERS): From Active Materials to Performance Improvement,” Analyst 147 (2022): 1257–1272.

[9]

a) X. Wang and L. Guo, “SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials,” Angewandte Chemie International Edition 59 (2019): 4231-4239. b) X. T. Wang, W. X. Shi, S. X. Wang, et al., “Two-Dimensional Amorphous TiO2 Nanosheets Enabling High-Efficiency Photoinduced Charge Transfer for Excellent SERS Activity,” Journal of the American Chemical Society 141 (2019): 5856–5862. c) G. Song, W. B. Gong, S. Cong, and Z. G. Zhao, “Ultrathin Two-Dimensional Nanostructures: Surface Defects for Morphology-Driven Enhanced Semiconductor SERS,” Angewandte Chemie International Edition 60 (2021): 5505–5511.

[10]

Z. H. Zheng, S. Cong, W. B. Gong, et al., “Semiconductor SERS Enhancement Enabled by Oxygen Incorporation,” Nature Communications 8 (2017): 1993.

[11]

X. Tang, X. Fan, J. Zhou, et al., “Alloy Engineering Allows On-Demand Design of Ultrasensitive Monolayer Semiconductor SERS Substrates,” Nano Letters 23 (2023): 7037-7045.

[12]

H. M. Guan, W. C. Yi, T. Li, et al., “Low Temperature Synthesis of Plasmonic Molybdenum Nitride Nanosheets for Surface Enhanced Raman Scattering,” Nature Communications 11 (2020): 3889.

[13]

H. M. Guan, W. C. Yi, T. Li, et al., “General Molten-Salt Route to Three-Dimensional Porous Transition Metal Nitrides as Sensitive and Stable Raman Substrates,” Nature Communications 12 (2021): 1376.

[14]

R. Du, W. Yi, W. Li, et al., “Quasi-Metal Microwave Route to MoN and Mo2C Ultrafine Nanocrystalline Hollow Spheres as Surface-Enhanced Raman Scattering Substrates,” ACS Nano 14 (2020): 13718-13726.

[15]

Y. S. Peng, C. L. Lin, M. Tang, et al., “Niobium Pentoxide Ultra-Thin Nanosheets: A Photocatalytic Degradation and Recyclable Surface-Enhanced Raman Scattering Substrate,” Applied Surface Science 509 (2020): 145376.

[16]

Y. Li, R. Du, W. Li, et al., “δ-MoN Yolk Microspheres With Ultrathin Nanosheets for a Wide-Spectrum, Sensitive, and Durable Surface-Enhanced Raman Scattering Substrate,” Analytical Chemistry 93 (2021): 12360-12366.

[17]

S. Cong, Y. Y. Yuan, Z. G. Chen, et al., “Noble Metal-Comparable SERS Enhancement From Semiconducting Metal Oxides by Making Oxygen Vacancies,” Nature Communications 6 (2015): 7800.

[18]

a) M. Z. Li, Y. M. Gao, X. C. Fan, Y. J. Wei, Q. Hao, and T. Qiu, “Origin of Layer-Dependent SERS Tunability in 2D Transition Metal Dichalcogenides,” Nanoscale Horizons 6 (2021): 186-191. b) S. K. Islam, M. Tamargo, R. Moug, and J. R. Lombardi, “Surface-Enhanced Raman Scattering on a Chemically Etched ZnSe Surface,” Journal of Physical Chemistry C 117 (2013): 23372–2377.

[19]

a) K. K. Wang, Z. Y. Guo, Y. Li, et al., “Few-Layer NbTe2 Nanosheets as Substrates for Surface-Enhanced Raman Scattering Analysis,” ACS Applied Nano Materials 3 (2020): 11363-11371. b) X. Song, Y. Wang, F. Zhao, et al., “Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials,” ACS Nano 13 (2019): 8312–8319. c) S. Tongay, H. Sahin, C. Ko, et al., “Monolayer Behaviour in Bulk ReS2 due to Electronic and Vibrational Decoupling,” Nature Communications 5 (2014): 3252.

[20]

Y. S. Peng, C. L. Lin, Y. Y. Li, et al., “Identifying infectiousness of SARS-CoV-2 by Ultra-Sensitive SnS2 SERS Biosensors with Capillary Effect,” Matter 5 (2022): 694-709.

[21]

H. Kitadai, Q. S. Tan, L. Ping, and X. Ling, “Raman Enhancement Induced by Exciton Hybridization in Molecules and 2D Materials,” npj 2D Materials and Applications 8 (2024): 11.

[22]

a) A. Mohanty and K. Kamali, “Au/SnS2 Hybrid Quantum Dots for Surface-Enhanced Raman Scattering-Based Monitoring and Photoreduction of Hg (II) Ions,” ACS Applied Nano Materials 7 (2024): 3326-3338. b) N. R. Barveen, J. L. Xu, and Y. W. Cheng, “Photoassisted Decoration of Ag-NPs Onto the SnS2 Nanohexagons for the Ultrasensitive SERS Detection and Degradation of Synthetic Dyes,” Journal of Environmental Chemical Engineering 12 (2024): 112200. c) H. S. Lai, G. K. Li, and Z. M. Zhang, “SnS2/AuNPs Surface-Enhanced Raman Scattering Sensor for Rapid and Selective Quantification of Methimazole in Serum and Meat Samples,” Sensors and Actuators B: Chemical 380 (2023): 133325.

[23]

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review 136 (1964): B864.

[24]

a) X. H. Li, S. H. Guo, J. Su, X. G. Ren, and Z. Y. Fang, “Efficient Raman Enhancement in Molybdenum Disulfide by Tuning the Interlayer Spacing,” ACS Appl Mater Interfaces 12 (2020): 28474-28483. b) C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano 4 (2010): 2695–2700.

[25]

a) Y. J. Gong, H. T. Yuan, C. L. Wu, et al., “Spatially Controlled Doping of Two-Dimensional SnS2 Through Intercalation for Electronics,” Nature Nanotechnology 13 (2018): 294-299. b) M. M. Zhang, X. Y. Li, S. Y. Fan, et al., “Novel Two-Dimensional AgInS 2 /SnS 2 /RGO Dual Heterojunctions: High Spatial Charge and Toxicity Evaluation,” Langmuir 36 (2020): 9709–9718.

[26]

a) L. X. Meng, S. Y. Wang, F. R. Cao, W. Tian, R. Long, and L. Li, “Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS 2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting,” Angewandte Chemie International Edition 131 (2019): 6833-6837. b) N. Parveen, S. A. Ansari, H. R. Alamri, M. O. Ansari, Z. Khan, and M. H. Cho, “Facile Synthesis of SnS 2 Nanostructures With Different Morphologies for High-Performance Supercapacitor Applications,” ACS Omega 3 (2018): 1581–1588.

[27]

a) Y. T. Ye, W. C. Yi, W. Liu, et al., “Remarkable Surface-Enhanced Raman Scattering of Highly Crystalline Monolayer Ti3C2 Nanosheets,” Science China Materials 63 (2020): 794. b) Q. Cao, R. Che, and N. Chen, “Facile and Rapid Growth of Ag2S Microrod Arrays as Efficient Substrates for both SERS Detection and Photocatalytic Degradation of Organic Dyes,” Chemical Communications 50 (2014): 4931–4933. c) J. Jin, Z. N. Guo, D. Y. Fan, and B. Zhao, “Spotting the Driving Forces for SERS of Two-Dimensional Nanomaterials,” Materials Horizons 10 (2023): 1087–1104. d) Y. S. Peng, C. L. Lin, L. Long, et al., “Charge-Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes With Excellent SERS Sensitivity for SARS-CoV-2 S Protein Detection,” Nano-Micro Letters 13 (2021): 52. e) Y. S. Peng, P. Cai, L. L. Yang, et al., “Theoretical and Experimental Studies of Ti3C2 MXene for Surface-Enhanced Raman Spectroscopy-Based Sensing,” ACS Omega 5 (2020): 26486–26496. f) H. Wu, H. Wang, and G. Li, “Metal Oxide Semiconductor SERS-Active Substrates by Defect Engineering,” Analyst 142 (2017): 326–335. g) L. Yang, Y. S. Peng, Y. Yang, et al., “A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect,” Advancement of Science 6 (2019): 1900310. h) J. Lin, W. Z. Ren, A. R. Li, et al., “Crystal–Amorphous Core–Shell Structure Synergistically Enabling TiO 2 Nanoparticles″ Remarkable SERS Sensitivity for Cancer Cell Imaging,” ACS Appl Mater Interfaces 12 (2019): 4204–4211. i) Y. N. Quan, J. C. Yao, Y. S. Sun, et al., “Enhanced Semiconductor Charge-Transfer Resonance: Unprecedented Oxygen Bidirectional Strategy,” Sens Actuators B Chemical 327 (2021): 128903.

[28]

a) Y. Chen, Y. L. Hu, and G. K. Li, “A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection,” Chemosensors 11 (2023): 427. b) C. L. Lin, Y. Y. Li, Y. S. Peng, et al., “Recent Development of Surface-Enhanced Raman Scattering for Biosensing,” Journal of Nanobiotechnology 21 (2023): 149.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/