Metal-Organic Frameworks-Based Copper Catalysts for CO2 Electroreduction Toward Multicarbon Products

Chen Qin , Xuheng Li , Ting Wang , Zhen Xu , Kai-Jie Chen , Fuping Pan

Exploration ›› 2025, Vol. 5 ›› Issue (3) : 270011

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (3) : 270011 DOI: 10.1002/EXP.70011
REVIEW

Metal-Organic Frameworks-Based Copper Catalysts for CO2 Electroreduction Toward Multicarbon Products

Author information +
History +
PDF

Abstract

Copper (Cu) is the most promising catalyst for electrochemical CO2-to-C2+ conversion, whereas performance remains below practical thresholds due to the high energy barrier of C−C coupling and lack of effective approaches to steer the reaction pathway. Recent advances show that metal-organic frameworks (MOF) could be a promising platform as support, pre-catalyst, and co-catalyst to modify the electronic structure and local reaction environment of Cu catalysts for promoting CO2-to-C2+ reduction by virtue of their great tunability over compositions and pore architectures. In this review, we discussed general design principles, catalytic mechanisms, and performance achievements of MOF-based Cu catalysts, aiming to boost catalyst refinement for steering CO2 reduction pathway to C2+ products. The fundamentals and challenges of CO2-to-C2+ reduction are first introduced. Then, we summarized design conceptions of MOF-based Cu catalysts from three aspects: engineering the electronic properties of Cu, regulating the local reaction environment, and managing site exposure and mass transport. Further, the latest progress of CO2 reduction to C2+ products over MOF-based Cu catalysts, namely Cu-based MOF, MOF-derived Cu, and Cu@MOF hybrid catalysts, are discussed. Finally, future research opportunities and strategies are suggested to innovate the rational design of advanced MOF-based Cu catalysts for electrifying CO2-to-C2+ transformation.

Keywords

catalyst design / C−C coupling / CO2 reduction / copper / metal-organic frameworks

Cite this article

Download citation ▾
Chen Qin, Xuheng Li, Ting Wang, Zhen Xu, Kai-Jie Chen, Fuping Pan. Metal-Organic Frameworks-Based Copper Catalysts for CO2 Electroreduction Toward Multicarbon Products. Exploration, 2025, 5(3): 270011 DOI:10.1002/EXP.70011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Guo and G. J. He, “Size, Alloy and Interface Effects on Cu-Based Catalysts for Enhancing Electrochemical Reduction of CO2,” Results in Engineering 20 (2023): 101510.

[2]

P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, and E. H. Sargent, “What Would It Take for Renewably Powered Electrosynthesis to Displace Petrochemical Processes?,” Science 364 (2019): 3506.

[3]

Y. Yang, S. Louisia, S. Yu, et al., “Operando Studies Reveal Active Cu Nanograins for CO2 Electroreduction,” Nature 614 (2023): 262-269.

[4]

Y. Wu, Z. Jiang, X. Lu, Y. Liang, and H. Wang, “Domino Electroreduction of CO2 to Methanol on a Molecular Catalyst,” Nature 575 (2019): 639-642.

[5]

F. Pan, L. Fang, B. Li, et al., “N and OH-Immobilized Cu3 Clusters In Situ Reconstructed From Single-Metal Sites for Efficient CO2 Electromethanation in Bicontinuous Mesochannels,” Journal of the American Chemical Society 146 (2024): 1423-1434.

[6]

Y. Shang, M. Zheng, H. Liu, et al., “Mimicking Frustrated Lewis Pairs on Graphitic Carbon Nitride for CO2 Photoreduction,” ACS Catalysis 13 (2023): 14530-14539.

[7]

J. Strunk, “Separating Fiction From Fact for Photocatalytic CO2 Reduction,” Nature Chemistry 15 (2023): 1209-1211.

[8]

A. Ramirez, X. Gong, M. Caglayan, et al., “Selectivity Descriptors for the Direct Hydrogenation of CO2 to Hydrocarbons During Zeolite-Mediated Bifunctional Catalysis,” Nature Communications 12 (2021): 5914.

[9]

L. Xiao, X. Xu, Y. Jia, et al., “Pyroelectric Nanoplates for Reduction of CO2 to Methanol Driven by Temperature-Variation,” Nature Communications 12 (2021): 318.

[10]

T. Zheng, M. Zhang, L. Wu, et al., “Upcycling CO2 into Energy-Rich Long-Chain Compounds via Electrochemical and Metabolic Engineering,” Nature Catalysis 5 (2022): 388-396.

[11]

J. Y. T. Kim, C. Sellers, S. Hao, T. P. Senftle, and H. Wang, “Different Distributions of Multi-Carbon Products in CO2 and CO Electroreduction Under Practical Reaction Conditions,” Nature Catalysis 6 (2023): 1115-1124.

[12]

D. Gao, R. M. Arán-Ais, H. S. Jeon, and B. R. Cuenya, “Rational Catalyst and Electrolyte Design for CO2 Electroreduction Towards Multicarbon Products,” Nature Catalysis 2 (2019): 198-210.

[13]

W. Ma, S. Xie, B. Zhang, et al., “Copper Lattice Tension Boosts Full-Cell CO Electrolysis to Multi-Carbon Olefins and Oxygenates,” Chemistry 9 (2023): 2161-2177.

[14]

S. Nitopi, E. Bertheussen, S. B. Scott, et al., “Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte,” Chemical Reviews 119 (2019): 7610-7672.

[15]

F. Pan, B. Li, W. Deng, et al., “Promoting Electrocatalytic CO2 Reduction on Nitrogen-Doped Carbon With Sulfur Addition,” Applied Catalysis B 252 (2019): 240-249.

[16]

J. Moutet, J. M. Veleta, and T. L. Gianetti, “Symmetric, Robust, and High-Voltage Organic Redox Flow Battery Model Based on a Helical Carbenium Ion Electrolyte,” ACS Applied Energy Materials 4 (2020): 9-14.

[17]

T. Wang, X. Duan, R. Bai, et al., “Ni-Electrocatalytic CO2 Reduction Toward Ethanol,” Advanced Materials 36 (2024): 2410125.

[18]

M. Kunitski, N. Eicke, P. Huber, et al., “Double-Slit Photoelectron Interference in Strong-Field Ionization of the Neon Dimer,” Nature Communications 10 (2019): 1.

[19]

Y. Lin, T. Wang, L. Zhang, et al., “Tunable CO2 Electroreduction to Ethanol and Ethylene with Controllable Interfacial Wettability,” Nature Communications 14 (2023): 3575.

[20]

F. Li, A. Thevenon, A. Rosas-Hernández, et al., “Molecular Tuning of CO2-to-Ethylene Conversion,” Nature 577 (2019): 509-513.

[21]

F. Pan, W. Deng, C. Justiniano, and Y. Li, “Identification of Champion Transition Metals Centers in Metal and Nitrogen-Codoped Carbon Catalysts for CO2 Reduction,” Applied Catalysis B 226 (2018): 463-472.

[22]

F. Pan, B. Li, E. Sarnello, et al., “Boosting CO2 Reduction on Fe-N-C with Sulfur Incorporation: Synergistic Electronic and Structural Engineering,” Nano Energy 68 (2020): 104384.

[23]

R. I. Masel, Z. Liu, H. Yang, et al., “An Industrial Perspective on Catalysts for Low-Temperature CO2 Electrolysis,” Nature Nanotechnology 16 (2021): 118-128.

[24]

T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang, and H. Teng, “Graphite Oxide as a Photocatalyst for Hydrogen Production From Water,” Advanced Functional Materials 20 (2010): 2255-2262.

[25]

J. W. Wang, S. C. Fan, H. P. Li, X. Bu, Y. Y. Xue, and Q. G. Zhai, “De-Linker-Enabled Exceptional Volumetric Acetylene Storage Capacity and Benchmark C2H2/C2H4 and C2H2/CO2 Separations in Metal-Organic Frameworks,” Angewandte Chemie International Edition 62 (2023): e202217839.

[26]

S. Yuan, L. Feng, K. Wang, et al., “Stable Metal-Organic Frameworks: Design, Synthesis, and Applications,” Advanced Materials 30 (2018): 1704303.

[27]

T. A. Al-Attas, N. N. Marei, X. Yong, et al., “Ligand-Engineered Metal-Organic Frameworks for Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide,” ACS Catalysis 11 (2021): 7350-7357.

[28]

A. Mahmood, W. Guo, H. Tabassum, and R. Zou, “Metal-Organic Framework-Based Nanomaterials for Electrocatalysis,” Advanced Energy Materials 6 (2016): 1600423.

[29]

X. L. Cui, K. J. Chen, H. B. Xing, et al., “Pore Chemistry and Size Control in Hybrid Porous Materials for Acetylene Capture From Ethylene,” Science 353 (2016): 141-144.

[30]

K. J. Chen, D. G. Madden, S. Mukherjee, et al., “Synergistic Sorbent Separation for One-Step Ethylene Purification From a Four-Component Mixture,” Science 366 (2019): 241-246.

[31]

T. Zhang, K. Manna, and W. Lin, “Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations,” Journal of the American Chemical Society 138 (2016): 3241-3249.

[32]

C. Pan, J. Xu, Y. Wang, D. Li, and Y. Zhu, “Dramatic Activity of C3N4/BiPO4 Photocatalyst With Core/Shell Structure Formed by Self-Assembly,” Advanced Functional Materials 22 (2012): 1518-1524.

[33]

Y. Y. Liu, J. R. Huang, H. L. Zhu, P. Q. Liao, and X. M. Chen, “Simultaneous Capture of CO2 Boosting Its Electroreduction in the Micropores of a Metal-Organic Framework,” Angewandte Chemie International Edition 135 (2023): e202311265.

[34]

Z. H. Zhao, J. R. Huang, P. Q. Liao, and X. M. Chen, “Highly Efficient Electroreduction of CO2 to Ethanol via Asymmetric C-C Coupling by a Metal-Organic Framework with Heterodimetal Dual Sites,” Journal of the American Chemical Society 145 (2023): 26783-26790.

[35]

Y. Xue, C. Li, X. Zhou, et al., “MOF-Derived Cu/Bi Bi-Metallic Catalyst to Enhance Selectivity Toward Formate for CO2 Electroreduction,” ChemElectroChem 9 (2022): e202101648.

[36]

B. An, J. Zhang, K. Cheng, P. Ji, C. Wang, and W. Lin, “Confinement of Ultrasmall Cu/ZnOX Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO2,” Journal of the American Chemical Society 139 (2017): 3834-3840.

[37]

F. Pan, X. Yang, T. O'Carroll, H. Li, K.-J. Chen, and G. Wu, “Carbon Catalysts for Electrochemical CO2 Reduction Toward Multicarbon Products,” Advanced Energy Materials 12 (2022): 2200586.

[38]

J. T. Feaster, C. Shi, E. R. Cave, et al., “Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes,” ACS Catalysis 7 (2017): 4822-4827.

[39]

K. Zhao, Y. Liu, X. Quan, S. Chen, and H. Yu, “CO2 Electroreduction at Low Overpotential on Oxide-Derived Cu/Carbons Fabricated from Metal-Organic Framework,” ACS Applied Materials & Interfaces 9 (2017): 5302-5311.

[40]

Y. Wang, P. Han, X. Lv, L. Zhang, and G. Zheng, “Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction,” Joule 2 (2018): 2551-2582.

[41]

T. Cheng and H. Xiao, “Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water,” Journal of the American Chemical Society 138 (2016): 13802-13805.

[42]

L. Ai, S. F. Ng, and W. J. Ong, “Carbon Dioxide Electroreduction into Formic Acid and Ethylene: A Review,” Environmental Chemistry Letters 20 (2022): 3555-3612.

[43]

S. J. Folkman and R. G. Finke, “Electrochemical Water Oxidation Catalysis Beginning with Co(II) Polyoxometalates: The Case of the Precatalyst Co4V2W18O6810-,” ACS Catalysis 7 (2016): 7-16.

[44]

X. Lv, Q. Liu, J. Wang, et al., “Grain Refining Enables Mixed Cu+/Cu0 States for CO2 Electroreduction to C2+ Products at High Current Density,” Applied Catalysis B 324 (2023): 12272.

[45]

F. Pan, B. Li, X. Xiang, G. Wang, and Y. Li, “Efficient CO2 Electroreduction by Highly Dense and Active Pyridinic Nitrogen on Holey Carbon Layers with Fluorine Engineering,” ACS Catalysis 9 (2019): 2124-2133.

[46]

S. D. Rihm, M. K. Kovalev, A. A. Lapkin, J. W. Ager, and M. Kraft, “On the Role of C4 and C5 Products in Electrochemical CO2 Reduction via Copper-Based Catalysts,” Energy & Environmental Science 16 (2023): 1697-1710.

[47]

F. Pan, H. Zhang, K. Liu, et al., “Unveiling Active Sites of CO2 Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts,” ACS Catalysis 8 (2018): 3116-3122.

[48]

C. Li, Y. Ji, Y. Wang, et al. “Applications of Metal-Organic Frameworks and Their Derivatives in Electrochemical CO2 Reduction,” Nano-Micro Letters 15 (2023): 113.

[49]

T. Cheng and H. Xiao, “Full Atomistic Reaction Mechanism with Kinetics for CO Reduction on Cu(100) from Ab Initio Molecular Dynamics Free-Energy Calculations at 298 K,” Proceedings National Academy of Science USA 114 (2017): 1795-1800.

[50]

G. Liu, M. Lee, S. Kwon, et al., “CO2 Reduction on Pure Cu Produces Only H2 After Subsurface O is Depleted: Theory and Experiment,” Proceedings National Academy of Science USA 118 (2021): e2012649118.

[51]

J. Yu, J. Wang, Y. Ma, et al., “Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copper-Based Catalysts toward Multicarbon Products,” Advanced Functional Materials 31 (2021): 210251.

[52]

J. D. Goodpaster, A. T. Bell, and M. Head-Gordon, “Identification of Possible Pathways for C-C Bond Formation During Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model,” Journal of Physical Chemistry Letters 7 (2016): 1471-1477.

[53]

P. Wei, D. Gao, T. Liu, et al., “Coverage-Driven Selectivity Switch from Ethylene to Acetate in High-Rate CO2/CO Electrolysis,” Nature Nanotechnology 18 (2023): 299-306.

[54]

R. De, S. Gonglach, S. Paul, et al., “Electrocatalytic Reduction of CO2 to Acetic Acid by a Molecular Manganese Corrole Complex,” Angewandte Chemie International Edition 59 (2020): 10527-10534.

[55]

J. M. Huang, X. D. Zhang, J. Y. Huang, D. S. Zheng, M. Xu, and Z. Y. Gu, “MOF-Based Materials for Electrochemical Reduction of Carbon Dioxide,” Coordination Chemistry Reviews 494 (2023): 215333.

[56]

Y. Zhao, L. Zheng, D. Jiang, et al., “Nanoengineering Metal-Organic Framework-Based Materials for Use in Electrochemical CO2 Reduction Reactions,” Small 17 (2021): e2006590.

[57]

A. Brito-Ravicini and F. Calle-Vallejo, “Interplaying Coordination and Ligand Effects to Break or Make Adsorption-Energy Scaling Relations,” Exploration 2 (2022): 20210062.

[58]

L. Xiong, X. Zhang, H. Yuan, et al., “Breaking the Linear Scaling Relationship by Compositional and Structural Crafting of Ternary Cu-Au/Ag Nanoframes for Electrocatalytic Ethylene Production,” Angewandte Chemie International Edition 60 (2021): 2508-2518.

[59]

F. Abild-Pedersen, J. Greeley, F. Studt, et al., “Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces,” Physical Review Letters 99 (2007): 016105.

[60]

Z. Jin, D. Jiao, Y. Dong, et al., “Boosting Electrocatalytic Carbon Dioxide Reduction via Self-Relaxation of Asymmetric Coordination in Fe-Based Single Atom Catalyst,” Angewandte Chemie International Edition 63 (2024): e202318246.

[61]

C. F. Wen, M. Zhou, P. F. Liu, et al., “Highly Ethylene-Selective Electrocatalytic CO2 Reduction Enabled by Isolated Cu−S Motifs in Metal-Organic Framework Based Precatalysts,” Angewandte Chemie International Edition 61 (2021): e202111700.

[62]

Z. Z. Niu, L. P. Chi, R. Liu, Z. Chen, and M. R. Gao, “Rigorous Assessment of CO2 Electroreduction Products in a Flow Cell,” Energy & Environmental Science 14 (2021): 4169-4176.

[63]

Q. Chen, X. Wang, Y. Zhou, et al., “Engineering a Dynamic Solvent-Phobic Liquid Electrolyte Interphase for Long-Life Lithium Metal Batteries,” Advanced Materials 36 (2023): e2303902.

[64]

T. Lu, T. Xu, S. Zhu, et al., “Electrocatalytic CO2 Reduction to Ethylene: From Advanced Catalyst Design to Industrial Applications,” Advanced Materials 35 (2023): 2310433.

[65]

Y. Zhang, Y. Chen, X. Wang, Y. Feng, H. Zhang, and G. Zhang, “Self-Polarization Triggered Multiple Polar Units Toward Electrochemical Reduction of CO2 to Ethanol with High Selectivity,” Angewandte Chemie International Edition 62 (2023): e202302241.

[66]

S. Li, A. Guan, C. Yang, et al., “Dual-Atomic Cu Sites for Electrocatalytic CO Reduction to C2+ Products,” ACS Materials Letters 3 (2021): 1729-1737.

[67]

K. Zhao, X. Nie, H. Wang, et al., “Selective Electroreduction of CO2 to Acetone by Single Copper Atoms Anchored on N-Doped Porous Carbon,” Nature Communications 11 (2020): 2455.

[68]

H. Huo, J. Wang, Q. Fan, Y. Hu, and J. Yang, “Cu-MOFs Derived Porous Cu Nanoribbons with Strengthened Electric Field for Selective CO2 Electroreduction to C2+ Fuels,” Advanced Energy Materials 11 (2021): 2102447.

[69]

A. J. Medford, A. Vojvodic, J. S. Hummelshøj, et al., “From the Sabatier Principle to a Predictive Theory of Transition-Metal Heterogeneous Catalysis,” Journal of Catalysis 328 (2015): 36-42.

[70]

Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, and T. F. Jaramillo, “Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design,” Science 355 (2017): eaad4998.

[71]

F. Pan, B. Li, E. Sarnello, et al., “Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction,” ACS Catalysis 10 (2020): 10803-10811.

[72]

R. He, Y. C. Wang, X. Wang, et al., “Facile Synthesis of Pentacle Gold-Copper Alloy Nanocrystals and Their Plasmonic and Catalytic Properties,” Nature Communications 5 (2014): 4327.

[73]

F. Chang, M. Xiao, R. Miao, et al., “Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products,” Electrochemical Energy Reviews 5 (2022): 4.

[74]

J. D. Yi, R. Xie, Z. L. Xie, et al., “Highly Selective CO2 Electroreduction to CH4 by in Situ Generated Cu2O Single-Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding,” Angewandte Chemie International Edition 59 (2020): 23641-23648.

[75]

C. Wang, Z. Lv, X. Feng, W. Yang, and B. Wang, “Recent Advances in Electrochemical CO2 -to-Multicarbon Conversion: From Fundamentals to Industrialization,” Advanced Energy Materials 13 (2023): 2302382.

[76]

F. Yang, A. Chen, P. L. Deng, et al., “Highly Efficient Electroconversion of Carbon Dioxide into Hydrocarbons by Cathodized Copper-Organic Frameworks,” Chemical Science 10 (2019): 7975-7981.

[77]

S. J. Kang, J. H. Won, H. Choi, et al., “Compensating the Impurities on the Cu Surface by MOFs for Enhanced Hydrocarbon Production in the Electrochemical Reduction of Carbon Dioxide,” Journal of Energy Chemistry 66 (2022): 68-73.

[78]

T. Yan, P. Wang, and W. Y. Sun, “Single-Site Metal-Organic Framework and Copper Foil Tandem Catalyst for Highly Selective CO2 Electroreduction to C2H4,” Small 19 (2022): e2206070.

[79]

Y. Hori, A. Murata, and R. Takahashi, “Formation of Hydrocarbons in the Electrochemical Reduction of Carbon Dioxide at a Copper Electrode in Aqueous Solution,” Journal of the Chemical Society, Faraday Transactions 85 (1989): 2309-2326.

[80]

Y. Cao, S. Chen, S. Bo, et al., “Single Atom Bi Decorated Copper Alloy Enables C−C Coupling for Electrocatalytic Reduction of CO2 into C2+ Products**,” Angewandte Chemie International Edition 62 (2023): e202303048.

[81]

Y. Yan, Z. Zhao, J. Zhao, W. Tang, W. Huang, and J. M. Lee, “Atomic-Thin Hexagonal CuCo Nanocrystals with D-Band Tuning for CO2 Reduction,” Journal of Materials Chemistry A 9 (2021): 7496-7502.

[82]

D. Wei, Y. Wang, C. L. Dong, et al., “Decrypting the Controlled Product Selectivity Over Ag−Cu Bimetallic Surface Alloys for Electrochemical CO2 Reduction,” Angewandte Chemie International Edition 62 (2023): e202217369.

[83]

M. Liu, S. Liu, Q. Xu, et al., “Dual Atomic Catalysts from COF-Derived Carbon for CO2 RR by Suppressing HER Through Synergistic Effects,” Carbon Energy 5 (2023): e300.

[84]

C. Du, J. P. Mills, A. G. Yohannes, et al., “Cascade Electrocatalysis via AgCu Single-Atom Alloy and Ag Nanoparticles in CO2 Electroreduction Toward Multicarbon Products,” Nature Communications 14 (2023): 6142.

[85]

F. Pan, H. Zhang, Z. Liu, et al., “Atomic-Level Active Sites of Efficient Imidazolate Framework-Derived Nickel Catalysts for CO2 Reduction,” Journal of Materials Chemistry A 7 (2019): 26231-26237.

[86]

F. Pan, Z. Li, Z. Yang, et al., “Porous FeCo Glassy Alloy as Bifunctional Support for High-Performance Zn-Air Battery,” Advanced Energy Materials 11 (2021): 2002204.

[87]

L. Zhang, F. Mao, L. R. Zheng, H. F. Wang, X. H. Yang, and H. G. Yang, “Tuning Metal Catalyst with Metal-C3 N4 Interaction for Efficient CO2 Electroreduction,” ACS Catalysis 8 (2018): 11035-11041.

[88]

Y. Zang, T. Liu, P. Wei, et al., “Selective CO2 Electroreduction to Ethanol Over a Carbon-Coated CuOX Catalyst,” Angewandte Chemie International Edition 61 (2022): e202209629.

[89]

Z. Li, Y. Yang, Z. Yin, et al., “Interface-Enhanced Catalytic Selectivity on the C2 Products of CO2 Electroreduction,” ACS Catalysis 11 (2021): 2473-2482.

[90]

Z. Zhang, L. Melo, R. P. Jansonius, F. Habibzadeh, E. R. Grant, and C. P. Berlinguette, “pH Matters When Reducing CO2 in an Electrochemical Flow Cell,” ACS Energy Letters 5 (2020): 3101-3107.

[91]

A. S. Varela, M. Kroschel, T. Reier, and P. Strasser, “Controlling the Selectivity of CO2 Electroreduction on Copper: The Effect of the Electrolyte Concentration and the Importance of the Local pH,” Catalysis Today 260 (2016): 8-13.

[92]

N. Sikdar, J. R. C. Junqueira, S. Dieckhofer, et al., “A Metal-Organic Framework Derived CuX Oy CZ Catalyst for Electrochemical CO2 Reduction and Impact of Local pH Change,” Angewandte Chemie International Edition 60 (2021): 23427-23434.

[93]

M. Liu, Y. Pang, B. Zhang, et al., “Enhanced Electrocatalytic CO2 Reduction via Field-Induced Reagent Concentration,” Nature 537 (2016): 382-386.

[94]

S. Y. Lee, J. Kim, G. Bak, et al., “Probing Cation Effects on @CO Intermediates from Electroreduction of CO2 through Operando Raman Spectroscopy,” Journal of the American Chemical Society 145 (2023): 23068-23075.

[95]

M. Moura de Salles Pupo and R. Kortlever, “Electrolyte Effects on the Electrochemical Reduction of CO2,” ChemPhysChem 20 (2019): 2926-2935.

[96]

J. Resasco, L. D. Chen, E. Clark, et al., “Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide,” Journal of the American Chemical Society 139 (2017): 11277-11287.

[97]

A. S. Varela, W. Ju, T. Reier, and P. Strasser, “Tuning the Catalytic Activity and Selectivity of Cu for CO2 Electroreduction in the Presence of Halides,” ACS Catalysis 6 (2016): 2136-2144.

[98]

J. Wang, Y. Qin, S. Jin, et al., “Customizing CO2 Electroreduction by Pulse-Induced Anion Enrichment,” Journal of the American Chemical Society 145 (2023): 26213-26221.

[99]

Y. Huang, C. W. Ong, and B. S. Yeo, “Effects of Electrolyte Anions on the Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (100) and (111) Surfaces,” ChemSusChem 11 (2018): 3299-3306.

[100]

M. N. Jackson, O. Jung, H. C. Lamotte, and Y. Surendranath, “Donor-Dependent Promotion of Interfacial Proton-Coupled Electron Transfer in Aqueous Electrocatalysis,” ACS Catalysis 9 (2019): 3737-3743.

[101]

F. Pan and Y. Yang, “Designing CO2 Reduction Electrode Materials by Morphology and Interface Engineering,” Energy & Environmental Science 13 (2020): 2275-2309.

[102]

L. X. Liu, Y. Cai, H. Du, et al., “Enriching the Local Concentration of CO Intermediates on Cu Cavities for the Electrocatalytic Reduction of CO2 to C2+ Products,” ACS Applied Materials & Interfaces 15 (2023): 16673-16679.

[103]

T. T. Zhuang, Y. Pang, Z. Q. Liang, et al., “Copper Nanocavities Confine Intermediates for Efficient Electrosynthesis of C3 Alcohol Fuels from Carbon Monoxide,” Nature Catalysis 1 (2018): 946-951.

[104]

X. Wang, J. F. de Araujo, W. Ju, et al., “Mechanistic Reaction Pathways of Enhanced Ethylene Yields During Electroreduction of CO2-CO Co-Feeds on Cu and Cu-Tandem Electrocatalysts,” Nature Nanotechnology 14 (2019): 1063-1070.

[105]

R. Shi, L. Shang, C. Zhou, Y. Zhao, and T. Zhang, “Interfacial Wettability and Mass Transfer Characterizations for Gas-Liquid-Solid Triple-Phase Catalysis,” Exploration 2 (2022): 20210046.

[106]

F. Pan, B. Li, E. Sarnello, et al., “Atomically Dispersed Iron-Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO2 Reduction,” ACS Nano 14 (2020): 5506-5516.

[107]

F. Pan, X. Duan, L. Fang, et al., “Long-Range Confinement-Driven Enrichment of Surface Oxygen-Relevant Species Promotes C−C Electrocoupling in CO2 Reduction,” Advanced Energy Materials 14 (2024): 2303118.

[108]

Z. Chen, M. R. Gao, Y. Q. Zhang, et al., “Tuning Local Carbon Active Sites Saturability of Graphitic Carbon Nitride to Boost CO2 Electroreduction towards CH4,” Nano Energy 73 (2020): 104833.

[109]

Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, and M. T. M. Koper, “Advances and Challenges in Understanding the Electrocatalytic Conversion of Carbon Dioxide to Fuels,” Nature Energy 4 (2019): 732-745.

[110]

G. Wen, D. U. Lee, B. Ren, et al., “Orbital Interactions in Bi-Sn Bimetallic Electrocatalysts for Highly Selective Electrochemical CO2 Reduction toward Formate Production,” Advanced Energy Materials 8 (2018): 1802427.

[111]

P. C. Chen, C. Chen, Y. Yang, et al., “Chemical and Structural Evolution of AgCu Catalysts in Electrochemical CO2 Reduction,” Journal of the American Chemical Society 145 (2023): 10116-10125.

[112]

J. Wang, G. Wang, J. Zhang, et al., “Inversely Tuning the CO2 Electroreduction and Hydrogen Evolution Activity on Metal Oxide via Heteroatom Doping,” Angewandte Chemie International Edition 60 (2021): 7602-7606.

[113]

D. H. Nam, O. Shekhah, G. Lee, et al., “Intermediate Binding Control Using Metal-Organic Frameworks Enhances Electrochemical CO2 Reduction,” Journal of the American Chemical Society 142 (2020): 21513-21521.

[114]

X. F. Qiu, H. L. Zhu, J. R. Huang, P. Q. Liao, and X. M. Chen, “Highly Selective CO2 Electroreduction to C2H4 Using a Metal-Organic Framework with Dual Active Sites,” Journal of the American Chemical Society 143 (2021): 7242-7246.

[115]

H. L. Zhu, H. Y. Chen, Y. X. Han, Z. H. Zhao, P. Q. Liao, and X. M. Chen, “A Porous π-π Stacking Framework with Dicopper(I) Sites and Adjacent Proton Relays for Electroreduction of CO2 to C2+ Products,” Journal of the American Chemical Society 144 (2022): 13319-13326.

[116]

R. Wang, J. Liu, Q. Huang, L. Z. Dong, S. L. Li, and Y. Q. Lan, “Partial Coordination-Perturbed Bi-Copper Sites for Selective Electroreduction of CO2 to Hydrocarbons,” Angewandte Chemie International Edition 60 (2021): 19829-19835.

[117]

D. H. Nam, O. S. Bushuyev, J. Li, et al., “Metal-Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction,” Journal of the American Chemical Society 140 (2018): 11378-11386.

[118]

Y. Ouyang, L. Shi, X. Bai, C. Ling, Q. Li, and J. Wang, “Selectivity of Electrochemical CO2 Reduction toward Ethanol and Ethylene: The Key Role of Surface-Active Hydrogen,” ACS Catalysis 13 (2023): 15448-15456.

[119]

L. Huang, Z. Liu, G. Gao, et al., “Enhanced CO2 Electroreduction Selectivity Toward Ethylene on Pyrazolate-Stabilized Asymmetric Ni-Cu Hybrid Sites,” Journal of the American Chemical Society 145 (2023): 26444-26451.

[120]

S. Popovic, M. Smiljanic, P. Jovanovic, J. Vavra, R. Buonsanti, and N. Hodnik, “Stability and Degradation Mechanisms of Copper-Based Catalysts for Electrochemical CO2 Reduction,” Angewandte Chemie International Edition 59 (2020): 14736-14746.

[121]

H. Zhang, T. Wang, J. Wang, et al., “Surface-Plasmon-Enhanced Photodriven CO2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers,” Advanced Materials 28 (2016): 3703-3710.

[122]

Z. Yang, H. Wang, X. Fei, et al., “MOF Derived Bimetallic CuBi Catalysts with Ultra-Wide Potential Window for High-Efficient Electrochemical Reduction of CO2 to Formate,” Applied Catalysis B 298 (2021): 120571.

[123]

Y. Zhang, X. Y. Zhang, and W. Y. Sun, “In Situ Carbon-Encapsulated Copper-Doped Cerium Oxide Derived from MOFs for Boosting CO2-to-CH4 Electro-Conversion,” ACS Catalysis 13 (2023): 1545-1553.

[124]

T. Tang, Z. Wang, and J. Q. Guan, “Highly Selective and Eco-Friendly Dihydroisoquinoline Synthesis via Cu/Co Synergistic Catalysis in Cu NPs@MOFs Catalyst Under Mild Conditions,” Exploration 3 (2023): 20230011.

[125]

H. Y. Li, F. Pan, C. Qin, T. Wang, and K. J. Chen, “Porous Organic Polymers-Based Single-Atom Catalysts for Sustainable Energy-Related Electrocatalysis,” Advanced Energy Materials 13 (2023): 2301378.

[126]

X. Zou, A. Li, C. Ma, et al., “Nitrogen-Doped Carbon Confined Cu-Ag Bimetals for Efficient Electroreduction of CO2 to High-Order Products,” Chemical Engineering Journal 468 (2023): 143606.

[127]

B. Kim, Y. C. Tan, Y. Ryu, et al., “Trace-Level Cobalt Dopants Enhance CO2 Electroreduction and Ethylene Formation on Copper,” ACS Energy Letters 8 (2023): 3356-3364.

[128]

F. Yang, P. L. Deng, Q. Y. Wang, et al., “Metal-Organic Framework-Derived Cupric Oxide Polycrystalline Nanowires for Selective Carbon Dioxide Electroreduction to C2 Valuables,” Journal of Materials Chemistry A 8 (2020): 12418-12423.

[129]

B. Y. Guan, X. Y. Yu, H. B. Wu, and X. W. D. Lou, “Complex Nanostructures From Materials Based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion,” Advanced Materials 29 (2017): 1703614.

[130]

X. Yang, J. Cheng, X. Yang, Y. Xu, W. Sun, and J. Zhou, “MOF-Derived Cu@Cu2O Heterogeneous Electrocatalyst with Moderate Intermediates Adsorption for Highly Selective Reduction of CO2 to Methanol,” Chemical Engineering Journal 431 (2022): 134171.

[131]

H. Sun, L. Chen, L. Xiong, et al., “Promoting Ethylene Production Over a Wide Potential Window on Cu Crystallites Induced and Stabilized via Current Shock and Charge Delocalization,” Nature Communications 12 (2021): 6823.

[132]

W. Zhang, C. Huang, J. Zhu, et al., “Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO2 Reduction to Hydrocarbons**,” Angewandte Chemie International Edition 61 (2022): e202112116.

[133]

X. Xie, X. Zhang, M. Xie, et al., “Au-Activated N Motifs in Non-Coherent Cupric Porphyrin Metal Organic Frameworks for Promoting and Stabilizing Ethylene Production,” Nature Communications 13 (2022): 63.

[134]

R. Yang, Y. Wang, J. W. Cao, et al., “Hydrogen Bond Unlocking-Driven Pore Structure Control for Shifting Multi-component Gas Separation Function,” Nature Communications 15 (2024): 804.

[135]

P. Du, Y. Zhang, X. Wang, et al., “Control of Zeolite Framework Flexibility for Ultra-Selective Carbon Dioxide Separation,” Nature Communications 13 (2022): 1427.

[136]

C. Lv, L. Zhong, H. Liu, et al., “Selective Electrocatalytic Synthesis of Urea with Nitrate and Carbon Dioxide,” Nature Sustainability 4 (2021): 868-876.

[137]

C. Lv, C. Lee, L. Zhong, et al., “A Defect Engineered Electrocatalyst That Promotes High-Efficiency Urea Synthesis Under Ambient Conditions,” ACS Nano 16 (2022): 8213-8222.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/