Riding a Vascular Time Train to Spatiotemporally Attenuate Thrombosis and Restenosis by Double Presentation of Therapeutic Gas and Biomacromolecules

Jingdong Rao , Di Suo , Qing Ma , Yongyi Mo , Ho-Pan Bei , Li Wang , Chuyang Y. Tang , Kai-Hang Yiu , Shuqi Wang , Zhilu Yang , Xin Zhao

Exploration ›› 2025, Vol. 5 ›› Issue (2) : 70004

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (2) : 70004 DOI: 10.1002/EXP.70004
RESEARCH ARTICLE

Riding a Vascular Time Train to Spatiotemporally Attenuate Thrombosis and Restenosis by Double Presentation of Therapeutic Gas and Biomacromolecules

Author information +
History +
PDF

Abstract

Endothelial injury is a common occurrence following stent implantation, often leading to complications such as restenosis and thrombosis. To address this issue, we have developed a multi-functional stent coating that combines a dopamine-copper (DA-Cu) base with therapeutic biomolecule modification, including nitric oxide (NO) precursor L-arginine, endothelial glycocalyx heparin, and endothelial cell (EC) catcher vascular endothelial growth factor (VEGF). In our stent coating, the incorporated Cu acts as a sustainable catalyst for converting endogenous NO donors into NO, and the immobilized arginine serves as a precursor for NO generation under the effect of endothelial nitric oxide synthase (eNOS). The presence of heparin endows the stent coating with anticoagulant ability and enhances eNOS activity, whilst rapid capture of EC by VEGF accelerates re-endothelialization. After in vivo implantation, the antioxidant elements and produced NO alleviate the inflammatory response, establishing a favorable healing environment. The conjugated VEGF contributes to the formation of a new and intact endothelium on the stent surface to counteract inappropriate vascular cell behaviors. The long-lasting NO flux inhibits smooth muscle cell (SMC) migration and prevents its excessive proliferation, reducing the risk of endothelial hyperplasia. This innovative coating enables the dual delivery of VEGF and NO to target procedural vascular repair phases: promoting rapid re-endothelialization, effectively preventing thrombosis, and suppressing inflammation and restenosis. Ultimately, this innovative coating has the potential to improve therapeutic outcomes following stent implantation.

Keywords

anti-restenosis / anti-thrombosis / biomacromolecule / re-endothelialization / therapeutic gas

Cite this article

Download citation ▾
Jingdong Rao, Di Suo, Qing Ma, Yongyi Mo, Ho-Pan Bei, Li Wang, Chuyang Y. Tang, Kai-Hang Yiu, Shuqi Wang, Zhilu Yang, Xin Zhao. Riding a Vascular Time Train to Spatiotemporally Attenuate Thrombosis and Restenosis by Double Presentation of Therapeutic Gas and Biomacromolecules. Exploration, 2025, 5(2): 70004 DOI:10.1002/EXP.70004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

(a)T. Palmerini, U. Benedetto, G. Biondi-Zoccai, et al., “Long-Term Safety of Drug-Eluting and Bare-Metal Stents,” Journal of the American College of Cardiology 65 (2015): 2496-2507. (b) T. R. Frieden and M. G. Jaffe, “Saving 100 Million Lives by Improving Global Treatment of Hypertension and Reducing Cardiovascular Disease Risk Factors,” The Journal of Clinical Hypertension 20 (2018): 208-211.

[2]

(a)Y. Yang, P. Gao, J. Wang, et al., “Endothelium-Mimicking Multifunctional Coating Modified Cardiovascular Stents via a Stepwise Metal-Catechol-(Amine) Surface Engineering Strategy,” Research 2020 (2020): 9203906. (b) Z. Yang, X. Zhao, R. Hao, et al., “Bioclickable and Mussel Adhesive Peptide Mimics for Engineering Vascular Stent Surfaces,” PNAS 117 (2020): 16127-16137.

[3]

(a)A. Habib and A. V. Finn, “Endothelialization of Drug Eluting Stents and Its Impact on Dual Anti-platelet Therapy Duration,” Pharmacological Research 93 (2015): 22-27. (b) H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, “Mussel-Inspired Surface Chemistry for Multifunctional Coatings,” Science 318 (2007): 426-430.

[4]

(a)A. C. Straub, A. W. Lohman, M. Billaud, et al., “Endothelial Cell Expression of Haemoglobin α Regulates Nitric Oxide Signalling,” Nature 491 (2012): 473-477. (b) P. Li, W. Cai, K. Wang, et al., “Selenium-Functionalized Polycarbonate-Polyurethane for Sustained In Situ Generation of Therapeutic Gas for Blood-Contacting Materials,” Smart Materials in Medicine 3 (2022): 361-373.

[5]

W. J. Lee, S. Tateya, A. M. Cheng, et al., “M2 Macrophage Polarization Mediates Anti-Inflammatory Effects of Endothelial Nitric Oxide Signaling,” Diabetes 64 (2015): 2836-2846.

[6]

(a)T. Yang, Z. Du, H. Qiu, et al., “From Surface to Bulk Modification: Plasma Polymerization of Amine-Bearing Coating by Synergic Strategy of Biomolecule Grafting and Nitric Oxide Loading,” Bioactive Materials 5 (2020): 17-25. (b) S. Yuan and C. G. Kevil, “Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling,” Microcirculation 23 (2016): 134-145.

[7]

L. B. Vong, T. Q. Bui, T. Tomita, H. Sakamoto, Y. Hiramatsu, and Y. Nagasaki, “Novel Angiogenesis Therapeutics by Redox Injectable Hydrogel—Regulation of Local Nitric Oxide Generation for Effective Cardiovascular Therapy,” Biomaterials 167 (2018): 143-152.

[8]

(a)P. Theofilis, M. Sagris, E. Oikonomou, et al., “Inflammatory Mechanisms Contributing to Endothelial Dysfunction,” Biomedicines 9 (2021): 781. (b) B. Zhang, R. Yao, C. Hu, et al., “Epigallocatechin Gallate Mediated Sandwich-Like Coating for Mimicking Endothelium With Sustained Therapeutic Nitric Oxide Generation and Heparin Release,” Biomaterials 269 (2021): 120418.

[9]

G. K. Hansson, “Inflammation, Atherosclerosis, and Coronary Artery Disease,” New England Journal of Medicine 352 (2005): 1685-1695.

[10]

(a)Y. Yang, P. Gao, J. Wang, et al., “Endothelium-mimicking multifunctional coating modified cardiovascular stents via a stepwise metal-catechol-(amine) surface engineering strategy,” Research, 2020 (2020): 1-20. (b) S. Weinbaum, J. M. Tarbell, and E. R. Damiano, “The Structure and Function of the Endothelial Glycocalyx Layer,” Annual Review of Biomedical Engineering 9 (2007): 121-167. (c) J. Rao, X. Mou, Y. Mo, et al., “Gas Station in Blood Vessels: An Endothelium Mimicking, Self-Sustainable Nitric Oxide Fueling Stent Coating for Prevention of Thrombosis and Restenosis,” Biomaterials 302 (2023): 122311.

[11]

(a)K. S. Lavery, C. Rhodes, A. Mcgraw, and M. J. Eppihimer, “Anti-Thrombotic Technologies for Medical Devices,” Advanced Drug Delivery Reviews 112 (2017): 2-11. (b) T. Hu, S. Lin, R. Du, et al., “Design, Preparation and Performance of a Novel Drug-Eluting Stent With Multiple Layer Coatings,” Biomaterials Science 5 (2017): 1845-1857. (c) J. Rao, H. Pan Bei, Y. Yang, Y. Liu, H. Lin, and X. Zhao, “Nitric Oxide-Producing Cardiovascular Stent Coatings for Prevention of Thrombosis and Restenosis,” Frontiers in Bioengineering and Biotechnology 8 (2020): 578. (d) X. Li, H. Qiu, P. Gao, Y. Yang, Z. Yang, and N. Huang, “Synergetic Coordination and Catecholamine Chemistry for Catalytic Generation of Nitric Oxide on Vascular Stents,” NPG Asia Materials 10 (2018): 482-496.

[12]

(a)A. de Mel, G. Jell, M. M. Stevens, and A. M. Seifalian, “Biofunctionalization of Biomaterials for Accelerated in Situ Endothelialization: A Review,” Biomacromolecules 9 (2008): 2969-2979. (b) M. Yin, Y. Yuan, C. Liu, and J. Wang, “Development of Mussel Adhesive Polypeptide Mimics Coating for in-situ Inducing Re-Endothelialization of Intravascular Stent Devices,” Biomaterials 30 (2009): 2764-2773. (c) G. Li, P. Yang, W. Qin, M. F. Maitz, S. Zhou, and N. Huang, “The Effect of Coimmobilizing Heparin and Fibronectin on Titanium on Hemocompatibility and Endothelialization,” Biomaterials 32 (2011): 4691-4703.

[13]

Q. Tu, X. Zhao, S. Liu, et al., “Spatiotemporal Dual-Delivery of Therapeutic Gas and Growth Factor for Prevention of Vascular Stent Thrombosis and Restenosis,” Applied Materials Today 19 (2020): 100546.

[14]

(a)T. R. Carlson, Y. Feng, P. C. Maisonpierre, M. Mrksich, and A. O. Morla, “Direct Cell Adhesion to the Angiopoietins Mediated by Integrins,” Journal of Biological Chemistry 276 (2001): 26516-26525. (b) H. Hutchings, N. Ortega, and J. Plouët, “Extracellular Matrix-Bound Vascular Endothelial Growth Factor Promotes Endothelial Cell Adhesion, Migration, and Survival Through Integrin Ligation,” FASEB Journal 17 (2003): 1520-1522. (c) X. Wu, Y. Zhao, C. Tang, et al., “Re-Endothelialization Study on Endovascular Stents Seeded by Endothelial Cells through Up- or Downregulation of VEGF,” ACS Applied Materials & Interfaces 8 (2016): 7578-7589.

[15]

(a)X. Wang, X. Fu, S. Zhao, et al., “Antiangiogenic Properties of Caudatin in Vitro and In Vivo by Suppression of VEGF-VEGFR2-AKT/FAK Signal Axis,” Molecular Medicine Reports 16 (2017): 8937-8943. (b) S. Sinha, S. Khan, S. Shukla, et al., “Cucurbitacin B Inhibits Breast Cancer Metastasis and Angiogenesis Through VEGF-Mediated Suppression of FAK/MMP-9 Signaling Axis,” International Journal of Biochemistry & Cell Biology 77 (2016): 41-56. (c) Y. Deng, X. Zhang, and M. Simons, “Molecular Controls of Lymphatic VEGFR3 Signaling,” Arteriosclerosis, Thrombosis, and Vascular Biology 35 (2015): 421-429. (d) T. Iwasaki, Y. Takeda, K. Maruyama, et al., “Deletion of Tetraspanin CD9 Diminishes Lymphangiogenesis In Vivo and In Vitro,” Journal of Biological Chemistry 288 (2013): 2118-2131. (e) N. Tang, L. Shi, Z. Yu, et al., “Gamabufotalin, A Major Derivative of Bufadienolide, Inhibits VEGF-Induced Angiogenesis by Suppressing VEGFR-2 Signaling Pathway,” Oncotarget 7 (2016): 3533-3547.

[16]

(a)Q. Wang, B. Akhavan, F. Jing, et al., “Catalytic Formation of Nitric Oxide Mediated by Ti-Cu Coatings Provides Multifunctional Interfaces for Cardiovascular Applications,” Advanced Materials Interfaces 5 (2018): 1701487. (b) Z. Yang, Y. Yang, L. Zhang, et al., “Mussel-Inspired Catalytic Selenocystamine-Dopamine Coatings for Long-Term Generation of Therapeutic Gas on Cardiovascular Stents,” Biomaterials 178 (2018): 1-10.

[17]

Z. Wang, Y. Lu, K. Qin, et al., “Enzyme-Functionalized Vascular Grafts Catalyze In-Situ Release of Nitric Oxide From Exogenous NO Prodrug,” Journal of Controlled Release 210 (2015): 179-188.

[18]

(a)N. Swanson, K. Hogrefe, Q. Javed, and A. H. Gershlick, “In Vitro Evaluation of Vascular Endothelial Growth Factor (VEGF)-Eluting Stents,” International Journal of Cardiology 92 (2003): 247-251. (b) S. Torii, K. Yahagi, H. Mori, et al., “Safety of Zilver PTX Drug-Eluting Stent Implantation Following Drug-Coated Balloon Dilation in a Healthy Swine Model,” Journal of Endovascular Therapy 25 (2018): 118-126.

[19]

J. Yang, Y. Zeng, C. Zhang, et al., “The Prevention of Restenosis In Vivo With a VEGF Gene and Paclitaxel co-Eluting Stent,” Biomaterials 34 (2013): 1635-1643.

[20]

(a)A. Paul, W. Shao, D. Shum-Tim, and S. Prakash, “The Attenuation of Restenosis Following Arterial Gene Transfer Using Carbon Nanotube Coated Stent Incorporating TAT/DNAAng1+Vegf Nanoparticles,” Biomaterials 33 (2012): 7655-7664. (b) B. Polyak, M. Medved, N. Lazareva, et al., “Magnetic Nanoparticle-Mediated Targeting of Cell Therapy Reduces In-Stent Stenosis in Injured Arteries,” ACS Nano 10 (2016): 9559-9569.

[21]

N. Lyu, Z. Du, H. Qiu, et al., “Mimicking the Nitric Oxide-Releasing and Glycocalyx Functions of Endothelium on Vascular Stent Surfaces,” Advanced Science 7 (2020): 2002330.

[22]

F. Lewis, P. Horny, P. Hale, S. Turgeon, M. Tatoulian, and D. Mantovani, “Study of the Adhesion of Thin Plasma Fluorocarbon Coatings Resisting Plastic Deformation for Stent Applications,” Journal of Physics D: Applied Physics 41 (2008): 045310.

[23]

S. Baldelli, F. Ciccarone, D. Limongi, P. Checconi, A. T. Palamara, and M. R. Ciriolo, “Glutathione and Nitric Oxide: Key Team Players in Use and Disuse of Skeletal Muscle,” Nutrients 11 (2019): 2318.

[24]

N. S. Chandel, “Lipid Metabolism,” Cold Spring Harbor Perspectives in Biology 13 (2021): a040576.

[25]

F. Zhang, Q. Zhang, X. Li, N. Huang, X. Zhao, and Z. Yang, “Mussel-Inspired Dopamine-CuII Coatings for Sustained In Situ Generation of Nitric Oxide for Prevention of Stent Thrombosis and Restenosis,” Biomaterials 194 (2019): 117-129.

[26]

N. Zhang, B. T. Andresen, and C. Zhang, “Inflammation and Reactive Oxygen Species in Cardiovascular Disease,” World Journal of Cardiology 2 (2010): 408-410.

[27]

T. Simard, B. Hibbert, F. D. Ramirez, M. Froeschl, Y. X. Chen, and E. R. O'Brien, “The Evolution of Coronary Stents: A Brief Review,” Canadian Journal of Cardiology 30 (2014): 35-45.

[28]

J. Wu, J. Zhu, Q. Wu, et al., “Mussel-Inspired Surface Immobilization of Heparin on Magnetic Nanoparticles for Enhanced Wound Repair via Sustained Release of a Growth Factor and M2 Macrophage Polarization,” ACS Applied Materials & Interfaces 13 (2021): 2230-2244.

[29]

(a)A. Abbadi, J. Loftis, A. Wang, et al., “Heparin Inhibits Proinflammatory and Promotes Anti-Inflammatory Macrophage Polarization Under Hyperglycemic Stress,” Journal of Biological Chemistry 295 (2020): 4849-4857. (b) K. C. Wheeler, M. K. Jena, B. S. Pradhan, et al., “VEGF May Contribute to Macrophage Recruitment and M2 Polarization in the Decidua,” PLOS One 13 (2018): e0191040.

[30]

S. Jana, “Endothelialization of Cardiovascular Devices,” Acta Biomaterialia 99 (2019): 53-71.

[31]

Y. Yang, T. Xu, Q. Zhang, Y. Piao, H. P. Bei, and X. Zhao, “Biomimetic, Stiff, and Adhesive Periosteum With Osteogenic-Angiogenic Coupling Effect for Bone Regeneration,” Small 17 (2021): e2006598.

[32]

(a)X. Wu, Y. L. Yin, Y. Q. Liu, et al., “Effect of Dietary Arginine and N-Carbamoylglutamate Supplementation on Reproduction and Gene Expression of eNOS, VEGFA and PlGF1 in Placenta in Late Pregnancy of Sows,” Animal Reproduction Science 132 (2012): 187-192. (b) S. H. Javanmard, M. Nematbakhsh, F. Mahmoodi, and M. R. Mohajeri, “l-Arginine Supplementation Enhances eNOS Expression in Experimental Model of Hypercholesterolemic Rabbits Aorta,” Pathophysiology 16 (2009): 9-13.

[33]

M. S. Kim and L. S. Dean, “In-Stent Restenosis,” Cardiovascular Therapeutics 29 (2011): 190-198.

[34]

(a)K. Bujak, M. Lejawa, M. Gasior, and T. Osadnik, “The CTGF Gene -945 G/C Polymorphism is Associated With Target Lesion Revascularization for In-Stent Restenosis,” Experimental and Molecular Pathology 118 (2021): 104598. (b) G. Zeng, S. M. Taylor, J. R. McColm, et al., “Orientation of Endothelial Cell Division is Regulated by VEGF Signaling During Blood Vessel Formation,” Blood 109 (2007): 1345-1352. (c) M. Chrzanowska-Wodnicka, “Rap1 in Endothelial Biology,” Current Opinion in Hematology 24 (2017): 248-255. (d) W. J. Pannekoek, A. Post, and J. L. Bos, “Rap1 Signaling in Endothelial Barrier Control,” Cell Adhesion & Migration 8 (2014): 100-107. (e) E. Dejana, F. Orsenigo, and M. G. Lampugnani, “The Role of Adherens Junctions and VE-Cadherin in the Control of Vascular Permeability,” Journal of Cell Science 121 (2008): 2115-2122. (f) M. Giannotta, M. Trani, and E. Dejana, “VE-Cadherin and Endothelial Adherens Junctions: Active Guardians of Vascular Integrity,” Developmental Cell 26 (2013): 441-454.

[35]

J. Wang, L. Yang, F. Liang, Y. Chen, and G. Yang, “Integrin Alpha X Stimulates Cancer Angiogenesis Through PI3K/Akt Signaling-Mediated VEGFR2/VEGF-a Overexpression in Blood Vessel Endothelial Cells,” Journal of Cellular Biochemistry 120 (2019): 1807-1818.

[36]

(a)D. S. Gelinas, P. N. Bernatchez, S. Rollin, N. G. Bazan, and M. G. Sirois, “Immediate and Delayed VEGF-Mediated NO Synthesis in Endothelial Cells: Role of PI3K, PKC and PLC Pathways,” British Journal of Pharmacology 137 (2002): 1021-1030. (b) M. G. Cattaneo, B. Chini, and L. M. Vicentini, “Oxytocin Stimulates Migration and Invasion in Human Endothelial Cells,” British Journal of Pharmacology 153 (2008): 728-736.

[37]

(a)N. Suffee, B. Richard, H. Hlawaty, O. Oudar, N. Charnaux, and A. Sutton, “Angiogenic Properties of the Chemokine RANTES/CCL5,” Biochemical Society Transactions 39 (2011): 1649-1653. (b) I. P. Touw, M. Valkhof, S. J. Erkeland, K. Meijers, and A. Danen-van Oorschot, “Expression of G-CSF Receptor During Embryonic Development in a Csf3r-Cre Knock-In Mouse Model,” Blood 110 (2007): 2233. (c) P. De, Q. Peng, T. Dmitry, et al., “Expression of RAC2 in Endothelial Cells is Required for the Postnatal Neovascular Response,” Experimental Cell Research 315 (2009): 248-263. (d) M. Harada, Y. Qin, H. Takano, et al., “G-CSF Prevents Cardiac Remodeling After Myocardial Infarction by Activating the Jak-Stat Pathway in Cardiomyocytes,” Nature Medicine 11 (2005): 305-311. (e) T. Leung, H. Chen, A. M. Stauffer, et al., “Zebrafish G Protein γ2 is Required for VEGF Signaling During Angiogenesis,” Blood 108 (2006): 160-166.

[38]

(a)Z. Q. Zhang, Y. X. Yang, J. A. Li, R. C. Zeng, and S. K. Guan, “Advances in Coatings on Magnesium Alloys for Cardiovascular Stents—A Review,” Bioactive Materials 6 (2021): 4729-4757. (b) M. Peng, Q. Zhang, M. Zhang, et al., “Dealloying and Polydopamine/Silver Coating on NiTi Alloy for Improved Antibacterial Activity,” Materials Chemistry and Physics 305 (2023): 127939.

[39]

W. Wang, L. Lu, H. P. Bei, et al., “Self-Protonating, Plasma Polymerized, Superimposed Multi-Layered Biomolecule Nanoreservoir As Blood-Contacting Surfaces,” Chemical Engineering Journal 410 (2020): 128313.

[40]

A. L. J. Olsson, I. R. Quevedo, D. He, M. Basnet, and N. Tufenkji, “Using the Quartz Crystal Microbalance With Dissipation Monitoring to Evaluate the Size of Nanoparticles Deposited on Surfaces,” ACS Nano 7 (2013): 7833-7843.

[41]

Y. Liu, Y. Han, H. Dong, X. Wei, D. Shi, and Y. Li, “Ca 2+ -Mediated Surface Polydopamine Engineering to Program Dendritic Cell Maturation,” ACS Applied Materials & Interfaces 12 (2020): 4163-4173.

[42]

Q. Tu, X. Shen, Y. Liu, et al., “A Facile Metal-phenolic-amine Strategy for Dual-Functionalization of Blood-Contacting Devices With Antibacterial and Anticoagulant Properties,” Materials Chemistry Frontiers 3 (2019): 265-275.

[43]

H. Qiu, P. Qi, J. Liu, et al., “Biomimetic Engineering Endothelium-Like Coating on Cardiovascular Stent Through Heparin and Nitric Oxide-generating Compound Synergistic Modification Strategy,” Biomaterials 207 (2019): 10-22.

[44]

D. Suo, J. Rao, H. Wang, et al., “A Universal Biocompatible Coating for Enhanced Lubrication and Bacterial Inhibition,” Biomaterials Science 10 (2022): 3493-3502.

[45]

H. Yu, S. Yu, H. Qiu, et al., “Nitric Oxide-Generating Compound and Bio-Clickable Peptide Mimic for Synergistically Tailoring Surface Anti-Thrombogenic and Anti-Microbial Dual-Functions,” Bioactive Materials 6 (2021): 1618-1627.

[46]

(a)H. Yu, H. Qiu, W. Ma, et al., “Endothelium-Mimicking Surface Combats Thrombosis and Biofouling via Synergistic Long- and Short-Distance Defense Strategy,” Small 17 (2021): e2100729. (b) X. Li, J. Liu, T. Yang, et al., “Mussel-Inspired “Built-up” Surface Chemistry for Combining Nitric Oxide Catalytic and Vascular Cell Selective Properties,” Biomaterials 241 (2020): 119904.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/