PDF
Abstract
Stroke remains the leading cause of neurological mortality and disability worldwide, with post-stroke inflammation significantly hindering neural repair. Despite its critical impact, mechanism-based therapeutic strategies are scarce. In this study, we uncovered a critically important yet previously unexamined cell population, p21+CD86+ microglia, which accumulated in ischemic region. Unexpectedly, we discovered that p21 interacted with C/EBPβ, driving C/EBPβ-dependent transcription and upregulating key pro-inflammatory factors such as Il6, Il1β, Cxcl2, and Cxcl10. To specifically target and eliminate these pathogenic p21+CD86+ microglia, we engineered exosomes with a peptide that selectively binds CD86+ microglia and loaded them with the senolytic Quercetin. Furthermore, we developed an optimized, stable Que@micro-Exo therapeutic formulation. Systemic administration of Que@micro-Exo robustly reduced p21+CD86+ microglia and suppressed their pro-inflammatory phenotype. Notably, functional analyses revealed that Que@micro-Exo treatment mitigated blood-brain barrier disruption, promoted beneficial microglial polarization, decreased neutrophil infiltration, and significantly enhanced functional recovery following cerebral ischemia, all with a favorable safety profile. Our preclinical findings lay the foundation for targeting p21+CD86+ microglia as a novel therapeutic strategy, highlighting the potential of exosome-based senolytic anti-inflammatory therapy for stroke and other central nervous system disorders.
Keywords
engineered exosomes
/
extracellular vesicles
/
ischemic stroke
/
microglia
/
senescence
/
targeted delivery
Cite this article
Download citation ▾
Jialei Yang, Shipo Wu, Miao He.
Engineered Exosome-Based Senolytic Therapy Alleviates Stroke by Targeting p21+CD86+ Microglia.
Exploration, 2025, 5(3): 20240349 DOI:10.1002/EXP.20240349
| [1] |
S. S. Martin, A. W. Aday, Z. I. Almarzooq, et al., “2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association,” Circle 149 (2024): e347.
|
| [2] |
E. Candelario-Jalil, R. M. Dijkhuizen, and T. Magnus, “Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities,” Stroke; A Journal of Cerebral Circulation 53 (2022): 1473.
|
| [3] |
C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, “Hallmarks of Aging: An Expanding Universe,” Cell 186 (2023): 243.
|
| [4] |
L. S. Melo Dos Santos, M. Trombetta-Lima, B. J. L. Eggen, and M. Demaria, “Cellular Senescence in Brain Aging and Neurodegeneration,” Ageing Research Reviews 84 (2024): 101890.
|
| [5] |
R. Di Micco, V. Krizhanovsky, D. Baker, and F. d'Adda di Fagagna, “Cellular Senescence in Ageing: From Mechanisms to Therapeutic Opportunities,” Nature Reviews Molecular Cell Biology 22 (2021): 75-95.
|
| [6] |
I. K. Herrmann, M. J. A. Wood, and G. Fuhrmann, “Extracellular Vesicles as a Next-Generation Drug Delivery Platform,” Nature Nanotechnology 16 (2021): 748-759.
|
| [7] |
V. P. Chavda, G. Luo, T. K. R. Bezbaruah, et al., “Unveiling the Promise: Exosomes as Game-Changers in Anti-Infective Therapy,” Exploration 4 (2024): 20230139.
|
| [8] |
J. Yang, Y. Li, S. Jiang, et al., “Engineered Brain-Targeting Exosome for Reprogramming Immunosuppressive Microenvironment of Glioblastoma,” Exploration (2024): 20240039.
|
| [9] |
J. Yang, X. Zhang, X. Chen, L. Wang, and G. Yang, “Exosome Mediated Delivery of miR-124 Promotes Neurogenesis After Ischemia,” Molecular Therapy Nucleic Acids 7 (2017): 278-287.
|
| [10] |
J. Yang, S. Wu, L. Hou, et al., “Therapeutic Effects of Simultaneous Delivery of Nerve Growth Factor mRNA and Protein via Exosomes on Cerebral Ischemia,” Molecular Therapy Nucleic Acids 21 (2020): 512-522.
|
| [11] |
Z. G. Zhang, B. Buller, and M. Chopp, “Exosomes — Beyond Stem Cells for Restorative Therapy in Stroke and Neurological Injury,” Nature Reviews Neurology 15 (2019): 193-203.
|
| [12] |
S. Kim, W. Lee, H. Jo, et al., “The Antioxidant Enzyme Peroxiredoxin-1 Controls Stroke-Associated Microglia Against Acute Ischemic Stroke,” Redox Biology 54 (2022): 102347.
|
| [13] |
M. Pulido-Salgado, J. M. Vidal-Taboada, and J. Saura, “C/EBPβ and C/EBPδ Transcription Factors: Basic Biology and Roles in the CNS,” Progress in Neurobiology 132 (2015): 1-33.
|
| [14] |
C. Lee and C.-H. Huang, “LASAGNA-Search 2.0: Integrated Transcription Factor Binding Site Search and Visualization in a Browser,” Bioinformatics 30 (2014): 1923-1925.
|
| [15] |
O. Fornes, J. A. Castro-Mondragon, A. Khan, et al., “JASPAR 2020: Update of the Open-Access Database of Transcription Factor Binding Profiles,” Nucleic Acids Research 48 (2020): D87-D92.
|
| [16] |
T. Terashima, N. Ogawa, Y. Nakae, et al., “Gene Therapy for Neuropathic Pain Through siRNA-IRF5 Gene Delivery With Homing Peptides to Microglia,” Molecular Therapy Nucleic Acids 11 (2018): 203-215.
|
| [17] |
T. Yamashita, Y. Takahashi, and Y. Takakura, “Possibility of Exosome-Based Therapeutics and Challenges in Production of Exosomes Eligible for Therapeutic Application,” Biological and Pharmaceutical Bulletin 41 (2018): 835.
|
| [18] |
E. Tzng, N. Bayardo, and P. C. Yang, “Current Challenges Surrounding Exosome Treatments,” Extracellular Vesicle 2 (2023): 100023.
|
| [19] |
R. L. Cohn, N. S. Gasek, G. A. Kuchel, and M. Xu, “The Heterogeneity of Cellular Senescence: Insights at the Single-Cell Level,” Trends in Cell Biology 33 (2023): 9-17.
|
| [20] |
J. Baixauli-Martín, A. Aliena-Valero, M. Castelló-Ruiz, et al., “Brain Cell Senescence: A New Therapeutic Target for the Acute Treatment of Ischemic Stroke,” Journal of Neuropathology and Experimental Neurology 81 (2022): 614-620.
|
| [21] |
C. Torres-Querol, P. Torres, N. Vidal, M. Portero-Otín, G. Arque, and F. Purroy, “Acute Ischemic Stroke Triggers a Cellular Senescence-Associated Secretory Phenotype,” Scientific Reports 11 (2021): 15752.
|
| [22] |
S. Chaib, T. Tchkonia, and J. L. Kirkland, “Cellular Senescence and Senolytics: The Path to the Clinic,” Nature Medicine 28 (2022): 1556-1568.
|
| [23] |
A. Papadopoulos, K. Palaiopanos, H. Björkbacka, et al., “Circulating Interleukin-6 Levels and Incident Ischemic Stroke,” Neurology 98 (2022): e1002.
|
| [24] |
S. S. Shaftel, T. J. Carlson, J. A. Olschowka, S. Kyrkanides, S. B. Matousek, and M. K. O'Banion, “Chronic Interleukin-1β Expression in Mouse Brain Leads to Leukocyte Infiltration and Neutrophil-Independent Blood-Brain Barrier Permeability Without Overt Neurodegeneration,” Journal of Neuroscience 27 (2007): 9301-9309.
|
| [25] |
K. De Filippo, A. Dudeck, M. Hasenberg, et al., “Mast Cell and Macrophage Chemokines CXCL1/CXCL2 Control the Early Stage of Neutrophil Recruitment During Tissue Inflammation,” Blood 121 (2013): 4930-4937.
|
| [26] |
Q. Chai, R. She, Y. Huang, and Z. F. Fu, “Expression of Neuronal CXCL10 Induced by Rabies Virus Infection Initiates Infiltration of Inflammatory Cells, Production of Chemokines and Cytokines, and Enhancement of Blood-Brain Barrier Permeability,” Journal of Virology 89 (2015): 870.
|
| [27] |
T. Kuilman, C. Michaloglou, L. C. W. Vredeveld, et al., “Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network,” Cell 133 (2008): 1019-1031.
|
| [28] |
C. Basak, S. K. Pathak, A. Bhattacharyya, D. Mandal, S. Pathak, and M. Kundu, “NF-κB- and C/EBPβ-driven Interleukin-1β Gene Expression and PAK1-Mediated Caspase-1 Activation Play Essential Roles in Interleukin-1β Release From Helicobacter Pylori Lipopolysaccharide-Stimulated Macrophages,” Journal of Biological Chemistry 280 (2005): 4279-4288.
|
| [29] |
E. R. Westin, A. Khodadadi-Jamayran, L. K. Pham, M. L. Tung, and F. D. Goldman, “CRISPR Screen Identifies CEBPB as Contributor to Dyskeratosis Congenita Fibroblast Senescence via Augmented Inflammatory Gene Response,” G3 Genes|Genomes|Genetics 13 (2023): jkad207.
|
| [30] |
J. C. L. Spurrell, S. Wiehler, R. S. Zaheer, S. P. Sanders, and D. Proud, “Human Airway Epithelial Cells Produce IP-10 (CXCL10) In Vitro and In Vivo Upon Rhinovirus Infection,” American Journal of Physiology. Lung Cellular and Molecular Physiology 289 (2005): L85-L95.
|
| [31] |
L. Zhang, L. E. Pitcher, M. J. Yousefzadeh, L. J. Niedernhofer, P. D. Robbins, and Y. Zhu, “Cellular Senescence: A Key Therapeutic Target in Aging and Diseases,” Journal of Clinical Investigation 132 (2022): e158450.
|
| [32] |
Z. Erana-Perez, M. Igartua, E. Santos-Vizcaino, and R. M. Hernandez, “Genetically Engineered Loaded Extracellular Vesicles for Drug Delivery,” Trends in Pharmacological Sciences 45 (2024): 350-365.
|
| [33] |
M. M. Gonzales, V. R. Garbarino, T. F. Kautz, et al., “Senolytic Therapy in Mild Alzheimer's Disease: A Phase 1 Feasibility Trial,” Nature Medicine 29 (2023): 2481-2488.
|
| [34] |
A. Bardestani, S. Ebrahimpour, A. Esmaeili, and A. Esmaeili, “Quercetin Attenuates Neurotoxicity Induced by Iron Oxide Nanoparticles,” Journal of Nanobiotechnology 19 (2021): 327.
|
| [35] |
L. G. Costa, J. M. Garrick, P. J. Roquè, and C. Pellacani, “Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More,” Oxidative Medicine and Cellular Longevity 2016 (2016): 2986796.
|
| [36] |
G. M. Keating, “Dasatinib: A Review in Chronic Myeloid Leukaemia and Ph+ Acute Lymphoblastic Leukaemia,” Drugs 77 (2017): 85-96.
|
| [37] |
F. Meiners, B. Hinz, L. Boeckmann, et al., “Computational Identification of Natural Senotherapeutic Compounds that Mimic Dasatinib Based on Gene Expression Data,” Scientific Reports 14 (2024): 6286.
|
| [38] |
A. Duong, G. Parmar, A. M. Kirkham, D. Burger, and D. S. Allan, “Registered Clinical Trials Investigating Treatment With Cell-Derived Extracellular Vesicles: A Scoping Review,” Cytotherapy 25, no. 9 (2023): 939-945.
|
| [39] |
J. Dumont, D. Euwart, B. Mei, S. Estes, and R. Kshirsagar, “Human Cell Lines for Biopharmaceutical Manufacturing: History, Status, and Future Perspectives,” Critical Reviews in Biotechnology 36, no. 6 (2016): 1110-1122.
|
| [40] |
J.-C. D. Schwartz, X. Zhang, A. A. Fedorov, S. G. Nathenson, and S. C. Almo, “Structural Basis for Co-Stimulation by the Human CTLA-4/B7-2 Complex,” Nature 410 (2001): 604-608.
|
| [41] |
G. J. Freeman, G. S. Gray, C. D. Gimmi, et al., “Structure, Expression, and T Cell Costimulatory Activity of the Murine Homologue of the Human B Lymphocyte Activation Antigen B7,” Journal of Experimental Medicine 174, no. 3 (1991): 625-631.
|
| [42] |
D. J. Lenschow, G. H. Su, L. A. Zuckerman, et al., “Expression and Functional Significance of an Additional Ligand for CTLA-4,” Proceedings National Academy of Science USA 90 (1993): 11054-11058.
|
| [43] |
R. J. Greenwald, G. J. Freeman, and A. H. Sharpe, “The B7 Family Revisited,” Annual Review of Immunology 23 (2005): 515-548.
|
| [44] |
X. Zhao, J. Wang, Y. Deng, et al., “Quercetin as a Protective Agent for Liver Diseases: A Comprehensive Descriptive Review of the Molecular Mechanism,” Phytotherapy Research 35, no. 9 (2021): 4727-4747.
|
| [45] |
N. Li, C. Cui, J. Xu, M. Mi, J. Wang, and Y. Qin, “Quercetin Intervention Reduced Hepatic Fat Deposition in Patients With Nonalcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Crossover Clinical Trial,” American Journal of Clinical Nutrition 120, no. 3 (2024): 507-517.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.