Hyperbaric Oxygen Regulates Tumor pH to Boost Copper-Doped Hydroxyethyl Starch Conjugate Nanoparticles Against Cancer Stem Cells

Qingyuan Deng , Ao Hua , Shiyou Li , Zhijie Zhang , Xiang Chen , Qiang Wang , Xing Wang , Zhiqin Chu , Xiangliang Yang , Zifu Li

Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240080

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240080 DOI: 10.1002/EXP.20240080
RESEARCH ARTICLE

Hyperbaric Oxygen Regulates Tumor pH to Boost Copper-Doped Hydroxyethyl Starch Conjugate Nanoparticles Against Cancer Stem Cells

Author information +
History +
PDF

Abstract

An extracellular acidic environment and an intracellular mildly alkaline environment induced by carbonic anhydrase 9 (CA9) play a critical role in self-renewal, invasion, migration, and drug resistance of cancer stem cells (CSCs) within hypoxic solid tumors. Here, we report an antitumor strategy leveraging hyperbaric oxygen therapy (HBO) to regulate tumor pH and boost hydroxyethyl starch-doxorubicin-copper nanoparticles (HHD-Cu NPs) against CSCs. HBO overcomes tumor hypoxia, downregulates pH-regulatory proteins such as CA9, and leads to intracellular accumulation of acidic metabolites. As a result, HBO promotes intracellular acidification of both tumor cells and CSCs, triggering efficient doxorubicin release and the potent copper-mediated chemical dynamic effect of subsequently administered dual-acid-responsive HHD-Cu NPs. The combination of HBO with HHD-Cu NPs not only eliminates tumor cells but also inhibits CSCs, altogether leading to potent tumor inhibition. This study explores a new function of clinical-widely used HBO and establishes a novel combination therapy for treating CSCs abundant hypoxic solid tumors.

Keywords

cancer stem cells / carbonic anhydrase 9 / hyperbaric oxygen / nanomedicine / tumor pH

Cite this article

Download citation ▾
Qingyuan Deng, Ao Hua, Shiyou Li, Zhijie Zhang, Xiang Chen, Qiang Wang, Xing Wang, Zhiqin Chu, Xiangliang Yang, Zifu Li. Hyperbaric Oxygen Regulates Tumor pH to Boost Copper-Doped Hydroxyethyl Starch Conjugate Nanoparticles Against Cancer Stem Cells. Exploration, 2025, 5(4): e20240080 DOI:10.1002/EXP.20240080

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. A. Loncaster, A. L. Harris, S. E. Davidson, et al., “Carbonic Anhydrase (CA IX) Expression, a Potential New Intrinsic Marker of Hypoxia: Correlations With Tumor Oxygen Measurements and Prognosis in Locally Advanced Carcinoma of the Cervix,” Cancer Research 61 (2001): 6394.

[2]

P. C. McDonald, S. C. Chafe, W. S. Brown, et al., “Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia,” Gastroenterology 157 (2019): 823-837.

[3]

J. Pastorek and S. Pastorekova, “Hypoxia-Induced Carbonic Anhydrase IX as a Target for Cancer Therapy: From Biology to Clinical Use,” Seminars in Cancer Biology 31 (2015): 52-64.

[4]

A. Aspatwar, M. E. E. Tolvanen, H. Barker, et al., “Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology,” Physiological Reviews 102 (2022): 1327-1383.

[5]

C. Corbet and O. Feron, “Tumour Acidosis: From the Passenger to the Driver's Seat,” Nature Reviews Cancer 17 (2017): 577-593.

[6]

P. Swietach, E. Boedtkjer, and S. F. Pedersen, “How Protons Pave the Way to Aggressive Cancers,” Nature Reviews Cancer 23 (2023): 825-841.

[7]

S. K. Parks, J. Chiche, and J. Pouysségur, “Disrupting Proton Dynamics and Energy Metabolism for Cancer Therapy,” Nature Reviews Cancer 13 (2013): 611-623.

[8]

B. A. Webb, M. Chimenti, M. P. Jacobson, and D. L. Barber, “Dysregulated pH: A Perfect Storm for Cancer Progression,” Nature Reviews Cancer 11 (2011): 671-677.

[9]

A. Sarnella, Y. Ferrara, S. Albanese, et al., “Inhibition of Bone Marrow-Mesenchymal Stem Cell-Induced Carbonic Anhydrase IX Potentiates Chemotherapy Efficacy in Triple-Negative Breast Cancer Cells,” Cells-Basel 12 (2023): 298.

[10]

Q. Wang, H. Cao, X. Hou, et al., “Cancer Stem-Like Cells-Oriented Surface Self-Assembly to Conquer Radioresistance,” Advanced Materials 35 (2023): e2302916.

[11]

M. Kim, K. M. Hui, M. Shi, N. Reau, and C. Aloman, “Differential Expression of Hepatic Cancer Stemness and Hypoxia Markers in Residual Cancer After Locoregional Therapies for Hepatocellular Carcinoma,” Hepatology Communications 6 (2022): 3247-3259.

[12]

T. Shibue and R. A. Weinberg, “EMT, CSCs, and Drug Resistance: The Mechanistic Link and Clinical Implications,” Nature Reviews Clinical Oncology 14 (2017): 611-629.

[13]

E. Batlle and H. Clevers, “Cancer Stem Cells Revisited,” Nature Medicine 23 (2017): 1124-1134.

[14]

A. Queen, H. N. Bhutto, M. Yousuf, M. A. Syed, and M. I. Hassan, “Carbonic Anhydrase IX: A Tumor Acidification Switch in Heterogeneity and Chemokine Regulation,” Seminars in Cancer Biology 86 (2022): 899-913.

[15]

M. Flinck, S. H. Kramer, and S. F. Pedersen, “Roles of pH in Control of Cell Proliferation,” Acta Physiologica 223 (2018): e13068.

[16]

K. A. White, D. G. Ruiz, Z. A. Szpiech, et al., “Cancer-Associated Arginine-to-Histidine Mutations Confer a Gain in pH Sensing to Mutant Proteins,” Science Signaling 10 (2017): eaam9931.

[17]

B. C. Prager, Q. Xie, S. Bao, and J. N. Rich, “Cancer Stem Cells: The Architects of the Tumor Ecosystem,” Cell Stem Cell 24 (2019): 41-53.

[18]

Z. Wang, H. Xia, B. Chen, et al., “pH-Amplified CRET Nanoparticles for In Vivo Imaging of Tumor Metastatic Lymph Nodes,” Angewandte Chemie International Edition 60 (2021): 14512-14520.

[19]

X. Wang, J. Wilhelm, W. Li, et al., “Polycarbonate-Based Ultra-pH Sensitive Nanoparticles Improve Therapeutic Window,” Nature Communications 11 (2020): 5828.

[20]

H. S. Jung, J. Han, H. Shi, et al., “Overcoming the Limits of Hypoxia in Photodynamic Therapy: A Carbonic Anhydrase IX-Targeted Approach,” Journal of the American Chemical Society 139 (2017): 7595-7602.

[21]

J. Wang, Z. Sun, S. Wang, et al., “Biodegradable Ferrous Sulfide-Based Nanocomposites for Tumor Theranostics Through Specific Intratumoral Acidosis-Induced Metabolic Symbiosis Disruption,” Journal of the American Chemical Society 144 (2022): 19884-19895.

[22]

J. Zhang, H. Guo, M. Liu, et al., “Recent Design Strategies for Boosting Chemodynamic Therapy of Bacterial Infections,” Exploration 4 (2024): 20230087.

[23]

X. Li, J. F. Lovell, J. Yoon, and X. Chen, “Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer,” Nature Reviews Clinical Oncology 17 (2020): 657-674.

[24]

F. Tong, H. Hu, Y. Xu, et al., “Hollow Copper Sulfide Nanoparticles Carrying ISRIB for the Sensitized Photothermal Therapy of Breast Cancer and Brain Metastases Through Inhibiting Stress Granule Formation and Reprogramming Tumor-Associated Macrophages,” Journal of Pharmaceutical Sciences B 13 (2023): 3471-3488.

[25]

C. Cao, X. Wang, N. Yang, X. Song, and X. Dong, “Recent Advances of Cancer Chemodynamic Therapy Based on Fenton/Fenton-Like Chemistry,” Chemical Science 13 (2022): 863-889.

[26]

J. D. Hayes, A. T. Dinkova-Kostova, and K. D. Tew, “Oxidative Stress in Cancer,” Cancer Cell 38 (2020): 167-197.

[27]

H. S. Jung, S. Koo, M. Won, et al., “Cu(ii)-BODIPY Photosensitizer for CAIX Overexpressed Cancer Stem Cell Therapy,” Chemical Science 14 (2023): 1808-1819.

[28]

Y. Zhou, S. Fan, L. Feng, X. Huang, and X. Chen, “Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic-Synergized Multimodal Therapy,” Advanced Materials 33 (2021): 2104223.

[29]

P. Lin, J. Shi, L. Ming, et al., “An Intelligent Persistent Luminescence Nanoplatform With High-Efficiency O2 Utilization for Continuous Hypoxic Tumors Treatment,” Chemical Engineering Journal 442 (2022): 135638.

[30]

X. Wu, Y. Zhu, W. Huang, et al., “Hyperbaric Oxygen Potentiates Doxil Antitumor Efficacy by Promoting Tumor Penetration and Sensitizing Cancer Cells,” Advanced Science 5 (2018): 1700859.

[31]

X. Liu, N. Ye, C. Xiao, et al., “Hyperbaric Oxygen Regulates Tumor Microenvironment and Boosts Commercialized Nanomedicine Delivery for Potent Eradication of Cancer Stem-Like Cells,” Nano Today 40 (2021): 101248.

[32]

X. Wang, N. Ye, C. Xu, et al., “Hyperbaric Oxygen Regulates Tumor Mechanics and Augments Abraxane and Gemcitabine Antitumor Effects Against Pancreatic Ductal Adenocarcinoma by Inhibiting Cancer-Associated Fibroblasts,” Nano Today 44 (2022): 101458.

[33]

I. Moen and L. E. Stuhr, “Hyperbaric Oxygen Therapy and Cancer—A Review,” Targeted Oncology 7 (2012): 233-242.

[34]

X. Liu, N. Ye, S. Liu, et al., “Hyperbaric Oxygen Boosts PD-1 Antibody Delivery and T Cell Infiltration for Augmented Immune Responses Against Solid Tumors,” Advanced Science 8 (2021): 2100233.

[35]

R. Liu, C. Luo, Z. Pang, et al., “Advances of Nanoparticles as Drug Delivery Systems for Disease Diagnosis and Treatment,” Chinese Chemical Letters 34 (2023): 107518.

[36]

H. Lei, Z. Pei, C. Jiang, and L. Cheng, “Recent Progress of Metal-Based Nanomaterials With Anti-Tumor Biological Effects for Enhanced Cancer Therapy,” Exploration (Beijing) 3 (2023): 20220001.

[37]

Y. Chen, B. Pal, J. E. Visvader, and G. K. Smyth, “Differential Methylation Analysis of Reduced Representation Bisulfite Sequencing Experiments Using edgeR,” F1000 Research 6 (2018): 2055.

[38]

T. Wu, E. Hu, S. Xu, et al., “clusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data,” Innovation 2 (2021): 100141.

[39]

C. Xiao, J. Li, A. Hua, et al., “Hyperbaric Oxygen Boosts Antitumor Efficacy of Copper-Diethyldithiocarbamate Nanoparticles against Pancreatic Ductal Adenocarcinoma by Regulating Cancer Stem Cell Metabolism,” Research 7 (2024): 0335.

[40]

Y. Zhou, L. Tao, J. Qiu, et al., “Tumor Biomarkers for Diagnosis, Prognosis and Targeted Therapy,” Signal Transduction and Targeted 9 (2024): 132.

[41]

M. Feng, Y. Yang, P. He, and Y. Fang, “Spectroscopic Studies of Copper(II) and Iron(II) Complexes of Adriamycin,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 56 (2000): 581-587.

[42]

Y. Xiong, Z. Yong, C. Xu, et al., “Hyperbaric Oxygen Activates Enzyme-Driven Cascade Reactions for Cooperative Cancer Therapy and Cancer Stem Cells Elimination,” Advanced Science 10 (2023): 2301278.

[43]

F. E. Lock, P. C. McDonald, Y. Lou, et al., “Targeting Carbonic Anhydrase IX Depletes Breast Cancer Stem Cells Within the Hypoxic Niche,” Oncogene 32 (2013): 5210-5219.

[44]

V. Plaks, N. Kong, and Z. Werb, “The Cancer Stem Cell Niche: How Essential Is the Niche in Regulating Stemness of Tumor Cells?” Cell Stem Cell 16 (2015): 225-238.

[45]

J. Liu, Y. Tan, H. Zhang, et al., “Soft Fibrin Gels Promote Selection and Growth of Tumorigenic Cells,” Nature Materials 11 (2012): 734-741.

[46]

X. Chen, H. Zhang, M. Zhang, et al., “Amorphous Fe-Based Nanoagents for Self-Enhanced Chemodynamic Therapy by Re-Establishing Tumor Acidosis,” Advanced Functional Materials 30 (2020): 1908365.

[47]

C. Xu, S. Li, J. Chen, et al., “Doxorubicin and Erastin Co-Loaded Hydroxyethyl Starch-Polycaprolactone Nanoparticles for Synergistic Cancer Therapy,” Journal of Controlled Release 356 (2023): 256-271.

[48]

Q. Wang, S. Li, C. Xu, et al., “A Novel Lonidamine Derivative Targeting Mitochondria to Eliminate Cancer Stem Cells by Blocking Glutamine Metabolism,” Pharmacological Research 190 (2023): 106740.

[49]

F. Lucien, P. Pelletier, R. R. Lavoie, et al., “Hypoxia-Induced Mobilization of NHE6 to the Plasma Membrane Triggers Endosome Hyperacidification and Chemoresistance,” Nature Communications 8 (2017): 15884.

[50]

A. Golebiewska, N. H. C. Brons, R. Bjerkvig, and S. P. Niclou, “Critical Appraisal of the Side Population Assay in Stem Cell and Cancer Stem Cell Research,” Cell Stem Cell 8 (2011): 136-147.

[51]

T. K. Lee, X. Y. Guan, and S. Ma, “Cancer Stem Cells in Hepatocellular Carcinoma—From Origin to Clinical Implications,” Nature Reviews Gastroenterology and Hepatology 19 (2022): 26-44.

[52]

O. Thews and A. Riemann, “Tumor pH and Metastasis: A Malignant Process Beyond Hypoxia,” Cancer and Metastasis Reviews 38 (2019): 113-129.

[53]

Z. Chen, F. Han, Y. Du, H. Shi, and W. Zhou, “Hypoxic Microenvironment in Cancer: Molecular Mechanisms and Therapeutic Interventions,” Signal Transduction and Targeted 8 (2023): 70.

[54]

A. Ibrahim Hashim, D. Abrahams, P. M. Enriquez Navas, K. Luddy, R. A. Gatenby, and R. J. Gillies, “Tris-Base Buffer: A Promising New Inhibitor for Cancer Progression and Metastasis,” Cancer Medicine 6 (2017): 1720-1729.

[55]

I. F. Robey, B. K. Baggett, N. D. Kirkpatrick, et al., “Bicarbonate Increases Tumor pH and Inhibits Spontaneous Metastases,” Cancer Research 69 (2009): 2260-2268.

[56]

S. Pilon-Thomas, K. N. Kodumudi, A. E. El-Kenawi, et al., “Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy,” Cancer Research 76 (2016): 1381-1390.

[57]

J. H. Kim, P. Verwilst, M. Won, et al., “A Small Molecule Strategy for Targeting Cancer Stem Cells in Hypoxic Microenvironments and Preventing Tumorigenesis,” Journal of the American Chemical Society 143 (2021): 14115-14124.

[58]

F. Ju, M. M. Atyah, N. Horstmann, et al., “Characteristics of the Cancer Stem Cell Niche and Therapeutic Strategies,” Stem Cell Research & Therapy 13 (2022): 233.

[59]

A. B. Hjelmeland, Q. Wu, J. M. Heddleston, et al., “Acidic Stress Promotes a Glioma Stem Cell Phenotype,” Cell Death and Differentiation 18 (2011): 829-840.

[60]

E. Persi, M. Duran-Frigola, M. Damaghi, et al., “Systems Analysis of Intracellular pH Vulnerabilities for Cancer Therapy,” Nature Communications 9 (2018): 2911.

[61]

J. Wu, N. Liu, J. Chen, et al., “The Tricarboxylic Acid Cycle Metabolites for Cancer: Friend or Enemy,” Research-China 7 (2024): 351.

[62]

S. Damgaci, P. M. Enriquez-Navas, S. Pilon-Thomas, A. Guvenis, R. J. Gillies, and A. Ibrahim-Hashim, “Immunotherapy on Acid: Opportunities and Challenges,” European Journal of Clinical Nutrition 74 (2020): 3-6.

[63]

B. Chen, K. Guo, X. Zhao, et al., “Tumor Microenvironment-Responsive Delivery Nanosystems Reverse Immunosuppression for Enhanced CO Gas/Immunotherapy,” Exploration (Beijing) 3 (2023): 20220140.

[64]

Q. Sun, Z. Hong, C. Zhang, L. Wang, Z. Han, and D. Ma, “Immune Checkpoint Therapy for Solid Tumours: Clinical Dilemmas and Future Trends,” Signal Transduction and Targeted 8 (2023): 320.

[65]

M. Kanehisa, M. Furumichi, Y. Sato, M. Kawashima, and M. Ishiguro-Watanabe, “KEGG for Taxonomy-Based Analysis of Pathways and Genomes,” Nucleic Acids Research 51 (2023): D587-D592.

[66]

P. Pujic, L. Carro, P. Fournier, et al., “Frankia Alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles,” International Journal of Molecular Sciences 24 (2023): 9162.

[67]

P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, “The Sanger FASTQ File Format for Sequences With Quality Scores, and the Solexa/Illumina FASTQ Variants,” Nucleic Acids Research 38 (2010): 1767-1771.

[68]

D. Kim, B. Langmead, and S. L. Salzberg, “HISAT: A Fast Spliced Aligner With Low Memory Requirements,” Nature Methods 12 (2015): 357-360.

[69]

Z. Gu, “Complex Heatmap Visualization,” iMeta 1 (2022): e43.

[70]

C. Xiao, J. Li, X. Wang, et al., “Hydroxyethyl Starch Stabilized Copper-Diethyldithiocarbamate Nanocrystals for Cancer Therapy,” Journal of Controlled Release 356 (2023): 288-305.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/