Sputum Microbiota Compositions Correlate With Metabolome and Clinical Outcomes of COPD-Bronchiectasis Association: A Prospective Cohort Study

Zhen-feng He , Xiao-xian Zhang , Cui-xia Pan , Xin-zhu Yi , Yan Huang , Chun-lan Chen , Shan-shan Zha , Lai-jian Cen , Han-qin Cai , Lei Yang , Jia-qi Gao , Hui-min Li , Zhen-hong Lin , Sheng-zhu Lin , Zhang Wang , Nan-shan Zhong , Wei-jie Guan

Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240149

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240149 DOI: 10.1002/EXP.20240149
RESEARCH ARTICLE

Sputum Microbiota Compositions Correlate With Metabolome and Clinical Outcomes of COPD-Bronchiectasis Association: A Prospective Cohort Study

Author information +
History +
PDF

Abstract

Bronchiectasis frequently co-exists with chronic obstructive pulmonary disease (COPD-bronchiectasis association [CBA]). We compared the microbiota and metabolome of bronchiectasis with (BO) and without airflow obstruction (BNO), COPD, and CBA. We determined how microbiota compositions correlated with clinical characteristics and exacerbations of CBA. We prospectively recruited outpatients with BNO (n = 104), BO (n = 51), COPD (n = 33), and CBA (n = 70). We sampled at stead-state and exacerbation, and profiled sputum microbiota via 16S rRNA sequencing and metabolome via liquid chromatography/mass spectrometry. Sputum microbiota and metabolome profiles of CBA separated from COPD (P < 0.05) but not bronchiectasis, partly driven by Proteobacteria enrichment in CBA. An increasing microbial interaction but not microbiota compositions were identified at exacerbation. Pseudomonadaceae-dominant CBA yielded lower Shannon-Wiener diversity index (P < 0.001), greater bronchiectasis severity (P < 0.05) and higher future exacerbation risk (HR 2.46, 95% CI: 1.34-4.52, P < 0.001) than other genera-dominant CBA. We found a clear metabolite discrimination between CBA and COPD. Most of up-regulated metabolites identified in CBA, were amino acids metabolites, which indicated that the accumulation of amino acids metabolites was related to the alteration of airway microbiota. To conclude, airway structural changes, but not airflow limitation, correlate more profoundly with microbiota and metabolome profiles (e.g. partly via Pseudomonadaceae-amino acids metabolism links), shaping clinical outcomes of CBA.

Keywords

Bronchiectasis / COPD / COPD-Bronchiectasis association / exacerbation / metabolome / microbiota

Cite this article

Download citation ▾
Zhen-feng He, Xiao-xian Zhang, Cui-xia Pan, Xin-zhu Yi, Yan Huang, Chun-lan Chen, Shan-shan Zha, Lai-jian Cen, Han-qin Cai, Lei Yang, Jia-qi Gao, Hui-min Li, Zhen-hong Lin, Sheng-zhu Lin, Zhang Wang, Nan-shan Zhong, Wei-jie Guan. Sputum Microbiota Compositions Correlate With Metabolome and Clinical Outcomes of COPD-Bronchiectasis Association: A Prospective Cohort Study. Exploration, 2025, 5(4): e20240149 DOI:10.1002/EXP.20240149

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Global, Regional, and National Age-Sex Specific Mortality for 264 Causes of Death, 1980-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390: 1151-1210.

[2]

J. K. Quint, E. R. C. Millett, M. Joshi, et al., “Changes in the Incidence, Prevalence and Mortality of Bronchiectasis in the UK From 2004 to 2013: A Population-Based Cohort Study,” European Respiratory Journal 47, no. 1 (2015): 186-193.

[3]

J. Feng, L. Sun, X. Sun, et al., “Increasing Prevalence and Burden of Bronchiectasis in Urban Chinese Adults, 2013-2017: A Nationwide Population-Based Cohort Study,” Respiratory Research 23, no. 1 (2022): 111.

[4]

GOLD: Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease 2023 Report, accessed November 15, 2022, https://goldcopd.org/gold-reports/.

[5]

A. T. Hill, A. L. Sullivan, J. D. Chalmers, et al., “British Thoracic Society Guideline for Bronchiectasis in Adults,” Thorax 74, no. (Suppl 1) 2018: 1-69.

[6]

J. R. Hurst, J. S. Elborn, and A. D. Soyza, “COPD-bronchiectasis Overlap Syndrome,” European Respiratory Journal 45, no. 2 (2015): 310-313.

[7]

L. Traversi, M. Miravitlles, M. A. Martinez-Garcia, et al., “ROSE: Radiology, Obstruction, Symptoms and Exposure—A Delphi Consensus Definition of the Association of COPD and Bronchiectasis by the EMBARC Airways Working Group,” ERJ Open Research 7, no. 4 (2021): 00399-02021.

[8]

M. Á. Martínez-García, D. de la Rosa-Carrillo, J. J. Soler-Cataluña, et al., “Bronchial Infection and Temporal Evolution of Bronchiectasis in Patients with Chronic Obstructive Pulmonary Disease,” Clinical Infectious Diseases 72, no. 3 (2021): 403-410.

[9]

M. J. Mcdonnell, S. Aliberti, P. C. Goeminne, et al., “Comorbidities and the Risk of Mortality in Patients With Bronchiectasis: An International Multicentre Cohort Study,” Lancet Respiratory Medicine 4, no. 12 (2016): 969-979.

[10]

A. J. Dicker, M. Lonergan, H. R. Keir, et al., “The Sputum Microbiome and Clinical Outcomes in Patients With Bronchiectasis: A Prospective Observational Study,” Lancet Respiratory Medicine 9, no. 8 (2021): 885-896.

[11]

A. J. Dicker, J. T. J. Huang, M. Lonergan, et al., “The Sputum Microbiome, Airway Inflammation, and Mortality in Chronic Obstructive Pulmonary Disease,” Journal of Allergy and Clinical Immunology 147, no. 1 (2021): 158-167.

[12]

Z. Wang, N. Locantore, K. Haldar, et al., “Inflammatory Endotype-Associated Airway Microbiome in Chronic Obstructive Pulmonary Disease Clinical Stability and Exacerbations: A Multicohort Longitudinal Analysis,” American Journal of Respiratory and Critical Care Medicine 203, no. 12 (2021): 1488-1502.

[13]

A. T. Hill, C. S. Haworth, S. Aliberti, et al., “Pulmonary Exacerbation in Adults With Bronchiectasis: A Consensus Definition for Clinical Research,” European Respiratory Journal 49, no. 6 (2017): 1700051.

[14]

J. A. Wedzichaand T. A. Seemungal, “COPD Exacerbations: Defining Their Cause and Prevention,” Lancet 370, no. 9589 (2007): 786-796.

[15]

P. C. Dorrestein, S. K. Mazmanian, and R. Knight, “Finding the Missing Links Among Metabolites, Microbes, and the Host,” Immunity 40, no. 6 (2014): 824-832.

[16]

I. H. Mchardy, M. Goudarzi, M. Tong, et al., “Integrative Analysis of the Microbiome and Metabolome of the Human Intestinal Mucosal Surface Reveals Exquisite Inter-relationships,” Microbiome 1, no. 1 (2013): 17.

[17]

GOLD: Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease 2017 Report, accessed November 16, 2016, https://goldcopd.org/gold-reports/.

[18]

D. P. Naidich, D. I. Mccauley, N. F. Khouri, et al., “Computed Tomography of Bronchiectasis,” Journal of Computer Assisted Tomography 6, no. 3 (1982): 437-444.

[19]

P. W. Jones, G. Harding, P. Berry, et al., “Development and First Validation of the COPD Assessment Test,” European Respiratory Journal 34, no. 3 (2009): 648-654.

[20]

D. B. Reiff, A. U. Wells, D. H. Carr, et al., “CT Findings in Bronchiectasis: Limited Value in Distinguishing Between Idiopathic and Specific Types,” AJR American Journal of Roentgenology 165, no. 2 (1995): 261-267.

[21]

E. Bolyen, J. R. Rideout, M. R. Dillon, et al., “Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2,” Nature Biotechnology 37, no. 8 (2019): 852-857.

[22]

B. J. Callahan, P. J. Mcmurdie, M. J. Rosen, et al., “DADA2: High-Resolution Sample Inference From Illumina Amplicon Data,” Nature Methods 13, no. 7 (2016): 581-583.

[23]

J. Friedman and E. J. Alm, “Inferring Correlation Networks From Genomic Survey Data,” Plos Computational Biology 8, no. 9 (2012): e1002687.

[24]

G. M. Douglas, V. J. Maffei, J. R. Zaneveld, et al., “PICRUSt2 for Prediction of Metagenome Functions,” Nature Biotechnology 38, no. 6 (2020): 685-688.

[25]

M. Kanehisaand S Goto, “KEGG: Kyoto encyclopedia of Genes and Genomes,” Nucleic Acids Resarch 28, no. 1 (2000): 27-30.

[26]

Y. Gu, Y. Chen, Q. Li, et al., “Metabolome Profiling by Widely-Targeted Metabolomics and Biomarker Panel Selection Using Machine-Learning for Patients in Different Stages of Chronic Kidney Disease,” Chinese Chemical Letters 35, no. 11 (2024): 109627.

[27]

F. Lyu, F. Han, C. Ge, et al., “OmicStudio: A Composable Bioinformatics Cloud Platform With Real-Time Feedback that Can Generate High-Quality Graphs for Publication,” iMeta 2, no. 1 (2023): e85.

[28]

J. D. Chalmers, P. Goeminne, S. Aliberti, et al., “The Bronchiectasis Severity Index. An International Derivation and Validation Study,” American Journal of Respiratory and Critical Care Medicine 189, no. 5 (2014): 576-585.

[29]

K. F. Budden, S. D. Shukla, and S. F. Rehman, et al., “Functional Effects of the Microbiota in Chronic Respiratory Disease,” The Lancet Respiratory Medicine 2019, 7(10): 907-920.

[30]

Z. Yan, B. Chen, Y. Yang, et al., “Multi-Omics Analyses of Airway Host-Microbe Interactions in Chronic Obstructive Pulmonary Disease Identify Potential Therapeutic Interventions,” Nature Microbiology 7, no. 9 (2022): 1361-1375.

[31]

X. Yi, J. Gao, and Z. Wang, “The human Lung Microbiome—A Hidden Link Betweenmicrobes and human Health and Diseases,” iMeta 1, no. 3 (2022): e33.

[32]

W. J. Guan, J. J. Yuan, H. M. Li, et al., “Altered Community Compositions of Proteobacteria in Adults With Bronchiectasis,” International Journal of Tuberculosis and Lung Disease 13 (2018): 2173-2182.

[33]

Z. Wang, Y. Yang, Z. Yan, et al., “Multi-omic Meta-analysis Identifies Functional Signatures of Airway Microbiome in Chronic Obstructive Pulmonary Disease,” The ISME Journal 14, no. 11 (2020): 2748-2765.

[34]

G. B. Rogers, K. D. Bruce, M. L. Martin, et al., “The Effect of Long-Term Macrolide Treatment on Respiratory Microbiota Composition in Non-Cystic Fibrosis Bronchiectasis: An Analysis From the Randomised, Double-Blind, Placebo-Controlled BLESS Trial,” Lancet Respir Med 2, no. 12 (2014): 988-996.

[35]

S. Finch, A. Shoemark, A. J. Dicker, et al., “Pregnancy Zone Protein is Associated With Airway Infection, Neutrophil Extracellular Trap Formation, and Disease Severity in Bronchiectasis,” American Journal of Respiratory and Critical Care Medicine 200, no. 8 (2019): 992-1001.

[36]

D. Araújo, M. Shteinberg, S. Aliberti, et al., “The Independent Contribution ofPseudomonas aeruginosa Infection to Long-Term Clinical Outcomes in Bronchiectasis,” European Respiratory Journal 51, no. 2 (2018): 1701953.

[37]

J. T. J. Huang, E. Cant, H. R. Keir, et al., “Endotyping Chronic Obstructive Pulmonary Disease, Bronchiectasis, and the “Chronic Obstructive Pulmonary Disease-Bronchiectasis Association”,” American Journal of Respiratory and Critical Care Medicine 206, no. 4 (2022): 417-426.

[38]

K. O'Neill, G. G. Einarsson, S. Rowan, et al., “Composition of Airway Bacterial Community Correlates With Chest HRCT in Adults With Bronchiectasis,” Respirology 25, no. 1 (2019): 64-70.

[39]

M. Mac Aogáin, J. K. Narayana, P. Y. Tiew, et al., “Integrative Microbiomics in Bronchiectasis Exacerbations,” Nature Medicine 27, no. 4 (2021): 688-699.

[40]

R. Dhar, S. Singh, D. Talwar, et al., “Clinical Outcomes of Bronchiectasis in India: Data From the EMBARC/Respiratory Research Network of India Registry,” European Respiratory Journal 61, no. 1 (2023): 2200611.

[41]

M. Mac Aogáin, R. Chandrasekaran, A. Y. H. Lim, et al., “Immunological Corollary of the Pulmonary Mycobiome in Bronchiectasis: The CAMEB Study,” European Respiratory Journal 52, no. 1 (2018): 1800766.

[42]

H. R. Keir, A. Shoemark, A. J. Dicker, et al., “Neutrophil Extracellular Traps, Disease Severity, and Antibiotic Response in Bronchiectasis: An International, Observational, Multicohort Study,” The Lancet Respiratory Medicine 9, no. 8 (2021): 873-884.

[43]

O. Sibila, E. Laserna, A. Shoemark, et al., “Airway Bacterial Load and Inhaled Antibiotic Response in Bronchiectasis,” American Journal of Respiratory and Critical Care Medicine 200, no. 1 (2019): 33-41.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/