Design Principles Of Inorganic-Protein Hybrid Materials for Biomedicine

Hao Liu , Xiaohui Liu , Hui Jiang , Xuemei Wang

Exploration ›› 2025, Vol. 5 ›› Issue (3) : 20240182

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (3) : 20240182 DOI: 10.1002/EXP.20240182
REVIEW

Design Principles Of Inorganic-Protein Hybrid Materials for Biomedicine

Author information +
History +
PDF

Abstract

Inorganic protein hybrid materials (IPHMs) due to editable structure present unrivalled potential at the intersection of synthetic biology and materials science. The synthesis of IPHMs with a high degree of biosafety from bioactive units represents a shift in material design and synthesis. This paper focuses on a review of the structural basis and design principles of proteins for the synthesis of IPHMs with specific physical and chemical functions. It also provides a valuable reference for the design of emerging IPHMs through the conformational relationship of the IPHMs, which extends the potential applications of IPHMs. In addition, the construction strategy of the reaction system for the synthesis of hybrid materials is analyzed from the perspective of synthetic biology. The possibility of engineering and batch synthesis of IPHMs is discussed. Based on the physicochemical properties of different hybrid materials and the applied-oriented research on biomedical optical imaging and multimodal therapy, the idea of synthesis of in situ hybrid materials is proposed. Ultimately, the trends and challenges of synthetic biology for IPHMs are speculated in detail.

Keywords

biosynthesis / interventional therapy / living materials / protein coronas / smart materials

Cite this article

Download citation ▾
Hao Liu, Xiaohui Liu, Hui Jiang, Xuemei Wang. Design Principles Of Inorganic-Protein Hybrid Materials for Biomedicine. Exploration, 2025, 5(3): 20240182 DOI:10.1002/EXP.20240182

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. A. Vinnacombe-Willson, Y. Conti, A. Stefancu, P. S. Weiss, E. Cortés, and L. Scarabelli, “Direct Bottom-Up In Situ Growth: A Paradigm Shift for Studies in Wet-Chemical Synthesis of Gold Nanoparticles,” Chemical Reviews 123, no. 13 (2023): 8488-8529.

[2]

H. Guan, C. Harris, and S. Sun, “Metal-Ligand Interactions and Their Roles in Controlling Nanoparticle Formation and Functions,” Accounts of Chemical Research 56, no. 12 (2023): 1591-1601.

[3]

Y. Huang, X. Ning, S. Ahrari, et al., “Physiological Principles Underlying the Kidney Targeting of Renal Nanomedicines,” Nature Reviews Nephrology 20 (2024): 354-370.

[4]

Y. Huang, M. Yu, and J. Zheng, “Proximal tubules Eliminate Endocytosed Gold Nanoparticles Through an Organelle-Extrusion-Mediated Self-Renewal Mechanism,” Nature Nanotechnology 18 (2023): 637-646.

[5]

X. Wang, Q. Li, Y. Miao, et al., “A 0D-2D Heterojunction Bismuth Molybdate-Anchored Multifunctional Hydrogel for Highly Efficient Eradication of Drug-Resistant Bacteria,” ACS Nano 17, no. 16 (2023): 15568-15589.

[6]

H. Liu, C. Chen, H. Chen, et al., “2D-PROTACs With Augmented Protein Degradation for Super-Resolution Photothermal Optical Coherence Tomography Guided Momentary Multimodal Therapy,” Chemical Engineering Journal 446 (2022): 137039.

[7]

H. Liu, H. Chen, X. Liu, et al., “Dual-Responsive Ultrathin 1T-Phase Niobium Telluride Nanosheet-Based Delivery Systems for enhanced Chemo-Photothermal Therapy,” Journal of Materials Chemistry B 9 (2021): 8109.

[8]

J. Plou, B. Molina-Martínez, C. García-Astrain, et al., “Nanocomposite Scaffolds for Monitoring of Drug Diffusion in Three-Dimensional Cell Environments by Surface-Enhanced Raman Spectroscopy,” Nano Letters 21 (2021): 8785.

[9]

S. Vecchioni, B. Lu, W. Livernois, et al., “Metal-Mediated DNA Nanotechnology in 3D: Structural Library by Templated Diffraction,” Advanced Materials 35 (2023): 2210938.

[10]

P. MacMillan, A. M. Syed, B. R. Kingston, et al., “Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues,” Nano Letters 23 (2023): 7197.

[11]

J. L. Y. Wu, B. P. Stordy, L. N. M. Nguyen, C. P. Deutschman, and W. C. W. Chan, “A Proposed Mathematical Description of In Vivo Nanoparticle Delivery,” Advanced Drug Delivery Reviews 189 (2022): 114520.

[12]

A. Nyerges, S. Vinke, R. Flynn, et al., “A Swapped Genetic Code Prevents Viral Infections and Gene Transfer,” Nature 615 (2023): 720-727.

[13]

T. Harimoto, J. Hahn, Y.-Y. Chen, et al., “A Programmable Encapsulation System Improves Delivery of Therapeutic Bacteria In Mice,” Nature Biotechnology 40 (2022): 1259.

[14]

R. Liam-Or, F. N. Faruqu, A. Walters, et al., “Cellular Uptake and in Vivo Distribution of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles are protein Corona Dependent,” Nature Nanotechnology 19 (2024): 846-855.

[15]

V. Francia, Y. Zhang, M. H. Y. Cheng, R. M. Schiffelers, D. Witzigmann, and P. R. Cullis, “A Magnetic Separation Method for Isolating and Characterizing the Biomolecular Corona of Lipid Nanoparticles,” Proceedings of the National Academy of Sciences of the United States of America 121 (2024): e2307803120.

[16]

N. Dridi, Z. Jin, W. Perng, and H. Mattoussi, “Probing Protein Corona Formation Around Gold Nanoparticles: Effects of Surface Coating,” ACS Nano 18, no. 12 (2024): 8649-8662.

[17]

Z. Xing, X. Gou, L.-P. Jiang, J.-J. Zhu, and C. Ma Angewandte Chemie, International Edition 62, no. 39 (2023): e202308950.

[18]

Y. Bai, Z. Yu, L. Ackerman, et al., “Protein Nanoribbons Template Enamel Mineralization,” Proceedings of the National Academy of Sciences of the United States of America 117 (2020): 19201.

[19]

S. Li, L. Wang, Y. Lin, S. Huang, and J. Chan, “Hydrogen Phosphates Play a Critical Structural Role in Amorphous Calcium Phosphates,” Chemical Communications (Cambridge, England) 58 (2022): 10329.

[20]

H. Tang, Y. Zhang, T. Yang, et al., “Cholesterol Modulates the Physiological Response to Nanoparticles by Changing the Composition of Protein Corona,” Nature Nanotechnology 18 (2023): 1067-1077.

[21]

n. Martin, R. Watanabe, K. Hashimoto, et al., “Evidence-Based Prediction of Cellular Toxicity for Amorphous Silica Nanoparticles,” ACS Nano 17, no. 11 (2023): 9987-9999.

[22]

Z. Wang, P. Huang, O. Jacobson, et al., “Biomineralization-Inspired Synthesis of Copper Sulfide-Ferritin Nanocages as Cancer Theranostics,” ACS Nano 10 (2016): 3453.

[23]

R. Qin, Y. Liu, F. Tao, C. Li, W. Cao, and P. Yang, “Protein-Bound Freestanding 2D Metal Film for Stealth Information Transmission,” Advanced Materials 31, no. 5 (2019): 1803377.

[24]

S. Peña-Díaz, W. P. Olsen, H. Wang, and D. E. Otzen, “Functional Amyloids: The Biomaterials of Tomorrow?,” Advanced Materials 36, no. 18 (2024): 2312823.

[25]

D. Athanasiadou and K. M. M. Carneiro, “DNA Nanostructures as Templates for Biomineralization,” Nature Reviews Chemistry 5, no. 2 (2021): 93-108.

[26]

J. F. Lutsko, “How Crystals Form: A Theory of Nucleation Pathways,” Science Advances 5 (2019): eaav7399.

[27]

Y. Lyu, L. M. Becerril, M. Vanzan, et al., “The Interaction of Amines With Gold Nanoparticles,” Advanced Materials 36, no. 10 (2024): e2211624.

[28]

Q. Yao, L. Liu, S. Malola, et al., “Supercrystal Engineering of Atomically Precise Gold Nanoparticles Promoted by Surface Dynamics,” Nature Chemistry 15 (2023): 230-239.

[29]

B. Ni, M. Mychinko, S. Gómez-Graña, et al., “Chiral Seeded Growth of Gold Nanorods into Fourfold Twisted Nanoparticles With Plasmonic Optical Activity,” Advanced Materials 35, no. 1 (2023): e2208299.

[30]

H.-E. Lee, H.-Y. Ahn, J. Mun, et al., “Amino-Acid- and Peptide-Directed Synthesis of Chiral Plasmonic Gold Nanoparticles,” Nature 556 (2018): 360.

[31]

M.-T. Chen, C.-F. Hu, H.-B. Huang, Z.-G. Qian, and X.-X. Xia, “Spatially Directed Biosynthesis of Quantum Dots via Spidroin Templating in Escherichia coli,” Angewandte Chemie, International Edition 61 (2022): e202214177.

[32]

M. V. Dziuba, F.-D. Müller, M. Pósfai, and D. Schüler, “Exploring the Host Range for Genetic Transfer of Magnetic Organelle Biosynthesis,” Nature Nanotechnology 19 (2024): 115-123.

[33]

A. Sawaguchi, T. Kamimura, N. Takahashi, et al., “In Situ Strategy for Biomedical Target Localization Via Nanogold Nucleation and Secondary Growth,” Communications Biology 4 (2021): 710.

[34]

Y. Xu, Y. Liu, X. Hu, et al., “The Synthesis of a 2D Ultra-Large Protein Supramolecular Nanofilm by Chemoselective Thiol-Disulfide Exchange and its Emergent Functions,” Angewandte Chemie 132 (2020): 2872.

[35]

A. Kakkis, D. Gagnon, J. Esselborn, R. D. Britt, and F. A. Tezcan, “Metal-Templated Design of Chemically Switchable Protein Assemblies With High-Affinity Coordination Sites,” Angewandte Chemie, International Edition 59 (2020): 21940.

[36]

A. Aires, V. Fernández-Luna, J. Fernández-Cestau, R. D. Costa, and A. L. Cortajarena, “White-Emitting Protein-Metal Nanocluster Phosphors for Highly Performing Biohybrid Light-Emitting Diodes,” Nano Letters 20 (2020): 2710.

[37]

L. Kong, C. Yang, and Z. Zhang, “Organism-Generated Biological Vesicles In Situ: An Emerging Drug Delivery Strategy,” Advanced Science (Weinheim) 10 (2023): e2204178.

[38]

K. Li, Z. Wei, J. Jia, et al., “Engineered Living Materials Grown From Programmable Aspergillus Niger Mycelial Pellets,” Materials Today Bio 19 (2023): 100545.

[39]

B. An, Y. Wang, Y. Huang, et al., “Engineered Living Materials For Sustainability,” Chem. Rev. 123 (2023): 2349.

[40]

Y. Wang, B. An, B. Xue, et al., “Living Materials Fabricated Via Gradient Mineralization of Light-Inducible Biofilms,” Nature Chemical Biology 17 (2021): 351.

[41]

Z. Geng, X. Wang, F. Wu, Z. Cao, and J. Liu, “Biointerface Mineralization Generates Ultraresistant Gut Microbes as Oral Biotherapeutics,” Science Advances 9 (2023): eade0997.

[42]

J. S. Soares, I. Barman, N. C. Dingari, et al., “Diagnostic Power of Diffuse Reflectance Spectroscopy for Targeted Detection of Breast Lesions With Microcalcifications,” Proceedings National Academy of Science of the United States of America 110 (2013): 471.

[43]

Q. Lei, J. Guo, F. Kong, et al., “Bioinspired Cell Silicification: From Extracellular to Intracellular,” Journal of the American Chemical Society 143 (2021): 6305.

[44]

O. Urquidi, J. Brazard, N. LeMessurier, L. Simine, and T. B. M. Adachi, “In Situ Optical Spectroscopy of crystallization: One Crystal Nucleation at a Time,” Proceedings National Academy of Science of the United States of America 119 (2022): e2122990119.

[45]

J. Duboisset, P. Ferrand, A. Baroni, et al., “Amorphous-to-Crystal Transition in the Layer-By-Layer Growth of Bivalve Shell Prisms,” Acta Biomaterialia 142 (2022): 194.

[46]

A. Badou, S. Pont, S. Auzoux-Bordenave, M. Lebreton, and J.-F. Bardeau, “New Insight on Spatial Localization and Microstructures of Calcite-Aragonite Interfaces in Adult Shell of Haliotis Tuberculata: Investigations of Wild and Farmed Abalones by FTIR and Raman mapping,” Journal of Structural Biology 214 (2022): 107854.

[47]

I. Savic, C. Farver, and P. Milovanovic, “Pathogenesis of Pulmonary Calcification and Homologies With Biomineralization in Other Tissues,” American Journal of Pathology 192, no. 11 (2022): 1496-1505.

[48]

Y. Chen, M. Zuo, Y. Chen, et al., “Nanocompartment-Confined Polymerization in Living Systems,” Nature Communications 14 (2023): 5229.

[49]

F. Qian, Z. Huang, H. Zhong, et al., “Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles,” ACS Nano 16 (2022): 19980.

[50]

L. Niu, L. Yu, C. Jin, et al., “Living Materials Based Dynamic Information Encryption via Light-Inducible Bacterial Biosynthesis of Quantum Dots,” Angewandte Chemie, International Edition 63 (2024): e202315251.

[51]

W. Zhang, M. Wang, B. Liu, et al., “Glutathione Induced In Situ Synthesis of Cu Single-Atom Nanozymes With Anaerobic Glycolysis Metabolism Interference for Boosting Cuproptosis,” Angewandte Chemie, International Edition 63, no. 18 (2024): e202402397.

[52]

H. Liu, Z. Liu, Y. Wang, et al., “Intracellular Liquid-Liquid Phase Separation Induces Tunable Anisotropic Nanocrystal Growth for Multidimensional Analysis,” Advanced Functional Materials 33 (2023): 2302136.

[53]

H. Liu, Z. Liu, J. Xiao, X. Liu, H. Jiang, and X. Wang, “Photo-induced Oriented Crystallization of Intracellular Nanocrystals Based on Phase Separation for Diagnostic Bioimaging and Analysis,” Advanced Healthcare Materials 13 (2024): e2303248.

[54]

H.-P. Yu and Y.-J. Zhu, “Guidelines Derived From Biomineralized Tissues for Design and Construction of High-Performance Biomimetic Materials: From Weak To Strong,” Chemical Society Reviews 53 (2024): 4490-4606.

[55]

L. M. Otter, K. Eder, M. R. Kilburn, et al., “Growth Dynamics and Amorphous-to-Crystalline Phase Transformation in Natural Nacre,” Nature Communications 14 (2023): 2254.

[56]

A. P. Freitas, R. K. Ramamoorthy, M. Durelle, et al., “Crystallization Within Intermediate Amorphous Phases Determines the Polycrystallinity of Nanoparticles From Coprecipitation,” Nano Letters 22 (2022): 29.

[57]

M. Savchenko, V. Sebastian, M. T. Lopez-Lopez, et al., “Magnetite Mineralization Inside Cross-Linked Protein Crystals,” Crystal Growth & Design 23, no. 6 (2023): 4032-4040.

[58]

P. Liu, Y. Zheng, R. Zhang, et al., “Key Gene Networks that Control Magnetosome Biomineralization in Magnetotactic Bacteria,” National Science Review 10 (2023): nwac238.

[59]

R. Thaler, F. Khani, I. Sturmlechner, et al., “Vitamin C Epigenetically Controls Osteogenesis and Bone Mineralization,” Nature Communications 13 (2022): 5883.

[60]

A. Roschger, W. Wagermaier, S. Gamsjaeger, et al., “Newly Formed and Remodeled Human Bone Exhibits Differences in the Mineralization Process,” Acta Biomaterialia 104 (2020): 221.

[61]

K. Sugiyama, J. Marzi, J. Alber, et al., “Raman Microspectroscopy and Raman Imaging Reveal Biomarkers Specific for Thoracic Aortic Aneurysms,” Cell Reports Medicine 2 (2021): 100261.

[62]

L. Becker, C.-E. Lu, I. A. Montes-Mojarro, et al., “Raman Microspectroscopy Identifies Fibrotic Tissues in Collagen-Related Disorders Via Deconvoluted Collagen Type I Spectra,” Acta Biomaterialia 162 (2023): 278.

[63]

G. S. Mandair, M. P. Akhter, F. W. L. Esmonde-White, et al., “Altered Collagen Chemical Compositional Structure in Osteopenic Women With Past Fractures: A Case-Control Raman Spectroscopic Study,” Bone 148 (2021): 115962.

[64]

K. Chatzipanagis, C. G. Baumann, M. Sandri, S. Sprio, A. Tampieri, and R. Kröger, “In Situ Mechanical and Molecular Investigations of Collagen/Apatite Biomimetic Composites Combining Raman Spectroscopy and Stress-Strain Analysis,” Acta Biomaterialia 46 (2016): 278.

[65]

S. Mandera, I. Coronado, L. Fernández-Díaz, et al., “Earthworm Granules: A Model of Non-Classical Biogenic Calcium Carbonate Phase Transformations,” Acta Biomaterialia 162 (2023): 149-163.

[66]

P. J. M. Smeets, K. R. Cho, R. G. E. Kempen, N. A. J. M. Sommerdijk, and J. J. De Yoreo, “Calcium Carbonate Nucleation Driven by Ion Binding in a Biomimetic Matrix Revealed by In Situ Electron Microscopy,” Nature Materials 14 (2015): 394.

[67]

S. Kashyap, T. J. Woehl, X. Liu, S. K. Mallapragada, and T. Prozorov, “Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein In Situ,” ACS Nano 8 (2014): 9097.

[68]

A. Wolff, K. Frese, M. Wißbrock, et al., “Influence of the Synthetic Polypeptide c25-Mms6 on Cobalt Ferrite Nanoparticle Formation,” Journal of Nanoparticle Research 14 (2012): 1161.

[69]

S. A. Malone, A. Lewin, M. A. Kilic, et al., “Protein-Template-Driven Formation of Polynuclear Iron Species,” Journal of the American Chemical Society 126 (2004): 496.

[70]

D. M. Chevrier, A. Juhin, N. Menguy, et al., “Collective Magnetotaxis of Microbial Holobionts is Optimized by the Three-Dimensional Organization and Magnetic Properties of Ectosymbionts,” Proceedings of the National Academy of Sciences of the United States of America 120 (2023): e2216975120.

[71]

K. Ma, S. Xu, T. Tao, et al., “Magnetosome-inspired Synthesis of Soft Ferrimagnetic Nanoparticles for Magnetic Tumor Targeting,” Proceedings of the National Academy of Sciences of the United States of America 119 (2022): e2211228119.

[72]

G. Jiang, D. Fan, J. Tian, Z. Xiang, and Q. Fang, “Self-Confirming Magnetosomes for Tumor-Targeted T1/T2 Dual-Mode MRI and MRI-Guided Photothermal Therapy,” Adv Healthc Mater 11 (2022): e2200841.

[73]

S. Rosenfeldt, F. Mickoleit, C. Jörke, et al., “Towards Standardized Purification of Bacterial Magnetic Nanoparticles for Future in Vivo Applications,” Acta Biomaterialia 120 (2021): 293.

[74]

Y. Zhang, Q. Ni, C. Xu, et al., “Smart Bacterial Magnetic Nanoparticles for Tumor-Targeting Magnetic Resonance Imaging of HER2-Positive Breast Cancers,” ACS Applied Materials & Interfaces 11 (2019): 3654.

[75]

S. Schuerle, M. Furubayashi, A. P. Soleimany, et al., “Genetic Encoding of Targeted Magnetic Resonance Imaging Contrast Agents for Tumor Imaging,” ACS Synthetic Biology 9 (2020): 392.

[76]

P.-A. Fang, J. F. Conway, H. C. Margolis, J. P. Simmer, and E. Beniash, “Hierarchical Self-Assembly of Amelogenin and the Regulation of Biomineralization at the Nanoscale,” Proceedings of the National Academy of Sciences of the United States of America 108 (2011): 14097.

[77]

M. Daye, V. Klepac-Ceraj, M. Pajusalu, et al., “Light-Driven Anaerobic Microbial Oxidation of Manganese,” Nature 576 (2019): 311.

[78]

J. S. Fehrenbacher, A. D. Russell, C. V. Davis, et al., “Link Between Light-Triggered Mg-Banding and Chamber Formation in the Planktic Foraminifera Neogloboquadrina dutertrei,” Nature Communications 8 (2017): 15441.

[79]

A. E. S. Van Driessche, N. Van Gerven, P. H. H. Bomans, et al., “Molecular Nucleation Mechanisms and Control Strategies for Crystal Polymorph Selection,” Nature 556 (2018): 89.

[80]

P. G. Vekilov, “Nucleation,” Crystal Growth & Design 10 (2010): 5007.

[81]

O. Galkin and P. G. Vekilov, “Control of Protein Crystal Nucleation Around the Metastable Liquid-Liquid Phase Boundary,” Proceedings of the National Academy of Sciences of the United States of America 97 (2000): 6277.

[82]

H. Zhang, J. Gu, Y. Zhang, et al., “Graphene Quantum Dots Modulate Stress Granule Assembly and Prevent Abnormal Phase Transition of Fused in Sarcoma Protein,” ACS Nano 17, no. 11 (2023): 10129-10141.

[83]

P. Mukherjee, A. Ahmad, D. Mandal, et al., “Bioreduction of AuCl4 Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed,” Angewandte Chemie, International Edition 40 (2001): 3585.

[84]

Y. Lin, J. Shi, W. Feng, et al., “Periplasmic Biomineralization for Semi-Artificial Photosynthesis,” Science Advances 9 (2023): eadg5858.

[85]

H. Huang, K. Wang, S. Li, et al., “Different Survival Strategies of the Phosphate-Mineralizing Bacterium Enterobacter sp. PMB-5 in Response to Cadmium Stress: Biomineralization, Biosorption, and Bioaccumulation,” Journal of Hazardous Materials 465 (2023): 133284.

[86]

H. Ping, W. Wagermaier, N. Horbelt, et al., “Mineralization Generates Megapascal Contractile Stresses in Collagen Fibrils,” Science 376 (2022): 188.

[87]

F. Nudelman and R. Kröger, “Enhancing Strength in Mineralized Collagen,” Science 376 (2022): 137.

[88]

M. M. McDonald, W. H. Khoo, P. Y. Ng, et al., “Osteoclasts Recycle Via Osteomorphs During RANKL-Stimulated Bone Resorption,” Cell 184 (2021): 1330.

[89]

K. A. Fichthorn, “Theory of Anisotropic Metal Nanostructures,” Chemical Reviews 123, no. 7 (2023): 4146-4183.

[90]

C. S. Kovacs, C. Chaussain, P. Osdoby, M. L. Brandi, B. Clarke, and R. V. Thakker, “The Role of Biomineralization in Disorders of Skeletal Development and Tooth Formation,” Nature Reviews Endocrinology 17 (2021): 336.

[91]

M. Yu, L. Wang, W. Zhang, and B. Ganss, “An Evolutionarily Conserved Subdomain in Amelotin Promotes Amorphous Calcium Phosphate-to-Hydroxyapatite Phase Transition,” Crystal Growth & Design 19 (2019): 2104-2113.

[92]

C. Shao, R. A. Bapat, J. Su, and J. Moradian-Oldak, “Regulation of Hydroxyapatite Nucleation In Vitro Through Ameloblastin-Amelogenin Interactions,” ACS Biomaterials Science & Engineering 9, no. 4 (2022): 1834-1842, https://doi.org/10.1021/acsbiomaterials.1c01113.

[93]

R. Lakshminarayanan, D. Fan, C. Du, and J. Moradian-Oldak, “The Role of Secondary Structure in the Entropically Driven Amelogenin Self-Assembly,” Biophysical Journal 93 (2007): 3664.

[94]

W. Zhu, J. Guo, S. Amini, et al., “SupraCells: Living Mammalian Cells Protected Within Functional Modular Nanoparticle-Based Exoskeletons,” Advanced Materials 31 (2019): e1900545.

[95]

W. Zhu, J. Guo, Y. Ju, et al., “Modular Metal-Organic Polyhedra Superassembly: From Molecular-Level Design to Targeted Drug Delivery,” Advanced Materials 31 (2019): e1806774.

[96]

J. Foxley, T. D. Green, M. A. Tofanelli, C. J. Ackerson, and K. L. Knappenberger, “The Evolution From Superatom- to Plasmon-Mediated Magnetic Circular Dichroism in Colloidal Metal Nanoparticles Spanning the Nonmetallic to Metallic Limits,” Journal of Physical Chemistry Letters 14 (2023): 5210.

[97]

S. Jeon, T. Heo, S.-Y. Hwang, et al., “Reversible Disorder-Order Transitions in Atomic Crystal Nucleation,” Science 371 (2021): 498.

[98]

Y.-S. Jun, Y. Zhu, Y. Wang, et al., “Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation,” Annual Review of Physical Chemistry 73 (2022): 453.

[99]

S. Brown, “Metal-Recognition by Repeating Polypeptides,” Nature Biotechnology 15 (1997): 269.

[100]

S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry, “Biological Synthesis of Triangular Gold Nanoprisms,” Nature Materials 3 (2004): 482.

[101]

Y. Yang, P. A. Deymier, L. Wang, et al., “Nucleation and Growth of Microtubules From γ-Tubulin-Functionalized Gold Surfaces,” Biotechnology Progress 22 (2006): 303.

[102]

S. K. Stanley, M. L. Becker, E. K. Lin, and W. Wu, “Inhibitory Effects of a Phage-Derived Peptide on Au Nanocrystal Nucleation and Growth,” Langmuir 25 (2009): 10886.

[103]

Y. Zhang, Y. Liu, Y. Liu, et al., “α-Helix-Mediated Protein Adhesion,” Journal of the American Chemical Society 145 (2023): 17125.

[104]

F. Tao, Q. Han, and P. Yang, “Interface-Mediated Protein Aggregation,” Chemical Communications (Cambridge, England) 59 (2023): 14093-14109.

[105]

H. Su, Y. Zhang, Y. Liu, et al., “Enhancing Bioavailability of Fertilizer Through an Amyloid-Like Protein Coating,” Advanced Materials 35 (2023): e2300829.

[106]

Y. Liu, K. Li, J. Tian, et al., “Synthesis of Robust Underwater Glues From Common Proteins Via Unfolding-Aggregating Strategy,” Nature Communications 14 (2023): 5145.

[107]

X. Guan, G. Cheng, Y.-P. Ho, B. P. Binks, and T. Ngai, “Light-Driven Spatiotemporal Pickering Emulsion Droplet Manipulation Enabled by Plasmonic Hybrid Microgels,” Small 19 (2023): 2304207.

[108]

H. Shi and S. Zhong, “Light and Temperature Perceptions Go Through a Phase Separation,” Current Opinion in Plant Biology 74 (2023): 102397.

[109]

Y. Liu, S. Miao, H. Ren, L. Tian, J. Zhao, and P. Yang, “Synthesis and Functionalization of Scalable and Versatile 2D Protein Films Via Amyloid-Like Aggregation,” Nature Protocols 19 (2024): 539-564.

[110]

H. Su, Y. Liu, Y. Gao, et al., “Amyloid-Like Protein Aggregation Toward Pesticide Reduction,” Advanced Science (Weinheim) 9 (2022): e2105106.

[111]

R. Zheng, J. Yang, M. Mamuti, et al., “Controllable Self-Assembly of Peptide-Cyanine Conjugates In Vivo as Fine-Tunable Theranostics,” Angewandte Chemie, International Edition 60 (2021): 7809.

[112]

P.-P. Yang, Y.-J. Li, Y. Cao, et al., “Rapid Discovery of Self-Assembling Peptides With One-Bead One-Compound Peptide Library,” Nature Communications 12 (2021): 4494.

[113]

H. Liu, Z. Liu, and H. Zhang, et al., “Mineralized Aggregates Based on Native Protein Phase Transition for Non-Destructive Diagnosis of Seborrheic Skin by Surface-Enhanced Raman Spectroscopy,” Mater Horiz (2024), https://doi.org/10.1039/D4MH00613E.

[114]

D. Wang, J. Deng, X. Deng, C. Fang, X. Zhang, and P. Yang, “Controlling Enamel Remineralization by Amyloid-Like Amelogenin Mimics,” Advanced Materials 32 (2020): e2002080.

[115]

X. Hu, J. Tian, C. Li, et al., “Amyloid-Like Protein Aggregates: A New Class of Bioinspired Materials Merging an Interfacial Anchor With Antifouling,” Advanced Materials 32 (2020): e2000128.

[116]

H. Dicko, T. A. Grünewald, P. Ferrand, et al., “Sub-Micrometric Spatial Distribution of Amorphous and Crystalline Carbonates in Biogenic Crystals Using Coherent Raman Microscopy,” Journal of Structural Biology 214 (2022): 107909.

[117]

B. Colin, J. Vincent, L. Koziorowszki, et al., “Calcareous Deposit Formation Under Cathodic Polarization and Marine Biocalcifying Bacterial Activity,” Bioelectrochemistry 148 (2022): 108271.

[118]

J. T. Avaro, S. L. P. Wolf, K. Hauser, and D. Gebauer, “Stable Prenucleation Calcium Carbonate Clusters Define Liquid-Liquid Phase Separation,” Angewandte Chemie, International Edition 59 (2020): 6155.

[119]

K. He, M. Sawczyk, C. Liu, et al., “Revealing Nanoscale Mineralization Pathways of Hydroxyapatite Using in Situ Liquid Cell Transmission Electron Microscopy,” Science Advances 6 (2020): eaaz7524.

[120]

T. A. Grünewald, S. Checchia, H. Dicko, et al., “Structure of An Amorphous Calcium Carbonate Phase Involved in the Formation of Pinctada Margaritifera Shells,” Proceedings of the National Academy of Sciences of the United States of America 119 (2022): e2212616119.

[121]

M. J. MacLeod, A. J. Goodman, H.-Z. Ye, H. V.-T. Nguyen, T. Van Voorhis, and J. A. Johnson, “Robust Gold Nanorods Stabilized by Bidentate N-Heterocyclic-Carbene-Thiolate Ligands,” Nature Chemistry 11 (2019): 57.

[122]

L. Houben, H. Weissman, S. G. Wolf, and B. Rybtchinski, “A Mechanism of Ferritin Crystallization Revealed by Cryo-STEM Tomography,” Nature 579 (2020): 540.

[123]

C. Jobichen, T. Ying Chong, R. Rattinam, et al., “Bacterioferritin Nanocage Structures Uncover the Biomineralization Process in Ferritins,” Proceedings of the National Academy of Sciences Nexus 2, no. 7 (2023): pgad235.

[124]

B. J. Tarasevich, J. S. Philo, N. K. Maluf, et al., “The Leucine-Rich Amelogenin Protein (LRAP) is Primarily Monomeric and Unstructured in Physiological Solution,” Journal of Structural Biology 190 (2015): 81.

[125]

S. Wu, M. Yu, M. Li, L. Wang, C. V. Putnis, and A. Putnis, “In Situ Atomic Force Microscopy Imaging of Octacalcium Phosphate Crystallization and Its Modulation by Amelogenin's C-Terminus,” Crystal Growth & Design 17 (2017): 2194.

[126]

J. Gu, S. Miao, Z. Yan, and P. Yang, “Multiplex Binding of Amyloid-Like Protein Nanofilm to Different Material Surfaces,” Colloid and Interface Science Communications 22 (2018): 42.

[127]

H. Yue, L. Yuan, W. Zhang, S. Zhang, W. Wei, and G. Ma, “Macrophage Responses to the Physical Burden of Cell-Sized Particles,” Journal of Materials Chemistry B 6 (2018): 393.

[128]

M. Wang, Y. Zhao, L. Zhang, et al., “Unexpected Role of Achiral Glycine in Determining the Suprastructural Handedness of Peptide Nanofibrils,” ACS Nano 15 (2021): 10328.

[129]

W. Liu, S.-D. Jiang, Y. Yan, et al., “A Solution-Processable and Ultra-Permeable Conjugated Microporous Thermoset for Selective Hydrogen Separation,” Nature Communications 11 (2020): 1633.

[130]

C. Chen, J. Hu, P. Zeng, et al., “Molecular Mechanisms of Anticancer Action and Cell Selectivity of Short α-Helical Peptides,” Biomaterials 35 (2014): 1552.

[131]

Y. Zhao, W. Yang, D. Wang, et al., “Controlling the Diameters of Nanotubes Self-Assembled From Designed Peptide Bolaphiles,” Small 14 (2018): 1703216.

[132]

S. Liu, Q. Zhang, A. N. Shy, et al., “Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells,” Journal of the American Chemical Society 143 (2021): 15852.

[133]

H. Sturikova, O. Krystofova, D. Huska, and V. Adam, “Zinc, Zinc Nanoparticles and Plants,” Journal of Hazardous Materials 349 (2018): 101.

[134]

P. Singh, Y.-J. Kim, D. Zhang, and D.-C. Yang, “Biological Synthesis of Nanoparticles From Plants and Microorganisms,” Trends in Biotechnology 34 (2016): 588.

[135]

M. Ovais, A. T. Khalil, N. U. Islam, et al., “Role of Plant Phytochemicals and Microbial Enzymes in Biosynthesis of Metallic Nanoparticles,” Applied Microbiology and Biotechnology 102 (2018): 6799.

[136]

W. Zhang, L. Xia, C. Shi, R. Qi, and M. Hu, “Casting and Recycling of Insoluble, Labile Single-Crystal Coordination Polymer Through Reversible Solid-Liquid-Solid Transition,” Matter 6 (2023): 3394.

[137]

N. Ma, R. Ohtani, H. M. Le, et al., “Exploration of Glassy State in Prussian Blue Analogues,” Nature Communications 13 (2022): 4023.

[138]

Z.-H. Li, Y. Chen, Y. Sun, and X.-Z. Zhang, “Platinum-Doped Prussian Blue Nanozymes for Multiwavelength Bioimaging Guided Photothermal Therapy of Tumor and Anti-Inflammation,” ACS Nano 15 (2021): 5189.

[139]

J. Zhou, Z. Lin, Y. Ju, M. A. Rahim, J. J. Richardson, and F. Caruso, “Polyphenol-Mediated Assembly for Particle Engineering,” Accounts of Chemical Research 53 (2020): 1269.

[140]

W. Wu, L. Yu, Y. Pu, H. Yao, Y. Chen, and J. Shi, “Copper-Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification,” Advanced Materials 32 (2020): e2000542.

[141]

A. Simonov, T. De Baerdemaeker, H. L. B. Boström, et al., “Hidden Diversity of Vacancy Networks in Prussian Blue Analogues,” Nature 578 (2020): 256.

[142]

S. Xu, X.-Y. Tao, Z. Dang, et al., “Near-Native Imaging of Label-Free Silver Nanoparticles-Triggered 3D Subcellular Ultrastructural Reorganization in Microalgae,” ACS Nano 18 (2024): 2030.

[143]

Z. Dang, X.-Y. Tao, Y. Guan, et al., “Direct Visualization and Restoration of Metallic Ion-Induced Subcellular Ultrastructural Remodeling,” ACS Nano 17 (2023): 9069.

[144]

H.-X. Han, L.-J. Tian, D.-F. Liu, H.-Q. Yu, G.-P. Sheng, and Y. Xiong, “Reversing Electron Transfer Chain for Light-Driven Hydrogen Production in Biotic-Abiotic Hybrid Systems,” Journal of the American Chemical Society 144 (2022): 6434.

[145]

T.-T. Zhu, L.-J. Tian, S.-S. Yu, and H.-Q. Yu, “Roles of Cation Efflux Pump in Biomineralization of Cadmium Into Quantum Dots in Escherichia coli,” Journal of Hazardous Materials 412 (2021): 125248.

[146]

N. T. H. Nguyen, G. T. Tran, N. T. T. Nguyen, T. T. T. Nguyen, D. T. C. Nguyen, and T. V. Tran, “A Critical Review on the Biosynthesis, Properties, Applications and Future Outlook of Green MnO2 Nanoparticles,” Environmental Research 231 (2023): 116262.

[147]

C. S. Jamieson, J. Misa, Y. Tang, and J. M. Billingsley, “Biosynthesis and Synthetic Biology of Psychoactive Natural Products,” Chemical Society Reviews 50 (2021): 6950.

[148]

T. Li, Y. Zhang, J. Zhu, et al., “A pH-Activatable Copper-Biomineralized Proenzyme for Synergistic Chemodynamic/Chemo-Immunotherapy Against Aggressive Cancers,” Advanced Materials 35 (2023): 2210201.

[149]

R. Irfandi, I. Raya, A. Ahmad, et al., “Anticancer Potential of Cu(II)Prolinedithiocarbamate Complex: Design, Synthesis, Spectroscopy, Molecular Docking, Molecular Dynamic, ADMET, and In-Vitro Studies,” Journal of Biomolecular Structure & Dynamics 41 (2023): 12938-12950.

[150]

T. Klaus, R. Joerger, E. Olsson, and C.-G. Granqvist, “Silver-Based Crystalline Nanoparticles, Microbially Fabricated,” Proceedings National Academy of Science USA 96 (1999): 13611.

[151]

W. Yang, W. Guo, W. Le, et al., “Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy,” ACS Nano 10 (2016): 10245-10257.

[152]

L. Tan, T. R. Jones, J. Poitras, J. Xie, X. Liu, and G. Southam, “Biochemical Synthesis of Palladium Nanoparticles: The Influence of Chemical Fixatives Used in Electron Microscopy on Nanoparticle Formation and Catalytic Performance,” Journal of Hazardous Materials 398 (2020): 122945.

[153]

J. Baumgartner, R. K. Ramamoorthy, A. P. Freitas, et al., “Self-Confined Nucleation of Iron Oxide Nanoparticles in a Nanostructured Amorphous Precursor,” Nano Letters 20 (2020): 5001.

[154]

C. N. Riese, M. Wittchen, V. Jérôme, et al., “The Transcriptomic Landscape of Magnetospirillum Gryphiswaldense During Magnetosome Biomineralization,” BMC Genomics [Electronic Resource] 23 (2022): 699.

[155]

H. Pi, R. Sun, J. R. McBride, et al., “Clostridioides difficile Ferrosome Organelles Combat Nutritional Immunity,” Nature 623 (2023): 1009-1016.

[156]

A. Fromain, A. Van de Walle, G. Curé, et al., “Biomineralization of Magnetic Nanoparticles in Stem Cells,” Nanoscale 15 (2023): 10097-10109.

[157]

J. D. P. Serna, W. Antonialli-Junior, D. S. Antonio, et al., “Magnetic Nanoparticles in the Body Parts of Polistes Versicolor and Polybia Paulista Wasps are Biomineralized: Evidence From Magnetization Measurements and Ferromagnetic Resonance Spectroscopy,” Biometals 36 (2023): 877-886.

[158]

L. Gandarias, E. M. Jefremovas, D. Gandia, et al., “Incorporation of Tb and Gd Improves the Diagnostic Functionality of Magnetotactic Bacteria,” Materials Today Bio 20 (2023): 100680.

[159]

S. Pragnère, J.-C. Auregan, C. Bosser, et al., “Human Dentin Characteristics of Patients With Osteogenesis imperfecta: Insights Into Collagen-Based Biomaterials,” Acta Biomaterialia 119 (2021): 259.

[160]

A. Salhotra, H. N. Shah, B. Levi, and M. T. Longaker, “Mechanisms of Bone Development and Repair,” Nature Reviews Molecular Cell Biology 21 (2020): 696.

[161]

G. Montes-Hernandez and F. Renard, “Nucleation of Brushite and Hydroxyapatite From Amorphous Calcium Phosphate Phases Revealed by Dynamic In Situ Raman Spectroscopy,” Journal of Physical Chemistry C 124 (2020): 15302.

[162]

L. M. Gordon, M. J. Cohen, K. W. MacRenaris, J. D. Pasteris, T. Seda, and D. Joester, “Amorphous Intergranular Phases Control the Properties of Rodent Tooth Enamel,” Science 347 (2015): 746.

[163]

H. Liu, Z. Guo, L. Mo, et al., “Quantitative Label-Free Optical Technique to Analyze the Ultrastructure Changes and Spatiotemporal Relationship of Enamel Induced by Msx2 Deletion,” Journal of Biophotonics 14 (2021): e202100165.

[164]

A. Arnold, E. Dennison, C. S. Kovacs, et al., “Hormonal Regulation of Biomineralization,” Nature Reviews Endocrinology 17 (2021): 261.

[165]

K. Benzerara, R. Bolzoni, C. Monteil, et al., “The Gammaproteobacterium Achromatium Forms Intracellular Amorphous Calcium Carbonate and Not (Crystalline) Calcite,” Geobiology 19 (2021): 199.

[166]

M. Andrés, F. Sivera, and E. Pascual, “Progresses in the Imaging of Calcium Pyrophosphate Crystal Disease,” Current Opinion in Rheumatology 32 (2020): 140.

[167]

J. Zhang, L. Wang, and C. V. Putnis, “Underlying Role of Brushite in Pathological Mineralization of Hydroxyapatite,” Journal of Physical Chemistry B 123 (2019): 2874.

[168]

J. Du, Y. Su, C. Qian, et al., “Raman-guided Subcellular Pharmaco-Metabolomics for Metastatic Melanoma Cells,” Nature Communications 11 (2020): 4830.

[169]

M. Kobielarz, M. Kozuń, M. Gąsior-Głogowska, and A. Chwiłkowska, “Mechanical and Structural Properties of Different Types of human Aortic Atherosclerotic Plaques,” Journal of the Mechanical Behavior of Biomedical Materials 109 (2020): 103837.

[170]

R. Vanna, C. Morasso, B. Marcinnò, et al., “Raman Spectroscopy Reveals That Biochemical Composition of Breast Microcalcifications Correlates With Histopathologic Features,” Cancer Research 80, no. 8 (2020): 1762-1772.

[171]

H. Liu, H. Jiang, X. Liu, and X. Wang, “Tunable Nanomaterials of Intracellular Crystallization for In Situ Biolabeling and Biomedical Imaging,” Chemical & Biomedical Imaging 1 (2023): 767.

[172]

X. Yang, S. Gao, B. Yang, et al., “Bioinspired Tumor-Targeting and Biomarker-Activatable Cell-Material Interfacing System Enhances Osteosarcoma Treatment via Biomineralization,” Advanced Science (Weinheim) 10 (2023): e2302272.

[173]

Y. Yang, Y. Yang, Z. Liu, et al., “Microcalcification-Based Tumor Malignancy Evaluation in Fresh Breast Biopsies With Hyperspectral Stimulated Raman Scattering,” Analytical Chemistry 93 (2021): 6223.

[174]

G. I. Petrov, R. Arora, and V. V. Yakovlev, “Coherent Anti-Stokes Raman Scattering Imaging of Microcalcifications Associated With Breast Cancer,” Analyst 146 (2021): 1253.

[175]

W. He, Q. Wang, X. Tian, and G. Pan, “Recapitulating Dynamic ECM Ligand Presentation at Biomaterial Interfaces: Molecular Strategies And Biomedical Prospects,” Exploration 2 (2022): 20210093.

[176]

X.-Q. Zhou, P. Wang, V. Ramu, et al., “In Vivo Metallophilic Self-Assembly of a Light-Activated Anticancer Drug,” Nature Chemistry 15 (2023): 980.

[177]

X. Zhang, Q. Zhao, J. Yang, T. Wang, F. Chen, and K. Zhang, “Tumor Microenvironment-Triggered Intratumoral In-Situ Biosynthesis of inorganic Nanomaterials for Precise Tumor Diagnostics,” Coordination Chemistry Reviews 484 (2023): 215115.

[178]

P. Calero, D. C. Volke, P. T. Lowe, C. H. Gotfredsen, D. O'Hagan, and P. I. Nikel, “A Fluoride-Responsive Genetic Circuit Enables In Vivo Biofluorination in Engineered Pseudomonas Putida,” Nature Communications 11 (2020): 5045.

[179]

W. A. El-Said, H.-Y. Cho, C.-H. Yea, and J.-W. Choi, “Synthesis of Metal Nanoparticles Inside Living Human Cells Based on the Intracellular Formation Process,” Advanced Materials 26 (2014): 910.

[180]

X. Zeng, J. Sun, S. Li, et al., “Blood-Triggered Generation of Platinum Nanoparticle Functions as an Anti-Cancer Agent,” Nature Communications 11 (2020): 567.

[181]

S. J. Parkinson, S. Tungsirisurp, C. Joshi, et al., “Polymer Nanoparticles Pass the Plant Interface,” Nature Communications 13 (2022): 7385.

[182]

B. Mayzel, L. Aram, N. Varsano, S. G. Wolf, and A. Gal, “Structural Evidence for Extracellular Silica Formation by Diatoms,” Nature Communications 12 (2021): 4639.

[183]

S. Suharta, A. Barlian, A. C. Hidajah, et al., “Plant-Derived Exosome-Like Nanoparticles: A Concise Review on Its Extraction Methods, Content, Bioactivities, and Potential as Functional Food Ingredient,” Journal of Food Science 86 (2021): 2838.

[184]

A. Juárez-Maldonado, H. Ortega-Ortíz, A. B. Morales-Díaz, et al., “Nanoparticles and Nanomaterials as Plant Biostimulants,” International Journal of Molecular Sciences 20 (2019): 162.

[185]

N. Poulsen, M. Sumper, and N. Kröger, “Biosilica Formation in Diatoms: Characterization of Native Silaffin-2 and Its Role in Silica Morphogenesis,” Proceedings National Academy of Science of the United States of America 100 (2003): 12075.

[186]

F. Rashid, I. Pervaiz, H. Malik, Z. Kanwal, M. Rafique, and S. S. A. Gillani, “Investigations on Synergistic and Antioxidant Actions of Medicinal Plant-Based Biosynthesis of Zinc Oxide Nanoparticles Against E. coli and K. pneumonia Bacteria,” Combinatorial Chemistry & High Throughput Screening 25, no. 7 (2022): 1200.

[187]

A. Roy, “Hairy Root Culture an Alternative for Bioactive Compound Production From Medicinal Plants,” Current Pharmaceutical Biotechnology 22 (2021): 136.

[188]

D. Letchumanan, S. P. M. Sok, S. Ibrahim, N. H. Nagoor, and N. M. Arshad, “Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity,” Biomolecules 11 (2021): 564.

[189]

M. J. Jacinto, V. C. Silva, D. M. S. Valladão, and R. S. Souto, “Biosynthesis of Magnetic Iron Oxide Nanoparticles: A Review,” Biotechnology Letters 43 (2021): 1-12.

[190]

H. Liu, Z. Liu, X. Liu, et al., “Facile Synthesis of Tannic Acid Modified NbTe2 Nanosheets for Effective Photothermal Ablation of Bacterial Pathogens,” Journal of Colloid and Interface Science 41 (2021): 100383.

[191]

M. Zhou, C. Zhao, Y. Li, et al., “Facile Synthesis of Metal-Phenolic-Coated Gold Nanocuboids for Surface-Enhanced Raman Scattering,” Applied Optics 59 (2020): 6124.

[192]

J. O. Adeyemi, A. O. Oriola, D. C. Onwudiwe, and A. O. Oyedeji, “Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications,” Biomolecules 12 (2022): 627.

[193]

M. Nasrollahzadeh, M. Sajjadi, J. Dadashi, and H. Ghafuri, “Pd-Based Nanoparticles: Plant-Assisted Biosynthesis, Characterization, Mechanism, Stability, Catalytic and Antimicrobial Activities,” Advances in Colloid and Interface Science 276 (2020): 102103.

[194]

X. Zhu, Z. Xu, H. Tang, et al. Angewandte Chemie, International Edition (2023): e202308437.

[195]

P. Shi, Y. Xu, Z. Zhu, et al., “Manganese Mineralization of Pathogenic Viruses as a Universal Vaccine Platform,” Advanced Science 10 (2023): 2303615.

[196]

Y. Ma, Z. Wu, and N. F. Steinmetz, “In Vitro and Ex Planta Gold-Bonded and Gold-Mineralized Tobacco Mosaic Virus,” Langmuir 39 (2023): 11238-11244.

[197]

W. Ban, M. Sun, H. Huang, et al., “Engineered Bacterial Outer Membrane Vesicles Encapsulating Oncolytic Adenoviruses Enhance the Efficacy of Cancer Virotherapy by Augmenting Tumor Cell Autophagy,” Nature Communications 14 (2023): 2933.

[198]

S.-Y. Lee, J.-S. Lim, and M. T. Harris, “Synthesis and Application of Virus-Based Hybrid Nanomaterials,” Biotechnology and Bioengineering 109 (2012): 16.

[199]

I. Abu-Baker and A. S. Blum, “Alcohol-Perturbed Self-Assembly of the Tobacco Mosaic Virus Coat Protein,” Beilstein Journal of Nanotechnology 13 (2022): 355.

[200]

C. M. Da Silva, N. Ortiz-Peña, L. Boubekeur-Lecaque, et al., “In Situ Insights Into the Nucleation and Growth Mechanisms of Gold Nanoparticles on Tobacco Mosaic Virus,” Nano Letters 23 (2023): 5281.

[201]

H.-Y. Liu, Z.-G. Wang, S.-L. Liu, and D.-W. Pang, “Single-Virus Tracking With Quantum Dots in Live Cells,” Nature Protocols 18 (2023): 458.

[202]

G. Wu, Z. Liu, C. Mu, et al., “Enhanced Proliferation of Visualizable Mesenchymal Stem Cell-Platelet Hybrid Cell for Versatile Intracerebral Hemorrhage Treatment,” ACS Nano 17 (2023): 7352.

[203]

J. Ao, A.-X. Ma, J. Li, et al., “Real-Time Dissection of the Exosome Pathway for Influenza Virus Infection,” ACS Nano 18 (2024): 4507.

[204]

H.-Y. Liu, Y. Hu, C. Yu, Z.-G. Wang, S.-L. Liu, and D.-W. Pang, “Quantitative Single-Virus Tracking for Revealing the Dynamics of SARS-CoV-2 Fusion With Plasma Membrane,” Science Bulletin (Beijing) 69 (2024): 502.

[205]

Y. Hu, Z.-G. Wang, H. Fu, et al., “In-Situ Synthesis of Quantum Dots in the Nucleus Of Live Cells,” National Science Review 11 (2024): nwae021.

[206]

X. Dai, Y. Xie, W. Feng, and Y. Chen, “Nanomedicine-Enabled Chemical Regulation of Reactive X Species for Versatile Disease Treatments,” Angewandte Chemie, International Edition 62 (2023): e202309160.

[207]

L. Trotsiuk, A. Muravitskaya, A. Movsesyan, et al., “Nonclassical Mechanism of Metal-Enhanced Photoluminescence of Quantum Dots,” Nano Letters 23 (2023): 8524-8531.

[208]

Q. Zhang, R. Wang, B. Feng, X. Zhong, and K. Ostrikov, “Photoluminescence Mechanism of Carbon Dots: Triggering High-Color-Purity Red Fluorescence Emission Through Edge Amino Protonation,” Nature Communications 12 (2021): 6856.

[209]

Z. Liu, L. Luo, and R. Jin, “Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters,” Advanced Materials 36 (2024): e2309073.

[210]

J. Plou, M. Charconnet, I. García, J. Calvo, and L. M. Liz-Marzán, “Preventing Memory Effects in Surface-Enhanced Raman Scattering Substrates by Polymer Coating and Laser-Activated Deprotection,” ACS Nano 15 (2021): 8984.

[211]

H. Dai, Q. Fan, and C. Wang, “Recent Applications of Immunomodulatory Biomaterials for Disease Immunotherapy,” Exploration 2 (2022): 20210157.

[212]

N. Mahmoudi and M. Mahmoudi, “Effect of Cholesterol on Nanomedicine Biomolecular Corona,” Nature Nanotechnology 18 (2023): 974-976.

[213]

M. Mahmoudi, M. P. Landry, A. Moore, and R. Coreas, “The Protein Corona From Nanomedicine to Environmental Science,” Nature Reviews Materials 8 (2023): 422.

[214]

J. Jiang, B. Cao, Y. Chen, et al., “Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy,” Angewandte Chemie, International Edition 61 (2022): e202201103.

[215]

H. Liu, K. Huang, H. Zhang, X. Liu, H. Jiang, and X. Wang, “Photo-Driven In Situ Solidification of Whole Cells Through Inhibition of Trogocytosis for Immunotherapy,” Research 7 (2024): 0318.

[216]

D. Bazin, M. Daudon, V. Frochot, J.-P. Haymann, and E. Letavernier, “Foreword to Microcrystalline Pathologies: Combining Clinical Activity and Fundamental Research at the Nanoscale,” Comptes Rendus Chimie 25 (2022): 11.

[217]

D. Bazin, “Active Site Engineering in Nanostructured Materials for Energy, Health and Environment,” Comptes Rendus Chimie 25, no. S3 (2022): 165.

[218]

J. Guo, J. O. Agola, R. Serda, et al., “Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components,” ACS Nano 14 (2020): 7847.

[219]

J. Cao, O. T. Zaremba, Q. Lei, E. Ploetz, S. Wuttke, and W. Zhu, “Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications,” ACS Nano 15 (2021): 3900.

[220]

W. Yang, X. Wu, Y. Dou, et al., “A Human Endogenous Protein Exerts Multi-Role Biomimetic Chemistry in Synthesis of Paramagnetic Gold Nanostructures for Tumor Bimodal Imaging,” Biomaterials 161 (2018): 256.

[221]

W. Yang, C. Xiang, Y. Xu, et al., “Albumin-Constrained Large-Scale Synthesis of Renal Clearable Ferrous Sulfide Quantum Dots for T1-Weighted MR Imaging and Phototheranostics of Tumors,” Biomaterials 255 (2020): 120186.

[222]

M. Li, Y. Wang, T. Li, et al., “Albumin-Templated Platinum (II) Sulfide Nanodots for Size-Dependent Cancer Theranostics,” Acta Biomaterialia 155 (2022): 564-574.

[223]

H. Liu, Y. Chen, L. Mo, et al., ““Afterglow” Photodynamic Therapy Based on Carbon Dots Embedded Silica Nanoparticles for Nondestructive Teeth Whitening,” ACS Nano 17 (2023): 21195.

[224]

A. S. Schwartz-Duval, C. J. Konopka, P. Moitra, et al., “Intratumoral Generation of Photothermal Gold Nanoparticles Through a Vectorized Biomineralization of Ionic Gold,” Nature Communications 11 (2020): 4530.

[225]

C. Peng, M. Yu, and J. Zheng, “In Situ Ligand-Directed Growth of Gold Nanoparticles in Biological Tissues,” Nano Letters 20 (2020): 1378.

[226]

W. Qin, C. Wang, Y. Ma, et al., “Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications,” Advanced Materials 32 (2020): 1907833.

[227]

J. Yang, B. Yang, and J. Shi Angewandte Chemie, International Edition (2023): e202310061.

[228]

Z.-Y. Han, Q.-W. Chen, D.-W. Zheng, et al., “Inhalable Capsular Polysaccharide-Camouflaged Gallium-Polyphenol Nanoparticles Enhance Lung Cancer Chemotherapy by Depleting Local Lung Microbiota,” Advanced Materials 35 (2023): 2302551.

[229]

G. Wei, W. Liu, Y. Zhang, et al., “Nanozyme-Enhanced Probiotic Spores Regulate the Intestinal Microenvironment for Targeted Acute Gastroenteritis Therapy,” Nano Letters 24 (2024): 2289.

[230]

A. S. Schwartz-Duval, Y. Mackeyev, I. Mahmud, et al., “Intratumoral Biosynthesis of Gold Nanoclusters by Pancreatic Cancer to Overcome Delivery Barriers to Radiosensitization,” ACS Nano 18 (2024): 1865-1881.

[231]

J. Wang, J. Li, M. Li, et al., “Nanolab in a Cell: Crystallization-Induced In Situ Self-Assembly for Cancer Theranostic Amplification,” Journal of the American Chemical Society 144 (2022): 14388-14395.

[232]

X. Ouyang, N. Jia, J. Luo, et al., “DNA Nanoribbon-Assisted Intracellular Biosynthesis of Fluorescent Gold Nanoclusters for Cancer Cell Imaging,” JACS Au 3 (2023): 2566.

[233]

A. Gurba, P. Taciak, M. Sacharczuk, I. Młynarczuk-Biały, M. Bujalska-Zadrożny, and J. Fichna, “Gold (III) Derivatives in Colon Cancer Treatment,” International Journal of Molecular Sciences 23 (2022): 724.

[234]

A. L. West, N. M. Schaeublin, M. H. Griep, et al., “In situ Synthesis of Fluorescent Gold Nanoclusters by Nontumorigenic Microglial Cells,” ACS Appl Mater Interfaces 8 (2016): 21221.

[235]

M. J. Hajipour, R. Safavi-Sohi, S. Sharifi, et al., “An Overview of Nanoparticle Protein Corona Literature,” Small 19 (2023): e2301838.

[236]

A. Balfourier, N. Luciani, G. Wang, et al., “Unexpected Intracellular Biodegradation and Recrystallization of Gold Nanoparticles,” Proceedings National Academy of Science of the United States of America 117 (2020): 103.

[237]

J. S. V. Anshup, C. Subramaniam, R. R. Kumar, et al., “Growth of Gold Nanoparticles in Human Cells,” Langmuir 21 (2005): 11562.

[238]

D. Athanasiadou, N. Meshry, N. G. Monteiro, et al., “DNA Hydrogels for Bone Regeneration,” Proceedings of the National Academy of Sciences of the United States of America 120 (2023): e2220565120.

[239]

M.-c. Wan, K. Jiao, and Y.-n. Zhu, et al. Nature Biomedical Engineering 8 (2024): 1177-1190, https://doi.org/10.1038/s41551-024-01186-7.

[240]

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, et al., “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophysical Journal 102 (2012): 1988.

[241]

A. Y. F. You, M. S. Bergholt, J.-P. St-Pierre, et al., “Raman Spectroscopy Imaging Reveals Interplay Between Atherosclerosis and Medial Calcification in the Human Aorta,” Science Advances 3 (2017): e1701156.

[242]

B. Du, Y. Chong, X. Jiang, et al., “Hyperfluorescence Imaging of Kidney Cancer Enabled by Renal Secretion Pathway Dependent Efflux Transport,” Angewandte Chemie, International Edition 60 (2021): 351.

[243]

S. Tang, Y. Huang, and J. Zheng, “Salivary Excretion of Renal-Clearable Silver Nanoparticles,” Angewandte Chemie, International Edition 59 (2020): 19894.

[244]

M. Yu, J. Xu, and J. Zheng, “Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic,” Angewandte Chemie, International Edition 58 (2019): 4112.

[245]

X. Qin, C. Yang, H. Xu, et al., “Cell-Derived Biogenetic Gold Nanoparticles for Sensitizing Radiotherapy and Boosting Immune Response Against Cancer,” Small 17 (2021): e2103984.

[246]

V. Rück, N. K. Mishra, K. K. Sørensen, et al., “Bioconjugation of a Near-Infrared DNA-Stabilized Silver Nanocluster to Peptides and Human Insulin by Copper-Free Click Chemistry,” Journal of the American Chemical Society 145 (2023): 16771.

[247]

A.-M. Hada, A.-M. Craciun, M. Focsan, A. Vulpoi, E.-L. Borcan, and S. Astilean, “Glutathione-Capped Gold Nanoclusters as Near-Infrared-Emitting Efficient Contrast Agents for Confocal Fluorescence Imaging of Tissue-Mimicking Phantoms,” Mikrochimica Acta 189 (2022): 337.

[248]

Y. Zhan, P. Yu, X. Wang, Y. Xie, H. Zhang, and F. Zhang, “Activatable NIR-II Lanthanides-Polymetallic Oxomolybdate Hybrid Nanosensors for Monitoring Chemotherapy Induced Enteritis,” Advanced Functional Materials 33 (2023): 2301683.

[249]

X. Zhao, F. Zhang, and Z. Lei, “The Pursuit of Polymethine Fluorophores With NIR-II Emission and High Brightness for In Vivo Applications,” Chemical Science 13 (2022): 11280.

[250]

D. Yin, C. Yao, Y. Chen, et al., “HClO-Activated Near-Infrared Fluorogenic Aza-BODIPY-Bisferrocene Triad With High Turn-on Ratio for In Vivo Biosensing,” Advanced Healthcare Materials 11 (2022): 2201139.

[251]

L.-J. Tian, Y. Min, W.-W. Li, et al., “Substrate Metabolism-Driven Assembly of High-Quality CdSx Se1-x Quantum Dots in Escherichia coli: Molecular Mechanisms and Bioimaging Application,” ACS Nano 13 (2019): 5841.

[252]

S. P. Ravindranath, K. L. Henne, D. K. Thompson, and J. Irudayaraj, “Raman Chemical Imaging of Chromate Reduction Sites in a Single Bacterium Using Intracellularly Grown Gold Nanoislands,” ACS Nano 5 (2011): 4729.

[253]

X. Li, X. Mao, W. Xie, B. Liu, and F. Chen, “Intracellular Biosynthesis of Gold Nanoparticles for Monitoring Microalgal Biomass Via Surface-Enhanced Raman Spectroscopy,” ACS Sustainable Chemistry & Enginering 10 (2022): 4872.

[254]

D. Drescher, H. Traub, T. Büchner, N. Jakubowski, and J. Kneipp, “Properties of In Situ Generated Gold Nanoparticles in the Cellular Context,” Nanoscale 9 (2017): 11647.

[255]

H. Liu, H. Jiang, X. Liu, and X. Wang, “Physicochemical Understanding Of Biomineralization by Molecular Vibrational Spectroscopy: From Mechanism to Nature,” Exploration 3 (2023): 20230033.

[256]

D. Drescher, T. Büchner, P. Schrade, et al., “Influence of Nuclear Localization Sequences on the Intracellular Fate of Gold Nanoparticles,” ACS Nano 15 (2021): 14838.

[257]

H. Liu, X. Liu, L. Mo, et al., “Progress in the Development and Application of Transitional Technology of Surface-Enhanced Raman Spectroscopy,” Journal of Colloid and Interface Science 43 (2021): 100443.

[258]

Y. Feng, Z. Kochovski, C. Arenz, Y. Lu, and J. Kneipp, “Structure and Interaction of Ceramide-Containing Liposomes With Gold Nanoparticles as Characterized by SERS and Cryo-EM,” Journal of Physical Chemistry C 126 (2022): 13237.

[259]

V. Živanović, A. Milewska, K. Leosson, and J. Kneipp, “Molecular Structure and Interactions of Lipids in the Outer Membrane of Living Cells Based on Surface-Enhanced Raman Scattering and Liposome Models,” Analytical Chemistry 93 (2021): 10106.

[260]

A. J. Wilson, D. Devasia, and P. K. Jain Chemical Society Reviews 49 (2020): 6087-6112, https://doi.org/10.1039/d0cs00338g.

[261]

W. R. Algar, M. Massey, K. Rees, et al., “Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging,” Chemical Reviews 121, no. 15 (2021): 9243.

[262]

H. Liu, L. Mo, H. Chen, et al., “Carbon Dots With Intrinsic Bioactivities for Photothermal Optical Coherence Tomography, Tumor-Specific Therapy and Postoperative Wound Management,” Advanced Healthcare Materials 11 (2022): 2101448.

[263]

Y. Hu, N. Wu, P. Tang, T. Li, and Z. Tang, “Photothermal Modulation Speckle Optical Coherence Tomography of Microvascular Nondestructive Imaging in Vivo With High Effective Resolution,” Optics Letters 48 (2023): 1878.

[264]

M. H. Salimi, M. Villiger, and N. Tabatabaei, “Three-Dimensional Opto-Thermo-Mechanical Model for Predicting Photo-Thermal Optical Coherence Tomography Responses in Multilayer Geometries,” Biomedical Optics Express 13 (2022): 3416.

[265]

N. Pellens, N. Doppelhammer, S. Radhakrishnan, et al., “Nucleation of Porous Crystals From Ion-Paired Prenucleation Clusters,” Chemistry of Materials 34 (2022): 7139.

[266]

N. Lee, H. Kim, S. H. Choi, et al., “Magnetosome-Like Ferrimagnetic Iron Oxide Nanocubes for Highly Sensitive MRI of Single Cells and Transplanted Pancreatic Islets,” Proceedings of the National Academy of Sciences of the United States of America 108 (2011): 2662.

[267]

E. Erdal, M. Demirbilek, Y. Yeh, et al., “A Comparative Study of Receptor-Targeted Magnetosome and HSA-Coated Iron Oxide Nanoparticles as MRI Contrast-Enhancing Agent in Animal Cancer Model,” Applied Biochemistry and Biotechnology 185 (2018): 91.

[268]

Z. Xiang, X. Yang, J. Xu, et al., “Tumor Detection Using Magnetosome Nanoparticles Functionalized With a Newly Screened EGFR/HER2 Targeting Peptide,” Biomaterials 115 (2017): 53.

[269]

M. Boucher, F. Geffroy, S. Prévéral, et al., “Genetically Tailored Magnetosomes Used as MRI Probe for Molecular Imaging of Brain Tumor,” Biomaterials 121 (2017): 167.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/