Recent Advancements in Ambient-Air Fabrication of Perovskite Solar Cells

Yihuai Huang , Wenguang Zhang , Yuchen Xiong , Zijun Yi , Changkai Huang , Qinghui Jiang , Abdul Basit , Guibin Shen , Yubo Luo , Xin Li , Junyou Yang

Exploration ›› 2025, Vol. 5 ›› Issue (3) : 20240121

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (3) : 20240121 DOI: 10.1002/EXP.20240121
REVIEW

Recent Advancements in Ambient-Air Fabrication of Perovskite Solar Cells

Author information +
History +
PDF

Abstract

Perovskite solar cells (PSCs) have attracted considerable attention due to their potential for high-efficiency conversion and cost-effective fabrication. Although the fabrication of perovskite films in ambient air offers environmental and cost advantages, the presence of water vapor and oxygen may induce instability in these films, thereby affecting device performance. This review aims to comprehensively explore recent advancements in the fabrication of PSCs in ambient air, while investigating various factors contributing to perovskite degradation. Addressing these challenges, diverse fabrication strategies are outlined, encompassing compositional, additive, solvent, and interface engineering to enhance the performance and stability of PSCs fabricated under ambient air. To facilitate the commercialization of PSCs, this paper summarizes several widely employed methods for the large-scale manufacturing of PSCs. Through this review, we aim to offer some invaluable insights and guidance for the commercialization trajectory of PSCs, as well as the pros and cons to their widespread applications in the field of renewable energy.

Keywords

ambient air fabrication / degradation mechanism / enhanced stability / large-scale / perovskite solar cells

Cite this article

Download citation ▾
Yihuai Huang, Wenguang Zhang, Yuchen Xiong, Zijun Yi, Changkai Huang, Qinghui Jiang, Abdul Basit, Guibin Shen, Yubo Luo, Xin Li, Junyou Yang. Recent Advancements in Ambient-Air Fabrication of Perovskite Solar Cells. Exploration, 2025, 5(3): 20240121 DOI:10.1002/EXP.20240121

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G.-H. Kim and D. S. Kim, “Development of Perovskite Solar Cells With >25% Conversion Efficiency,” Joule 5 (2021): 1033-1035.

[2]

Y. Gao, Y. Hu, C. Yao, and S. Zhang, “Recent Advances in Lead-Safe Perovskite Solar Cells,” Advanced Functional Materials 32 (2022): 2208225.

[3]

P. Wang, Y. Wu, B. Cai, Q. Ma, X. Zheng, and W. H. Zhang, “Solution-Processable Perovskite Solar Cells Toward Commercialization: Progress and Challenges,” Advanced Functional Materials 29 (2019): 1807661.

[4]

(a) H. Lin, M. Yang, X. Ru, et al., “Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers,” Natural Energy 8, no. 8 (2023): 788-799. (b) J. Zhou, Q. Huang, Y. Ding, G. Hou, and Y. Zhao, “Passivating Contacts for High-Efficiency Silicon-Based Solar Cells: From Single-Junction to Tandem Architecture,” Nano Energy 92 (2022): 106712.

[5]

(a) B. Li, S. Li, J. Gong, et al., “Fundamental Understanding of Stability for Halide Perovskite Photovoltaics: The Importance of Interfaces,” Chemistry 10 (2023): 35-47. (b) Y. Zhang, Q. Song, G. Liu, et al., “Improved Fatigue Behaviour of Perovskite Solar Cells With an Interfacial Starch–Polyiodide Buffer Layer,” Nature Photonics 17 (2023): 1066–1073. (c) W. Hui, L. Chao, H. Lu, et al., “Stabilizing Black-Phase Formamidinium Perovskite Formation at Room Temperature and High Humidity,” Science 371 (2021): 1359–1364.

[6]

(a) Y. Zhang, A. Kirs, F. Ambroz, et al., “Ambient Fabrication of Organic-Inorganic Hybrid Perovskite Solar Cells,” Small Methods 5 (2021): 2000744. (b) F. Du, X. Liu, J. Liao, et al., “Improving the Stability of Halide Perovskites for Photo-, Electro-, Photoelectro-Chemical Applications,” Advanced Functional Materials 34 (2023): 2312175.c) R. Wang, M. Mujahid, Y. Duan, Z. K. Wang, J. Xue, and Y. Yang, “A Review of Perovskites Solar Cell Stability,” Advanced Functional Materials 29 (2019): 1808843.

[7]

(a) Z. Liang, Y. Zhang, H. Xu, et al., “Homogenizing Out-Of-Plane Cation Composition in Perovskite Solar Cells,” Nature 624 (2023): 557-563. (b) A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” Journal of the American Chemical Society 131 (2009): 6050–6051.

[8]

(a) J. Huang, S. Tan, P. D. Lund, and H. Zhou, “Impact of H2O on Organic-Inorganic Hybrid Perovskite Solar Cells,” Energy & Environmental Science 10 (2017): 2284-2311. (b) J. Hidalgo, W. Kaiser, Y. An, et al., “Synergistic Role of Water and Oxygen Leads to Degradation in Formamidinium-Based Halide Perovskites,” Journal of the American Chemical Society 145 (2023): 24549–24557. (c) C. C. Boyd, R. Cheacharoen, T. Leijtens, and M. D. McGehee, “Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics,” Chemical Reviews 119 (2018): 3418–3451.

[9]

C. Yin, J. Lu, Y. Xu, et al., “Low-Cost N,N ′-Bicarbazole-Based Dopant-Free Hole-Transporting Materials for Large-Area Perovskite Solar Cells,” Advanced Energy Materials 8 (2018): 1800538.

[10]

L. J. Sutherland, H. C. Weerasinghe, and G. P. Simon, “A Review on Emerging Barrier Materials and Encapsulation Strategies for Flexible Perovskite and Organic Photovoltaics,” Advanced Energy Materials 11 (2021): 2101383.

[11]

(a) B. G. Krishna, D. S. Ghosh, and S. Tiwari, “Progress in Ambient Air-Processed Perovskite Solar Cells: Insights Into Processing Techniques and Stability Assessment,” Solar Energy 224 (2021): 1369-1395. (b) J. Wang, L. Yuan, H. Luo, et al., “Ambient Air Processed Highly Oriented Perovskite Solar Cells With Efficiency Exceeding 23% via Amorphous Intermediate,” Chemical Engineering Journal 446 (2022): 136968. (c) H. T. Hussein, R. S. Zamel, M. S. Mohamed, and M. K. Mohammed, “High-Performance Fully-Ambient Air Processed Perovskite Solar Cells Using Solvent Additive,” Journal of Physics and Chemistry of Solids 149 (2021): 109792.

[12]

(a) D. Chalkias, A. Mourtzikou, G. Katsagounos, A. Kalarakis, and E. Stathatos, “Development of Greener and Stable Inkjet-Printable Perovskite Precursor Inks for All-Printed Annealing-Free Perovskite Solar Mini-Modules Manufacturing,” Small Methods 7 (2023): 2300664. (b) B. Tyagi, N. Kumar, H. B. Lee, et al., “Development of High Efficiency, Spray-Coated Perovskite Solar Cells and Modules Using Additive-Engineered Porous PbI 2 Films,” Small Methods 8 (2023): 2300237. (c) H. Li, C. Zuo, D. Angmo, H. Weerasinghe, M. Gao, and J. Yang, “Fully Roll-to-Roll Processed Efficient Perovskite Solar Cells via Precise Control on the Morphology of PbI2:CsI Layer,” Nano-Micro Letters 14 (2022): 79. (d) C. Chen, J. Chen, H. Han, et al., “Perovskite Solar Cells Based on Screen-Printed Thin Films,” Nature 612 (2022): 266–271. (e) D. Glowienka, S.-H. Huang, P.-H. Lee, F.-Y. Tsai, and W.-F. Su, “Understanding the Dominant Physics Mechanisms on the p- i -n Perovskite Solar Cells Fabricated by Scalable Slot-Die Coating Process in Ambient Air,” Sol RRL 8 (2023): 2300791.

[13]

L. Yin, W. Huang, J. Fang, et al., “Crystallization Control for Ambient Printed FA-Based Lead Triiodide Perovskite Solar Cells,” Advanced Materials 35 (2023): 2303384.

[14]

(a) S. Wang, T. Yang, Y. Yang, et al., “In Situ Self-Elimination of Defects via Controlled Perovskite Crystallization Dynamics for High-Performance Solar Cells,” Advanced Materials 35 (2023): 2305314. (b) J. You, Y. M. Yang, Z. Hong, et al., “Moisture Assisted Perovskite Film Growth for High Performance Solar Cells,” Applied Physics Letters 105 (2014): 183902. (c) P. Shi, Y. Ding, B. Ding, et al., “Oriented Nucleation in Formamidinium Perovskite for Photovoltaics,” Nature 620 (2023): 323–327. (d) W. Zhang, M. Saliba, D. T. Moore, et al., “Ultrasmooth Organic–Inorganic Perovskite Thin-Film Formation and Crystallization for Efficient Planar Heterojunction Solar Cells,” Nature Communications 6 (2015): 6142.

[15]

K. Sun and P. Müller-Buschbaum, “Shedding Light on the Moisture Stability of Halide Perovskite Thin Films,” Energy Technology 11 (2023): 2201475.

[16]

(a) J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells,” Nano Letters 13 (2013): 1764-1769. (b) X. Gong, M. Li, X. B. Shi, H. Ma, Z. K. Wang, and L. S. Liao, “Controllable Perovskite Crystallization by Water Additive for High-Performance Solar Cells,” Advanced Functional Materials 25 (2015): 6671–6678. (c) Y. S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, and T. Park, “A Diketopyrrolopyrrole-Containing Hole Transporting Conjugated Polymer for Use in Efficient Stable Organic–Inorganic Hybrid Solar Cells Based on a Perovskite,” Energy & Environmental Science 7 (2014): 1454–1460.

[17]

C. Müller, T. Glaser, M. Plogmeyer, et al., “Water Infiltration in Methylammonium Lead Iodide Perovskite: Fast and Inconspicuous,” Chemistry of Materials 27 (2015): 7835-7841.

[18]

C.-J. Tong, W. Geng, Z.-K. Tang, et al., “Uncovering the Veil of the Degradation in Perovskite CH3 NH3 PbI3 upon Humidity Exposure: A First-Principles Study,” Journal of Physical Chemistry Letters 6 (2015): 3289-3295.

[19]

Z. Song, A. Abate, S. C. Watthage, et al., “Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2-CH3 NH3 I-H2O System,” Advanced Energy Materials 6 (2016): 1600846.

[20]

A. M. Leguy, Y. Hu, M. Campoy-Quiles, et al., “Reversible Hydration of CH3 NH3 PbI3 in Films, Single Crystals, and Solar Cells,” Chemistry of Materials 27 (2015): 3397-3407.

[21]

S. Yang, Y. Wang, P. Liu, Y.-B. Cheng, H. J. Zhao, and H. G. Yang, “Functionalization of Perovskite Thin Films with Moisture-Tolerant Molecules,” Natural Energy 1 (2016): 1-7.

[22]

(a) J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3 NH3 PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques,” ACS Nano 9 (2015): 1955-1963. (b) J. A. Christians, P. A. Miranda Herrera, and P. V. Kamat, “Transformation of the Excited State and Photovoltaic Efficiency of CH3 NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air,” Journal of the American Chemical Society 137 (2015): 1530–1538. (c) N. Ahn, K. Kwak, M. S. Jang, et al., “Trapped Charge-Driven Degradation of Perovskite Solar Cells,” Nature Communications 7 (2016): 13422.

[23]

M. I. Saidaminov, J. Kim, A. Jain, et al., “Suppression of Atomic Vacancies via Incorporation of Isovalent Small Ions to Increase the Stability of Halide Perovskite Solar Cells in Ambient Air,” Natural Energy 3 (2018): 648-654.

[24]

(a) Y. Liu, K. Palotas, X. Yuan, et al., “Atomistic Origins of Surface Defects in CH3 NH3 PbBr3 Perovskite and Their Electronic Structures,” ACS Nano 11 (2017): 2060-2065. (b) N. Aristidou, C. Eames, I. Sanchez-Molina, et al., “Fast Oxygen Diffusion and Iodide Defects Mediate Oxygen-Induced Degradation of Perovskite Solar Cells,” Nature Communications 8 (2017): 15218.

[25]

E. Mosconi, J. M. Azpiroz, and F. De Angelis, “Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water,” Chemistry of Materials 27 (2015): 4885-4892.

[26]

Y.-H. Kye, C.-J. Yu, U.-G. Jong, Y. Chen, and A. Walsh, “Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells,” Journal of Physical Chemistry Letters 9 (2018): 2196-2201.

[27]

Z. Yang, J. Dou, S. Kou, et al., “Multifunctional Phosphorus-Containing Lewis Acid and Base Passivation Enabling Efficient and Moisture-Stable Perovskite Solar Cells,” Advanced Functional Materials 30 (2020): 1910710.

[28]

(a) J. S. Yun, J. Kim, T. Young, et al., “Humidity-Induced Degradation via Grain Boundaries of HC(NH2)2 PbI3 Planar Perovskite Solar Cells,” Advanced Functional Materials 28 (2018): 1705363. (b) A. F. Castro-Méndez, J. Hidalgo, and J. P. Correa-Baena, “The Role of Grain Boundaries in Perovskite Solar Cells,” Advanced Energy Materials 9 (2019): 1901489. (c) Q. Wang, B. Chen, Y. Liu, et al., “Scaling Behavior of Moisture-Induced Grain Degradation in Polycrystalline Hybrid Perovskite Thin Films,” Energy & Environmental Science 10 (2017): 516–522.

[29]

N. Li, S. Pratap, V. Körstgens, et al., “Mapping Structure Heterogeneities and Visualizing Moisture Degradation of Perovskite Films With Nano-Focus Waxs,” Nature Communications 13 (2022): 6701.

[30]

N. Rolston, K. A. Bush, A. D. Printz, et al., “Engineering Stress in Perovskite Solar Cells to Improve Stability,” Advanced Energy Materials 8 (2018): 1802139.

[31]

J. Schlipf, L. Bießmann, L. Oesinghaus, et al., “In Situ Monitoring the Uptake of Moisture Into Hybrid Perovskite Thin Films,” Journal of Physical Chemistry Letters 9 (2018): 2015-2021.

[32]

(a) Y. Zhou and Y. Zhao, “Chemical Stability and Instability of Inorganic Halide Perovskites,” Energy & Environmental Science 12 (2019): 1495-1511. (b) J. Lin, M. Lai, L. Dou, et al., “Thermochromic Halide Perovskite Solar Cells,” Nature Materials 17 (2018): 261–267.

[33]

Z. Lin, Y. Zhang, M. Gao, et al., “Kinetics of Moisture-Induced Phase Transformation in Inorganic Halide Perovskite,” Matter 4 (2021): 2392-2402.

[34]

S. Dastidar, D. A. Egger, L. Z. Tan, et al., “High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide,” Nano Letters 16 (2016): 3563-3570.

[35]

A. Mattoni, A. Filippetti, and C. Caddeo, “Modeling Hybrid Perovskites by Molecular Dynamics,”Journal of Physics-Condensed Matter 29 (2016): 043001.

[36]

J. Kang and L.-W. Wang, “High Defect Tolerance in Lead Halide Perovskite CsPbBr3,” Journal of Physical Chemistry Letters 8 (2017): 489-493.

[37]

C. Zheng and O. Rubel, “Unraveling the Water Degradation Mechanism of CH3 NH3 PbI3,” Journal of Physical Chemistry C 123 (2019): 19385-19394.

[38]

D. L. Busipalli, K.-Y. Lin, S. Nachimuthu, and J.-C. Jiang, “Enhanced Moisture Stability of Cesium Lead Iodide Perovskite Solar Cells—A First-Principles Molecular Dynamics Study,” Physical Chemistry Chemical Physics 22 (2020): 5693-5701.

[39]

X. Yin, Y. Guo, J. Liu, et al., “Moisture Annealing Effect on CH3NH3PbI3 Films Deposited by Solvent Engineering Method,” Thin Solid Films 636 (2017): 664-670.

[40]

K. Liu, Y. Luo, Y. Jin, et al., “Moisture-Triggered Fast Crystallization Enables Efficient and Stable Perovskite Solar Cells,” Nature Communications 13 (2022): 4891.

[41]

H.-H. Huang, Z. Ma, J. Strzalka, et al., “Mild Water Intake Orients Crystal Formation Imparting High Tolerance on Unencapsulated Halide Perovskite Solar Cells,” Cell Reports Physical Science 2 (2021): 100395.

[42]

W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Grätzel, “Understanding the Rate-Dependent J-V Hysteresis, Slow Time Component, and Aging in CH3 NH3 PbI3 Perovskite Solar Cells: The Role of a Compensated Electric Field,” Energy & Environmental Science 8 (2015): 995-1004.

[43]

(a) C. Eames, J. M. Frost, P. R. Barnes, B. C. O'regan, A. Walsh, and M. S. Islam, “Ionic Transport in hybrid Lead Iodide Perovskite Solar Cells,” Nature Communications 6 (2015): 7497. (b) A. Baumann, S. Väth, P. Rieder, M. C. Heiber, K. Tvingstedt, and V. Dyakonov, “Identification of Trap States in Perovskite Solar Cells,” Journal of Physical Chemistry Letters 6 (2015): 2350–2354.

[44]

D. S. Tsvetkov, M. O. Mazurin, V. V. Sereda, I. L. Ivanov, D. A. Malyshkin, and A. Y. Zuev, “Formation Thermodynamics, Stability, and Decomposition Pathways of CsPbX3 (X = Cl, Br, I) Photovoltaic Materials,” Journal of Physical Chemistry C 124 (2020): 4252-4260.

[45]

R. A. Scheidt, E. Kerns, and P. V. Kamat, “Interfacial Charge Transfer Between Excited CsPbBr3 Nanocrystals and TiO 2: Charge Injection versus Photodegradation,” Journal of Physical Chemistry Letters 9 (2018): 5962-5969.

[46]

S. Zhang, S. Wu, B. H. Babu, et al., “Adverse Oxidation of CsPbI2 Br Perovskite During the Crystallization Process in an N2 Glove-Box,” Journal of Materials Chemistry C 7 (2019): 5067-5073.

[47]

Z. Wang, Z. Shi, T. Li, Y. Chen, and W. Huang, “Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion,” Angewandte Chemie International Edition 56 (2017): 1190-1212.

[48]

(a) N. J. Jeon, H. Na, E. H. Jung, et al., “A Fluorene-Terminated Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells,” Natural Energy 3 (2018): 682-689. (b) T. Y. Yang, G. Gregori, N. Pellet, M. Grätzel, and J. Maier, “The Significance of Ion Conduction in a Hybrid Organic–Inorganic Lead-Iodide-Based Perovskite Photosensitizer,” Angewandte Chemie 127 (2015): 8016–8021.

[49]

Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu, “Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys,” Chemistry of Materials 28 (2016): 284-292.

[50]

J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, and N. G. Park, “Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell,” Advanced Energy Materials 5 (2015): 1501310.

[51]

M. Saliba, T. Matsui, J.-Y. Seo, et al., “Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency,” Energy & Environmental Science 9 (2016): 1989-1997.

[52]

H. Tan, A. Jain, O. Voznyy, et al., “Efficient and stable solution-processed planar perovskite solar cells via contact passivation,” Science 355 (2017): 722-726.

[53]

T. Singh and T. Miyasaka, “Stabilizing the Efficiency Beyond 20% With a Mixed Cation Perovskite Solar Cell Fabricated in Ambient Air Under Controlled Humidity,” Advanced Energy Materials 8 (2018): 1700677.

[54]

G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, and S. I. Seok, “Impact of Strain Relaxation on Performance of α-Formamidinium Lead Iodide Perovskite Solar Cells,” Science 370 (2020): 108-112.

[55]

A. Buin, R. Comin, J. Xu, A. H. Ip, and E. H. Sargent, “Halide-Dependent Electronic Structure of Organolead Perovskite Materials,” Chemistry of Materials 27 (2015): 4405-4412.

[56]

S. Dharani, H. A. Dewi, R. R. Prabhakar, et al., “Incorporation of Cl Into Sequentially Deposited Lead Halide Perovskite Films for Highly Efficient Mesoporous Solar Cells,” Nanoscale 6 (2014): 13854-13860.

[57]

X. Xiao, W. Zhang, W. Zhang, et al., “Cl-Assisted Perovskite Crystallization Pathway in the Confined Space of Mesoporous Metal Oxides Unveiled by In Situ Grazing Incidence Wide-Angle X-Ray Scattering,” Chemistry of Materials 34 (2022): 2231-2237.

[58]

Q. Jiang, J. Tong, R. A. Scheidt, et al., “Compositional Texture Engineering for Highly Stable Wide-Bandgap Perovskite Solar Cells,” Science 378 (2022): 1295-1300.

[59]

S. S. Mali, J. V. Patil, P. S. Shinde, G. de Miguel, and C. K. Hong, “Fully Air-Processed Dynamic Hot-Air-Assisted M:CsPbI2Br (M: Eu2+, In3+) for Stable Inorganic Perovskite Solar Cells,” Matter 4 (2021): 635-653.

[60]

H. Xiao, C. Zuo, L. Zhang, et al., “Efficient Inorganic Perovskite Solar Cells Made by Drop-Coating in Ambient Air,” Nano Energy 106 (2023): 108061.

[61]

J.-H. Lee, K. Jung, and M.-J. Lee, “Influence of Spin-Coating Methods on the Properties of Planar Solar Cells Based on Ambient-Air-Processed Triple-Cation Mixed-Halide Perovskites,” Journal of Alloys and Compounds 879 (2021): 160373.

[62]

Q. Jiang, D. Rebollar, J. Gong, E. L. Piacentino, C. Zheng, and T. Xu, “Pseudohalide-Induced Moisture Tolerance in Perovskite CH3 NH3 Pb(SCN)2 I Thin Films,” Angewandte Chemie 127 (2015): 7727-7730.

[63]

L. Yan, H. Huang, P. Cui, et al., “Fabrication of Perovskite Solar Cells in Ambient Air by Blocking Perovskite Hydration With Guanabenz Acetate Salt,” Nature Energy 8 (2023): 1158-1167.

[64]

Y. Chen, B. Li, W. Huang, D. Gao, and Z. Liang, “Efficient and Reproducible CH3 NH3 PbI3− x (SCN)x Perovskite Based Planar Solar Cells,” Chemical Communications 51 (2015): 11997-11999.

[65]

(a) H. L. Clever and F. J. Johnston, “The Solubility of Some Sparingly Soluble Lead Salts: An Evaluation of the Solubility in Water and Aqueous Electrolyte Solution,” Journal of Physical and Chemical Reference Data 9 (1980): 751-784. (b) G. Leonard, M. E. Smith, and D. N. Hume, “Thiocyanate Complexes of Lead and Thallium in Solution,” Journal of Physical Chemistry 60 (1956): 1493–1495.

[66]

J. Zhang, S. Wu, T. Liu, Z. Zhu, and A. K. Y. Jen, “Boosting Photovoltaic Performance for Lead Halide Perovskites Solar Cells With BF4− Anion Substitutions,” Advanced Functional Materials 29 (2019): 1808833.

[67]

C. Tian, T. Wu, Y. Zhao, et al., “Anion-Stabilized Precursor Inks Toward Efficient and Reproducible Air-Processed Perovskite Solar Cells,” Advanced Energy Materials 14 (2024): 2303666.

[68]

F. Zhang and K. Zhu, “Additive Engineering for Efficient and Stable Perovskite Solar Cells,” Advanced Energy Materials 10 (2020): 1902579.

[69]

T. Li, Y. Pan, Z. Wang, Y. Xia, Y. Chen, and W. Huang, “Additive Engineering for Highly Efficient Organic-Inorganic Halide Perovskite Solar Cells: Recent Advances and Perspectives,” Journal of Materials Chemistry A 5 (2017): 12602-12652.

[70]

(a) M. J. Earle and K. R. Seddon, “Ionic Liquids. Green Solvents for the Future,” Pure and Applied Chemistry 72 (2000): 1391-1398. (b) K. N. Marsh, J. A. Boxall, and R. Lichtenthaler, “Room Temperature Ionic Liquids and Their Mixtures—A Review,” Fluid Phase Equilibria 219 (2004): 93–98.

[71]

D. Wang, Z. Zhang, T. Huang, et al., “Crystallization Kinetics Control Enabled by a Green Ionic Liquid Additive Toward Efficient and Stable Carbon-Based Mesoscopic Perovskite Solar Cells,” ACS Applied Materials and Interfaces 14 (2022): 9161-9171.

[72]

R. Xia, X. X. Gao, Y. Zhang, et al., “An Efficient Approach to Fabricate Air-Stable Perovskite Solar Cells via Addition of a Self-Polymerizing Ionic Liquid,” Advanced Materials 32 (2020): 2003801.

[73]

K. Zhang, X. Zhang, K. G. Brooks, et al., “Role of Ionic Liquids in Perovskite Solar Cells,” Sol RRL 7 (2023): 2300115.

[74]

J. Ran, H. Wang, W. Deng, et al., “Ionic Liquid-Tuned Crystallization for Stable and Efficient Perovskite Solar Cells,” Sol RRL 6 (2022): 2200176.

[75]

F. Wang, K. Zhou, X. Liang, et al., “Revealing Size-Dependency of Ionic Liquid to Assist Perovskite Film Formation Mechanism for Efficient and Durable Perovskite Solar Cells,” Small Methods 8 (2023): 2300210.

[76]

X. Guo, Z. Lin, W. Cao, et al., “Multifunctional Pseudohalide-Based Ionic Liquid Doping Promotes Efficient and Stable Perovskite Solar Cells,” Journal of Materials Chemistry C 11 (2023): 9144-9152.

[77]

H. Meng, K. Mao, F. Cai, et al., “Inhibition of Halide Oxidation and Deprotonation of Organic Cations With Dimethylammonium Formate for Air-Processed p-i-n Perovskite Solar Cells,” Natural Energy 9 (2024): 536-547.

[78]

M. M. Tavakoli, M. Saliba, P. Yadav, et al., “Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics,” Advanced Energy Materials 9 (2019): 1802646.

[79]

L. Bi, Q. Fu, Z. Zeng, et al., “Deciphering the Roles of MA-Based Volatile Additives for α-FAPbI 3 to Enable Efficient Inverted Perovskite Solar Cells,” Journal of the American Chemical Society 145 (2023): 5920-5929.

[80]

M. Kim, G.-H. Kim, T. K. Lee, et al., “Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells,” Joule 3 (2019): 2179-2192.

[81]

T. Wang, Q. Yang, Y. Chen, et al., “Stitching Perovskite Grains With Perhydropoly(Silazane) Anti-Template-Agent for High-Efficiency and Stable Solar Cells Fabricated in Ambient Air,” Energy and Environmental Materials 6 (2023): e12554.

[82]

X. Li, W. Sheng, X. Duan, et al., “Defect Passivation Effect of Chemical Groups on Perovskite Solar Cells,” ACS Applied Materials and Interfaces 14 (2021): 34161-34170.

[83]

L. Li, S. Tu, G. You, et al., “Enhancing Performance and Stability of Perovskite Solar Cells Through Defect Passivation With a Polyamide Derivative Obtained From Benzoxazine-Isocyanide Chemistry,” Journal of Chemical Engineering 431 (2022): 133951.

[84]

K. Kim, Z. Wu, J. Han, et al., “Homogeneously Miscible Fullerene inducing Vertical Gradient in Perovskite Thin-Film Toward Highly Efficient Solar Cells,” Advanced Energy Materials 12 (2022): 2200877.

[85]

J. Wang, J. Zhang, S. Gai, et al., “Self-Organized Small Molecules in Robust MOFs for High-Performance Perovskite Solar Cells With Enhanced Degradation Activation Energy,” Advanced Functional Materials 32 (2022): 2203898.

[86]

(a) L. Jia, F. Huang, H. Ding, et al., “Double-Site Defect Passivation of Perovskite Film via Fullerene Additive Engineering Toward Highly Efficient and Stable Bulk Heterojunction Solar Cells,” Nano Today 39 (2021): 101164. (b) R. R. Rad, B. A. Ganji, and N. Taghavinia, “4-Tert-Butyl Pyridine Additive for Moisture-Resistant Wide Bandgap Perovskite Solar Cells,” Optical Materials 123 (2022): 111876. (c) M. Bidikoudi, C. Simal, and E. Stathatos, “Exploring the Effect of Lewis-Base Additives on the Performance and Stability of Mesoscopic Carbon-Electrode Perovskite Solar Cells,” ACS Applied Energy Materials 4 (2021): 8810–8823. (d) Y. Miao, G. Sathiyan, H. Wang, et al., “Construction of efficient perovskite solar cell Through small-molecule synergistically assisted surface defect passivation and fluorescence resonance energy transfer,” Chemical Engineering Journal 426 (2021): 131358.

[87]

L. Hu, S. Li, L. Zhang, et al., “Unravelling the Role of C60 Derivatives as Additives Into Active Layers for Achieving High-Efficiency Planar Perovskite Solar Cells,” Carbon 167 (2020): 160-168.

[88]

Y. Zhang, Q. Wang, K. Duan, et al., “The Effects of Pyridine Molecules Structure on the Defects Passivation of Perovskite Solar Cells,” Journal of Solid State Electrochemistry 25 (2021): 1531-1540.

[89]

C. Wu, K. Wang, J. Li, et al., “Volatile Solution: The Way Toward Scalable Fabrication of Perovskite Solar Cells?,” Matter 4 (2021): 775-793.

[90]

N. K. Noel, S. N. Habisreutinger, B. Wenger, et al., “A Low Viscosity, Low Boiling Point, Clean Solvent System for the Rapid Crystallisation of Highly Specular Perovskite Films,” Energy & Environmental Science 10 (2017): 145-152.

[91]

D.-N. Jeong, D.-K. Lee, S. Seo, et al., “Perovskite Cluster-Containing Solution for Scalable D-Bar Coating Toward High-Throughput Perovskite Solar Cells,” ACS Energy Letters 4 (2019): 1189-1195.

[92]

P. Baral, X. Zhang, K. Garden, et al., “Efficient and Stable Perovskite Solar Cells Based on Blade-Coated CH3NH3PbI3 Thin Films Fabricated Using “Green” Solvents Under Ambient Conditions,” Organic Electronics 116 (2023): 106763.

[93]

Y. Fang, T. Tian, M. Yang, et al., “Tailoring Precursor Chemistry Enabled Room Temperature-Processed Perovskite Films in Ambient Air for Efficient and Stable Solar Cells With Improved Reproducibility,” Advanced Functional Materials 33 (2023): 2303674.

[94]

T.-Y. Hsieh, T.-C. Wei, K.-L. Wu, M. Ikegami, and T. Miyasaka, “Efficient Perovskite Solar Cells Fabricated Using an Aqueous Lead Nitrate Precursor,” Chemical Communications 51 (2015): 13294-13297.

[95]

D. V. Shinde, L. Pyeon, M. Pei, G.-W. Kim, H. Yang, and T. Park, “Enhanced Efficiency and Stability of an Aqueous Lead-Nitrate-Based Organometallic Perovskite Solar Cell,” ACS Applied Materials and Interfaces 9 (2017): 14023-14030.

[96]

T. Y. Hsieh, M. Pylnev, E. Palomares, and T. C. Wei, “Exceptional Long Electron Lifetime in Methylammonium Lead Iodide Perovskite Solar Cell Made From Aqueous Lead Nitrate Precursor,” Advanced Functional Materials 30 (2020): 1909644.

[97]

P. Zhai, L. Ren, S. Li, L. Zhang, D. Li, and S. F. Liu, “Light Modulation Strategy for Highest-Efficiency Water-Processed Perovskite Solar Cells,” Matter 5 (2022): 4450-4466.

[98]

W.-T. Wang, S. K. Das, and Y. Tai, “Fully Ambient-Processed Perovskite Film for Perovskite Solar Cells: Effect of Solvent Polarity on Lead Iodide,” ACS Applied Materials and Interfaces 9 (2017): 10743-10751.

[99]

H.-S. Yun, H. W. Kwon, M. J. Paik, et al., “Ethanol-Based Green-Solution Processing of α-Formamidinium Lead Triiodide Perovskite Layers,” Natural Energy 7 (2022): 828-834.

[100]

S. Kim, I. Jeong, C. Park, et al., “Morphology control of perovskite in green antisolvent system for MAPbI3-based solar cells With Over 20% efficiency,” Solar Energy Materials and Solar Cells 203 (2019): 110197.

[101]

S.-G. Kim, J.-H. Kim, P. Ramming, et al., “How Antisolvent Miscibility Affects Perovskite Film Wrinkling and Photovoltaic Properties,” Nature Communications 12 (2021): 1554.

[102]

M. T. Hoang, F. Ünlü, W. Martens, J. Bell, S. Mathur, and H. Wang, “Towards the Environmentally Friendly Solution Processing of Metal Halide Perovskite Technology,” Green Chemistry 23 (2021): 5302-5336.

[103]

C. Liu, L. Huang, X. Zhou, et al., “An In-Situ Defect Passivation Through a Green Anti-Solvent Approach For High-Efficiency and Stable Perovskite Solar Cells,” Science Bulletin 66 (2021): 1419-1428.

[104]

T. Bu, L. Wu, X. Liu, et al., “Synergic Interface Optimization With Green Solvent Engineering in Mixed Perovskite Solar Cells,” Advanced Energy Materials 7 (2017): 1700576.

[105]

W. Zhang, Y. Li, X. Liu, D. Tang, X. Li, and X. Yuan, “Ethyl Acetate Green Antisolvent Process for High-Performance Planar Low-Temperature SnO2-Based Perovskite Solar Cells Made in Ambient Air,” Chemical Engineering Journal 379 (2020): 122298.

[106]

Y. Zhang, M. Chen, Y. Zhou, et al., “The Synergism of DMSO and Diethyl Ether for Highly Reproducible and Efficient MA 0.5 FA 0.5 PbI3 Perovskite Solar Cells,” Advanced Energy Materials 10 (2020): 2001300.

[107]

B. Liu, H. Bi, D. He, et al., “Interfacial Defect Passivation and Stress Release via Multi-Active-Site Ligand Anchoring Enables Efficient and Stable Methylammonium-Free Perovskite Solar Cells,” ACS Energy Letters 6 (2021): 2526-2538.

[108]

B. Liu, X. Ren, R. Li, et al., “Stabilizing Top Interface by Molecular Locking Strategy With Polydentate Chelating Biomaterials Toward Efficient and Stable Perovskite Solar Cells in Ambient Air,” Advanced Materials 36 (2024): 2312679.

[109]

M. Li, Y. Li, S. i. Sasaki, et al., “Dopant-Free Zinc Chlorophyll Aggregates as an Efficient Biocompatible Hole Transporter for Perovskite Solar Cells,” Chemsuschem 9 (2016): 2862-2869.

[110]

Y. Hou, K. Wang, D. Yang, et al., “Enhanced Performance and Stability in DNA-Perovskite Heterostructure-Based Solar Cells,” ACS Energy Letters 4 (2019): 2646-2655.

[111]

R. Wang, J. Xue, K.-L. Wang, et al., “Constructive Molecular Configurations for Surface-Defect Passivation of Perovskite Photovoltaics,” Science 366 (2019): 1509-1513.

[112]

J. Han, K. Kim, J. S. Nam, et al., “Genetic Manipulation of M13 Bacteriophage for Enhancing the Efficiency of Virus-Inoculated Perovskite Solar Cells With a Certified Efficiency of 22.3%,” Advanced Energy Materials 11 (2021): 2101221.

[113]

J. Yuan, C. Bi, S. Wang, et al., “Spray-Coated Colloidal Perovskite Quantum Dot Films for Highly Efficient Solar Cells,” Advanced Functional Materials 29 (2019): 1906615.

[114]

N. Zhou, B. Huang, M. Sun, et al., “The Spacer Cations Interplay for Efficient and Stable Layered 2D Perovskite Solar Cells,” Advanced Energy Materials 10 (2020): 1901566.

[115]

Q. Jiang, Y. Zhao, X. Zhang, et al., “Surface Passivation of Perovskite Film for Efficient Solar Cells,” Nature Photonics 13 (2019): 460-466.

[116]

Q. Zhou, D. He, Q. Zhuang, et al., “Revealing Steric-Hindrance-Dependent Buried Interface Defect Passivation Mechanism in Efficient and Stable Perovskite Solar Cells With Mitigated Tensile Stress,” Advanced Functional Materials 32 (2022): 2205507.

[117]

R. Patidar, D. Burkitt, K. Hooper, D. Richards, and T. Watson, “Slot-Die Coating of Perovskite Solar Cells: An Overview,” Materials Today Communications 22 (2020): 100808.

[118]

S. H. Huang, C. K. Guan, P. H. Lee, et al., “Toward All Slot-Die Fabricated High Efficiency Large Area Perovskite Solar Cell Using Rapid Near Infrared Heating in Ambient Air,” Advanced Energy Materials 10 (2020): 2001567.

[119]

Y.-C. Huang, C.-F. Li, Z.-H. Huang, P.-H. Liu, and C.-S. Tsao, “Rapid and Sheet-to-Sheet Slot-Die Coating Manufacture of Highly Efficient Perovskite Solar Cells Processed Under Ambient Air,” Solar Energy 177 (2019): 255-261.

[120]

A. Vijayan, M. B. Johansson, S. Svanström, U. B. Cappel, H. k. Rensmo, and G. Boschloo, “Simple Method for Efficient Slot-Die Coating of MAPbI3 Perovskite Thin Films in Ambient Air Conditions,” ACS Applied Energy Materials 3 (2020): 4331-4337.

[121]

T. S. Le, D. Saranin, P. Gostishchev, et al., “All-Slot-Die-Coated Inverted Perovskite Solar Cells in Ambient Conditions With Chlorine Additives,” Sol RRL 6 (2022): 2100807.

[122]

L. Gao, K. Huang, C. Long, F. Zeng, B. Liu, and J. Yang, “Fully slot-die-coated perovskite solar cells in ambient condition,” Applied Physics A 126 (2020): 1-7.

[123]

S. Bernard, S. Jutteau, S. Mejaouri, et al., “One-Step Slot-Die Coating Deposition of Wide-Bandgap Perovskite Absorber for Highly Efficient Solar Cells,” Sol RRL 5 (2021): 2100391.

[124]

M. Fievez, P. J. S. Rana, T. M. Koh, et al., “Slot-Die Coated Methylammonium-Free Perovskite Solar Cells With 18% Efficiency,” Solar Energy Materials and Solar Cells 230 (2021): 111189.

[125]

A. Bensekhria, I. M. Asuo, I. Ka, R. Nechache, and F. Rosei, “Improved Performance of Air-Processed Perovskite Solar Cells via the Combination of Chlorine Precursors and Potassium Thiocyanate,” ACS Applied Materials and Interfaces 15 (2023): 56413-56423.

[126]

P. J. S. Rana, B. Febriansyah, T. M. Koh, et al., “Alkali Additives Enable Efficient Large Area (>55 cm2) Slot-Die Coated Perovskite Solar Modules,” Advanced Functional Materials 32 (2022): 2113026.

[127]

S. Y. Abate, Z. Yang, S. Jha, et al., “Promoting Large-Area Slot-Die-Coated Perovskite Solar Cell Performance and Reproducibility by Acid-Based Sulfono-γ-AApeptide,” ACS Applied Materials and Interfaces 15 (2023): 25495-25505.

[128]

S. Y. Abate, Z. Yang, S. Jha, et al., “Room Temperature Slot-Die Coated Perovskite Layer Modified With Sulfonyl-γ-AApeptide for High Performance Perovskite Solar Devices,” Chemical Engineering Journal 457 (2023): 141199.

[129]

(a) Y. Xiao, C. Zuo, J. X. Zhong, W. Q. Wu, L. Shen, and L. Ding, “Large-Area Blade-Coated Solar Cells: Advances and Perspectives,” Advanced Energy Materials 11 (2021): 2100378. (b) N.-G. Park and K. Zhu, “Scalable Fabrication and Coating Methods for Perovskite Solar Cells and Solar Modules,” Nature Reviews Materials 5 (2020): 333–350. (c) Y. Zhu, M. Hu, M. Xu, et al., “Bilayer Metal Halide Perovskite For Efficient and Stable Solar Cells and Modules,” Mater Futures 1 (2022): 042102.

[130]

(a) D. G. Lee, D. H. Kim, J. M. Lee, et al., “High Efficiency Perovskite Solar Cells Exceeding 22% via a Photo-Assisted Two-Step Sequential Deposition,” Advanced Functional Materials 31 (2021): 2006718. (b) G. Giuliano, A. Bonasera, M. Scopelliti, D. Chillura Martino, T. Fiore, and B. Pignataro, “Boosting the Performance of One-Step Solution-Processed Perovskite Solar Cells Using a Natural Monoterpene Alcohol as a Green Solvent Additive,” ACS Applied Electronic Materials 3, no. 4 (2021): 1813–1825.

[131]

(a) T. Bu, L. K. Ono, J. Li, et al., “Modulating Crystal Growth of Formamidinium-Caesium Perovskites for Over 200 cm2 Photovoltaic Sub-Modules,” Natural Energy 7 (2022): 528-536. (b) D.-K. Lee, D.-N. Jeong, T. K. Ahn, and N.-G. Park, “Precursor Engineering for a Large-Area Perovskite Solar Cell With >19% Efficiency,” ACS Energy Letters 4, no.10 (2019): 2393–2401. (c) Y. Deng, C. H. Van Brackle, X. Dai, J. Zhao, B. Chen, and J. Huang, “Tailoring Solvent Coordination for High-Speed, Room-Temperature Blading of Perovskite Photovoltaic Films,” Science Advances 5 (2019): eaax7537. (d) Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao, and J. Huang, “Surfactant-Controlled Ink Drying Enables High-Speed Deposition of Perovskite Films for Efficient Photovoltaic Modules,” Natural Energy 3 (2018): 560–566.

[132]

J. Küffner, J. Hanisch, T. Wahl, J. Zillner, E. Ahlswede, and M. Powalla, “One-Step Blade Coating of Inverted Double-Cation Perovskite Solar Cells From a Green Precursor Solvent,” ACS Applied Energy Materials 4, no.10 (2021): 11700-11710.

[133]

Z. Li, T. R. Klein, D. H. Kim, et al., “Scalable Fabrication of Perovskite Solar Cells,” Nature Reviews Materials 3 (2018): 1-20.

[134]

H. Li, X. Feng, K. Huang, et al., “Constructing Additives Synergy Strategy to Doctor-Blade Efficient CH3 NH3 PbI3 Perovskite Solar Cells Under a Wide Range of Humidity From 45% to 82%,” Small 19 (2023): 2300374.

[135]

F. Matteocci, L. Vesce, F. U. Kosasih, et al., “Fabrication and Morphological Characterization of High-Efficiency Blade-Coated Perovskite Solar Modules,” ACS Applied Materials and Interfaces 11, no. 28 (2019): 25195-25204.

[136]

J. Chang, E. Feng, H. Li, et al., “Crystallization and Orientation Modulation Enable Highly Efficient Doctor-Bladed Perovskite Solar Cells,” Nano-Micro Letters 15 (2023): 164.

[137]

(a) N. Y. Nia, M. Zendehdel, L. Cinà, F. Matteocci, and A. Di Carlo, “A Crystal Engineering Approach for Scalable Perovskite Solar Cells and Module Fabrication: A Full Out of Glove Box Procedure,” Journal of Materials Chemistry A 6 (2018): 659-671. (b) X. Duan, X. Li, L. Tan, et al., “Controlling Crystal Growth via an Autonomously Longitudinal Scaffold for Planar Perovskite Solar Cells,” Advanced Materials 32, no. 26 (2020): 2000617. (c) Y. Peng, F. Zeng, Y. Cheng, et al., “Fully Doctor-Bladed Efficient Perovskite Solar Cells in Ambient Condition via Composition Engineering,” Organic Electronics 83 (2020): 105736.

[138]

J. Zhang, T. Bu, J. Li, et al., “Two-Step Sequential Blade-Coating of High Quality Perovskite Layers for Efficient Solar Cells and Modules,” Journal of Materials Chemistry A 8 (2020): 8447-8454.

[139]

Y. Wen, J. Li, X. Gao, et al., “Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure,” Acta Physico-Chimica Sinica 39, no. 2 (2023): 2203048.

[140]

(a) S. Sansoni, M. De Bastiani, E. Aydin, et al., “Eco-Friendly Spray Deposition of Perovskite Films on Macroscale Textured Surfaces,” Advanced Materials Technologies 5, no. 2 (2020): 1901009. (b) S. Das, B. Yang, G. Gu, et al., “High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing,” ACS Photonics 2, no. 6 (2015): 680–686. (c) T. Thornber, O. S. Game, E. J. Cassella, et al., “Nonplanar Spray-Coated Perovskite Solar Cells,” ACS Appl Mater Interfaces 14, no. 33 (2022): 37587–37594.

[141]

J. E. Bishop, J. A. Smith, C. Greenland, et al., “High-Efficiency Spray-Coated Perovskite Solar Cells Utilizing Vacuum-Assisted Solution Processing,” ACS Appl Mater Interfaces 10, no. 46 (2018): 39428-39434.

[142]

A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley, and D. G. Lidzey, “Efficient Planar Heterojunction Mixed-Halide Perovskite Solar Cells Deposited via Spray-Deposition,” Energy & Environmental Science 7 (2014): 2944-2950.

[143]

J. Tait, S. Manghooli, W. Qiu, et al., “Rapid Composition Screening for Perovskite Photovoltaics via Concurrently Pumped Ultrasonic Spray Coating,” Journal of Materials Chemistry A 4 (2016): 3792-3797.

[144]

J. Su, H. Cai, J. Yang, et al., “Perovskite Ink With an Ultrawide Processing Window for Efficient and Scalable Perovskite Solar Cells in Ambient Air,” ACS Appl Mater Interfaces 12, no. 3 (2019): 3531-3538.

[145]

T.-W. Chen, S. N. Afraj, S.-H. Hong, et al., “Synergetic Effect on Enhanced Photovoltaic Performance of Spray-Coated Perovskite Solar Cells Enabled by Additive Doping and Antisolvent Additive Spraying Treatment,” ACS Applied Energy Materials 5, no. 4 (2022): 4149-4158.

[146]

J. Duan, D. Dou, Y. Zhao, et al., “Spray-Assisted Deposition of CsPbBr3 Films in Ambient Air for Large-Area Inorganic Perovskite Solar Cells,” Materials Today Energy 10 (2018): 146-152.

[147]

X. Yu, J. Li, Y. Mo, et al., “Coffee Ring″ Controlment in Spray Prepared >19% Efficiency Cs0.19FA0.81PbI2.5Br0.5 perovskite solar cells,” Journal of Energy Chemistry 67 (2022): 201-208.

[148]

X. Chen, C. Geng, X. Yu, et al., “Additive Engineering in Spray Enables Efficient Methylammonium-Free Wide-Bandgap Perovskite Solar Cells,” Materials Today Energy 34 (2023): 101316.

[149]

E. J. Cassella, E. L. Spooner, T. Thornber, et al., “Gas-Assisted Spray Coating of Perovskite Solar Cells Incorporating Sprayed Self-Assembled Monolayers,” Advancement of Science 9 (2022): 2104848.

[150]

X. Peng, J. Yuan, S. Shen, et al., “Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects,” Advanced Functional Materials 27 (2017): 1703704.

[151]

L. Zhang, S. Chen, X. Wang, et al., “Ambient Inkjet-Printed High-Efficiency Perovskite Solar Cells: Manipulating the Spreading and Crystallization Behaviors of Picoliter Perovskite Droplets,” Sol RRL 5 (2021): 2100106.

[152]

(a) S. Hashmi, D. Martineau, X. Li, et al., “Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells With High Stability and Reproducibility,” Advanced Materials Technologies 2 (2017): 1600183. (b) S. G. Hashmi, A. Tiihonen, D. Martineau, et al., “Long Term Stability of Air Processed Inkjet Infiltrated Carbon-Based Printed Perovskite Solar Cells Under Intense Ultra-Violet Light Soaking,” Journal of Materials Chemistry A 5 (2017): 4797–4802.

[153]

D. A. Chalkias, A. Mourtzikou, G. Katsagounos, A. Karavioti, A. N. Kalarakis, and E. Stathatos, “Suppression of Coffee-Ring Effect in Air-Processed Inkjet-Printed Perovskite Layer Toward the Fabrication of Efficient Large-Sized All-Printed Photovoltaics: A Perovskite Precursor Ink Concentration Regulation Strategy,” Sol RRL 6 (2022): 2200196.

[154]

A. Gheno, Y. Huang, J. Bouclé, et al., “Toward Highly Efficient Inkjet-Printed Perovskite Solar Cells Fully Processed Under Ambient Conditions and at Low Temperature,” Sol RRL 2 (2018): 1800191.

[155]

(a) D. Bi, C. Yi, J. Luo, et al., “Polymer-Templated Nucleation and Crystal Growth of Perovskite Films for Solar Cells With Efficiency Greater Than 21%,” Natural Energy 1 (2016): 1-5. (b) P. Ahlawat, M. I. Dar, P. Piaggi, M. Gratzel, M. Parrinello, and U. Rothlisberger, “Atomistic Mechanism of the Nucleation of Methylammonium Lead Iodide Perovskite From Solution,” Chemistry of Materials 32 (2019): 529–536.

[156]

B. Wilk, S. Oz, E. Radicchi, et al., “Green Solvent-Based Perovskite Precursor Development for Ink-Jet Printed Flexible Solar Cells,” ACS Sustainable Chemistry and Engineering 9 (2021): 3920-3930.

[157]

Z. Li, P. Li, G. Chen, et al., “Ink Engineering of Inkjet Printing Perovskite,” ACS Applied Materials and Interfaces 12 (2020): 39082-39091.

[158]

H. Eggers, F. Schackmar, T. Abzieher, et al., “Inkjet-Printed Micrometer-Thick Perovskite Solar Cells With Large Columnar Grains,” Advanced Energy Materials 10 (2020): 1903184.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/