Applications and Challenges of Auditory Brain-Computer Interfaces in Objective Auditory Assessments for Pediatric Cochlear Implants

Qi Zheng , Yubo Wu , Jianing Zhu , Kunyun Feng , Yanru Bai , Guoping Li , Guangjian Ni

Exploration ›› 2025, Vol. 5 ›› Issue (3) : 20240078

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (3) : 20240078 DOI: 10.1002/EXP.20240078
REVIEW

Applications and Challenges of Auditory Brain-Computer Interfaces in Objective Auditory Assessments for Pediatric Cochlear Implants

Author information +
History +
PDF

Abstract

Cochlear implants (CI) are the premier intervention for individuals with severe to profound hearing impairment. Worldwide, an estimated 600,000 individuals have enhanced their hearing through cochlear implantation, with nearly half being children. The evaluations after implantation are crucial for appropriate clinical interventions and care. Current clinical practice lacks methods to assess the recovery of advanced auditory functions in cochlear-implanted children. Yet, recent advancements in electroencephalographic (EEG) techniques show promise in accurately evaluating auditory rehabilitation in this demographic. This review elucidates the evolution of brain-computer interface (BCI) technology for auditory assessment, focusing primarily on its application in pediatric cochlear implant recipients. Emphasis is placed on promising clinical biomarkers for auditory rehabilitation and the neural adaptability accompanying cortical adjustments after implantation. Additionally, we discuss emerging challenges and prospects in applying BCI technology to these children.

Keywords

auditory brain-computer interface / auditory cortex remodeling / cochlear implant / cross-modal reorganization / objective auditory assessment

Cite this article

Download citation ▾
Qi Zheng, Yubo Wu, Jianing Zhu, Kunyun Feng, Yanru Bai, Guoping Li, Guangjian Ni. Applications and Challenges of Auditory Brain-Computer Interfaces in Objective Auditory Assessments for Pediatric Cochlear Implants. Exploration, 2025, 5(3): 20240078 DOI:10.1002/EXP.20240078

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. S. Wilson, D. L. Tucci, M. H. Merson, and G. M. O'Donoghue, “Global Hearing Health Care: New Findings and Perspectives,” Lancet 390, no. 10111 (2017): 2503-2515.

[2]

B. M. Su and D. K. Chan, “Prevalence of Hearing Loss in US Children and Adolescents Findings from NHANES 1988-2010,” Jama Otolaryngology-Head & Neck Surgery 143, no. 9 (2017): 920-927.

[3]

C. Schmucker, P. Kapp, E. Motschall, J. Loehler, and J. J. Meerpohl, “Prevalence of Hearing Loss and Use of Hearing Aids Among Children and Adolescents in Germany: A Systematic Review,” BMC Public Health [Electronic Resource] 19, no. 1 (2019): 1277.

[4]

A. F. Raza, S. Aryal, and P. Prabhu, “Indicators for Cochlear Implantation in Children With Auditory Neuropathy Spectrum Disorder: A Systematic Review,” International Journal of Pediatric Otorhinolaryngology 174 (2023): 111737.

[5]

X. Yao, H. Liu, J. Si, X. Ding, Y. Zhao, and Y. Zheng, “Research Status and Future Development of Cochlear Reimplantation,” Frontiers in Neuroscience 16 (2022): 824389.

[6]

R. R. S. Sarreal, D. T. Blake, and P. T. Bhatti, “Development and Characterizaion of a Micromagnetic Alternative to Cochlear Implant Electrode Arrays,” IEEE Transactions on Neural Systems and Rehabilitation Engineering 30 (2022): 2116-2125.

[7]

J. P. Rauschecker and R. V. Shannon, “Sending Sound to the Brain,” Science 295, no. 5557 (2002): 1025-1029.

[8]

R. P. Carlyon and T. Goehring, “Cochlear Implant Research and Development in the Twenty-First Century: A Critical Update,” Journal of the Association for Research in Otolaryngology 22, no. 5 (2021): 481-508.

[9]

G. S. G. Géléoc and J. R. Holt, “Sound Strategies for Hearing Restoration,” Science 344, no. 6184 (2014): 1241062.

[10]

M. F. Dorman and P. C. Loizou, “The Identification of Consonants and Vowels by Cochlear Implant Patients Using a 6-Channel Continuous Interleaved Sampling Processor and by Normal-Hearing Subjects Using Simulations of Processors With Two to Nine Channels,” Ear and Hearing 19, no. 2 (1998): 162-166.

[11]

J.-J. Sit, A. M. Simonson, A. J. Oxenham, M. A. Faltys, and R. Sarpeshkar, “A Low-Power Asynchronous Interleaved Sampling Algorithm for Cochlear Implants That Encodes Envelope and Phase Information,” IEEE Transactions on Bio-Medical Engineering 54 (2007), no. 1: 138-149.

[12]

V. Ciocca, A. L. Francis, R. Aisha, and L. Wong, “The Perception of Cantonese Lexical Tones by Early-Deafened Cochlear Implantees,” Journal of the Acoustical Society of America 111, no. 5 (2002): 2250-2256.

[13]

A. J. Oxenham, “Pitch Perception and Auditory Stream Segregation: Implications for Hearing Loss and Cochlear Implants,” Trends in Amplification 12, no. 4 (2008): 316-331.

[14]

A. A. Dror and K. B. Avraham, “Hearing Loss: Mechanisms Revealed by Genetics and Cell Biology,” Annual Review of Genetics 43, no. 1 (2009): 411-437.

[15]

R. Beck, A. Aschendorff, S. Arndt, T. Hildenbrand, A. K. Rauch, and M. C. Ketterer, “Evaluation of Insertion Quality of a Slim Perimodiolar Electrode Array,” European Archives of Oto-Rhino-Laryngology 281, no. 3 (2024): 1215-1220.

[16]

Y. Wang, M. Jiang, Y. Zhu, et al., “Impact of Inner Ear Malformation and Cochlear Nerve Deficiency on the Development of Auditory-Language Network in Children With Profound Sensorineural Hearing Loss,” Elife 12 (2023): e85983.

[17]

M. Medina, F. Di Lella, G. Di Trapani, et al., “Cochlear Implantation Versus Auditory Brainstem Implantation in Bilateral Total Deafness After Head Trauma: Personal Experience and Review of the Literature,” Otology & Neurotology 35, no. 2 (2014): 260-270.

[18]

L. P. Pan, H. Y. Lin, X. Li, and S. Liu, “Systematic Review and Meta-Analysis of Cochlear Implantation in Deaf Patients With Large Vestibular Aqueduct Deformity,” Annals of Palliative Medicine 10, no. 12 (2021): 12598-12606.

[19]

T. Green, A. Faulkner, and S. Rosen, “Spectral and Temporal Cues to Pitch in Noise-Excited Vocoder Simulations of Continuous-Interleaved-Sampling Cochlear Implants,” Journal of the Acoustical Society of America 112, no. 5 (2002): 2155-2164.

[20]

L. M. Friesen, R. V. Shannon, D. Baskent, and X. Wang, “Speech Recognition in Noise as a Function of the Number of Spectral Channels: Comparison of Acoustic Hearing and Cochlear Implants,” Journal of the Acoustical Society of America 110, no. 2 (2001): 1150-1163.

[21]

S. S. Shushtari, F. Fatahi, N. Rouhbakhsh, et al., “Development and Psychometric Evaluation of the Persian Version of the Phoneme Recognition Test a central Auditory Processing Measure,” Iranian Journal of Child Neurology 16, no. 3 (2022): 79-93.

[22]

Y. Chen, L. L. N. Wong, F. Chen, and X. Xi, “Tone and Sentence Perception in Young Mandarin-Speaking Children With Cochlear Implants,” International Journal of Pediatric Otorhinolaryngology 78, no. 11 (2014): 1923-1930.

[23]

J. B. Hinderink, P. F. M. Krabbe, and P. van den Broek, “Development and Application of a Health-Related Quality-of-Life Instrument for Adults With Cochlear Implants: The Nijmegen Cochlear Implant Questionnaire,” Otolaryngology-Head and Neck Surgery 123, no. 6 (2000): 756-765.

[24]

D. Távora-Vieira, A. Wedekind, E. Ffoulkes, M. Voola, and R. Marino, “Cortical Auditory Evoked Potential in Cochlear Implant Users: An Objective Method to Improve Speech Perception,” PLoS ONE 17, no. 10 (2022): e0274643.

[25]

S. Debener, J. Hine, S. Bleeck, and J. Eyles, “Source Localization of Auditory Evoked Potentials After Cochlear Implantation,” Psychophysiology 45, no. 1 (2008): 20-24.

[26]

B. Petersen, E. Weed, P. Sandmann, et al., “Brain Responses to Musical Feature Changes in Adolescent Cochlear Implant Users,” Frontiers in Human Neuroscience 9 (2015): 7.

[27]

W. Nogueira and H. Dolhopiatenko, “Towards Decoding Selective Attention From Single-trial eeg Data in cochlear Implant Users Based on Deep Neural Networks,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (IEEE, 2020): 8708-8712.

[28]

T. Brochier, J. Schlittenlacher, I. Roberts, et al., “From Microphone to Phoneme: An End-to-End Computational Neural Model for Predicting Speech Perception with Cochlear Implants,” IEEE Transactions on Biomedical Engineering 69, no. 11 (2022): 3300-3312.

[29]

M. S. A. do Amaral, N. E. Zamberlan-Amorin, K. D. Mendes, et al., “The P300 Auditory Evoked Potential in Cochlear Implant Users: A Scoping Review,” International Archives of Otorhinolaryngology 27, no. 03 (2023): 518-527.

[30]

T. W. Picton and R. Burkard, “Human Auditory Evoked Potentials Human Auditory Evoked Potentials,” Acoustical Society of America Journal 132, no. 1 (2012): 566.

[31]

R. Naatanen, A. W. Gaillard, and S. Mantysalo, “Early Selective-Attention Effect on Evoked Potential Reinterpreted,” Acta Psychologica 42, no. 4 (1978): 313-329.

[32]

R. Abrahamse, A. Beynon, and V. Piai, “Long-Term Auditory Processing Outcomes in Early Implanted Young Adults With Cochlear Implants: The Mismatch Negativity vs. P300 Response,” Clinical Neurophysiology 132, no. 1 (2021): 258-268.

[33]

L. Bartha-Doering, D. Deuster, V. Giordano, A. am Zehnhoff-Dinnesen, and C. Dobel, “A Systematic Review of the Mismatch Negativity as an Index for Auditory Sensory Memory: From Basic Research to Clinical and Developmental Perspectives,” Psychophysiology 52, no. 9 (2015): 1115-1130.

[34]

K. Mehta, M. Mahon, P. Watkin, J. Marriage, and D. Vickers, “A Qualitative Review of Parents' Perspectives on the Value of CAEP Recording in Influencing Their Acceptance of Hearing Devices for Their Child,” International Journal of Audiology 58, no. 7 (2019): 401-407.

[35]

B. T. Paul, M. D. Bajin, M. Uzelac, et al., “Evidence of Visual Crossmodal Reorganization Positively Relates to Speech Outcomes in Cochlear Implant Users,” Scientific Reports 12, no. 1 (2022): 17749 .

[36]

S. Ghiselli, F. Gheller, P. Trevisi, E. Favaro, A. Martini, and M. Ermani, “Restoration of Auditory Network After Cochlear Implant in Prelingual Deafness: A P300 Study Using LORETA,” Acta Otorhinolaryngologica Italica 40, no. 1 (2020): 64-71.

[37]

K. A. Gordon, C. Anderson, S. Jiwani, et al., “Non-auditory Processing of Cochlear Implant Stimulation After Unilateral Auditory Deprivation in Children,” Journal of the Acoustical Society of America 153, no. 3 (2023): A205.

[38]

D. S. Lazard, K. B. Doelling, and L. H. Arnal, “Plasticity after Hearing Rehabilitation in the Aging Brain,” Trends in Hearing 27 (2023): 23312165231156412.

[39]

A. G. Maglione, A. Scorpecci, P. Malerba, et al., “Alpha EEG Frontal Asymmetries During Audiovisual Perception in Cochlear Implant Users a Study With Bilateral and Unilateral Young Users,” Methods of Information in Medicine 54, no. 6 (2015): 500-504.

[40]

C. Turgeon, L. Lazzouni, F. Lepore, and D. Ellemberg, “An Objective Auditory Measure to Assess Speech Recognition in Adult Cochlear Implant Users,” Clinical Neurophysiology 125, no. 4 (2014): 827-835.

[41]

T. W. Picton, S. Bentin, P. Berg, et al., “Guidelines for Using Human Event-Related Potentials to Study Cognition: Recording Standards and Publication Criteria,” Psychophysiology 37, no. 2 (2000): 127-152.

[42]

E. Ofek and H. Pratt, “The Effects of Subjectively Significant Stimuli on Subsequent Cognitive Brain Activity,” Physiology & Behavior 105, no. 2 (2012): 428-442.

[43]

J. L. Wunderlich, B. K. Cone-Wesson, and R. Shepherd, “Maturation of the Cortical Auditory Evoked Potential in Infants and Young Children,” Hearing Research 212, no. 1 (2006): 185-202.

[44]

R. Naatanen and T. W. Picton, “N2 and Automatic Versus Controlled Processes,” Electroencephalography and Clinical Neurophysiology Supplement 38 (1986): 169-186.

[45]

M. Kutas and S. A. Hillyard, “Reading Senseless Sentences: Brain Potentials Reflect Semantic Incongruity,” Science 207, no. 4427 (1980): 203-205.

[46]

G. J. Ni, Q. Zheng, Y. D. Liu, et al., “Objective Electroencephalography-Based Assessment for Auditory Rehabilitation of Pediatric Cochlear Implant Users,” Hearing Research 404 (2021): 108211.

[47]

A. X. Hang, P. A. Roush, H. F. B. Teagle, et al., “Is “No Response” on Diagnostic Auditory Brainstem Response Testing an Indication for Cochlear Implantation in Children?,” Ear and Hearing 36, no. 1 (2015): 8-13.

[48]

C. J. Brown, E. K. Jeon, L. K. Chiou, et al., “Cortical Auditory Evoked Potentials Recorded from Nucleus Hybrid Cochlear Implant Users,” Ear and Hearing 36, no. 6 (2015): 723-732.

[49]

K. F. Alvarenga, R. B. Amorim, R. S. Agostinho-Pesse, O. A. Costa, L. T. Nascimento, and M. C. Bevilacqua, “Speech Perception and Cortical Auditory Evoked Potentials in Cochlear Implant Users With Auditory Neuropathy Spectrum Disorders,” International Journal of Pediatric Otorhinolaryngology 76, no. 9 (2012): 1332-1338.

[50]

A. Sharma, M. F. Dorman, and A. J. Spahr, “A Sensitive Period for the Development of the central Auditory System in Children With Cochlear Implants: Implications for Age of Implantation,” Ear and Hearing 23, no. 6 (2002): 532-539.

[51]

C. W. Ponton, M. Don, J. J. Eggermont, M. D. Waring, and A. Masuda, “Maturation of Human Cortical Auditory Function: Differences Between Normal-Hearing Children and Children With Cochlear Implants,” Ear and Hearing 17, no. 5 (1996): 430-437.

[52]

S. P and M. P, “Exploring the Relationship Between Auditory Late Latency Response and Language Age in Children Using Cochlear Implant,” International Journal of Pediatric Otorhinolaryngology 180 (2024): 111968.

[53]

L. A. F. Silva, M. I. V. Couto, R. K. Tsuji, R. F. Bento, C. G. Matas, and A. C. M. de Carvalho, “Auditory Pathways' maturation After Cochlear Implant via Cortical Auditory Evoked Potentials,” Brazilian Journal of Otorhinolaryngology 80, no. 2 (2014): 131-137.

[54]

G. Rance, B. Cone-Wesson, J. Wunderlich, and R. Dowell, “Speech Perception and Cortical Event Related Potentials in Children With Auditory Neuropathy,” Ear and Hearing 23, no. 3 (2002): 239-253.

[55]

K. Steinmetzger, B. Meinhardt, M. Praetorius, M. Andermann, and A. Rupp, “A Direct Comparison of Voice Pitch Processing in Acoustic and Electric Hearing,” Neuroimage-Clinical 36 (2022): 103188.

[56]

D. Mao, H. Innes-Brown, M. A. Petoe, Y. T. Wong, and C. M. McKay, “Fully Objective Hearing Threshold Estimation in Cochlear Implant Users Using Phase-Locking Value Growth Functions,” Hearing Research 377 (2019): 24-33.

[57]

D. Távora-Vieira, A. Wedekind, R. Marino, S. C. Purdy, and G. P. Rajan, “Using Aided Cortical Assessment as an Objective Tool to Evaluate Cochlear Implant Fitting in Users With Single-Sided Deafness,” PLoS ONE 13, no. 2 (2018): e0193081.

[58]

J. R. Lepock, R. Mizrahi, M. Korostil, R. M. Bagby, E. W. Pang, and M. Kiang, “Event-Related Potentials in the Clinical High-Risk (CHR) State for Psychosis: A Systematic Review,” Clinical EEG and Neuroscience 49, no. 4 (2018): 215-225.

[59]

A. J. Gaebler, K. Mathiak, J. W. Koten, et al., “Auditory Mismatch Impairments are Characterized by Core Neural Dysfunctions in Schizophrenia,” Brain 138 (2015): 1410-1423.

[60]

M. F. Fu, L. Y. Wang, M. C. Zhang, Y. Yang, and X. B. Sun, “A Mismatch Negativity Study in Mandarin-Speaking Children With Sensorineural Hearing Loss,” International Journal of Pediatric Otorhinolaryngology 91 (2016): 128-140.

[61]

A. Koravand, B. Jutras, and M. Lassonde, “Auditory Event Related Potentials in Children With Peripheral Hearing Loss,” Clinical Neurophysiology 124, no. 7 (2013): 1439-1447.

[62]

M. J. Liang, X. Y. Zhang, T. Chen, et al., “Evaluation of Auditory Cortical Development in the Early Stages of Post Cochlear Implantation Using Mismatch Negativity Measurement,” Otology & Neurotology 35, no. 1 (2014): E7-E14.

[63]

M. L. D. Deroche, J. Wolfe, S. Neumann, et al., “Auditory Evoked Response to an Oddball Paradigm in Children Wearing Cochlear Implants,” Clinical Neurophysiology 149 (2023): 133-145.

[64]

A. S. Abramson, “Static and Dynamic Acoustic Cues in Distinctive Tones,” Language and Speech 21, no. 4 (1978): 319-325.

[65]

C. J. Limb and A. T. Roy, “Technological, Biological, and Acoustical Constraints to Music Perception in Cochlear Implant Users,” Hearing Research 308 (2014): 13-26.

[66]

R. Torppa, M. Huotilainen, M. Leminen, J. Lipsanen, and M. Tervaniemi, “Interplay Between Singing and Cortical Processing of Music: A Longitudinal Study in Children With Cochlear Implants,” Frontiers in Psychology 5 (2014): 1389.

[67]

S. Koelsch, M. Wittfoth, A. Wolf, J. Müller, and A. Hahne, “Music Perception in Cochlear Implant Users: An Event-Related Potential Study,” Clinical Neurophysiology 115, no. 4 (2004): 966-972.

[68]

N. T. Haumann, B. Petersen, A. S. F. Andersen, K. F. Faulkner, E. Brattico, and P. Vuust, “Mismatch Negativity as a Marker of Music Perception in Individual Cochlear Implant Users: A Spike Density Component Analysis Study,” Clinical Neurophysiology 148 (2023): 76-92.

[69]

J. Q. Cai, Y. M. Liu, M. Y. Yao, M. Q. Xu, and H. Z. Zhang, “A Neurophysiological Study of Musical Pitch Identification in Mandarin-Speaking Cochlear Implant Users,” Neural Plasticity 2020 (2020): 4576729.

[70]

T. Rahne, S. K. Plontke, and L. Wagner, “Mismatch Negativity (MMN) Objectively Reflects Timbre Discrimination Thresholds in Normal-hearing Listeners and Cochlear Implant Users,” Brain Research 1586 (2014): 143-151.

[71]

M. Sharda, C. Tuerk, R. Chowdhury, et al., “Music Improves Social Communication and Auditory-Motor Connectivity in Children With Autism,” Translational Psychiatry 8 (2018): 231.

[72]

E. A. Miendlarzewska and W. J. Trost, “How Musical Training Affects Cognitive Development: Rhythm, Reward and Other Modulating Variables,” Frontiers in Neuroscience 7 (2014): 279.

[73]

C. Pantev, A. Dinnesen, B. Ross, A. Wollbrink, and A. Knief, “Dynamics of Auditory Plasticity After Cochlear Implantation: A Longitudinal Study,” Cerebral Cortex 16, no. 1 (2006): 31-36.

[74]

C. Pantev, R. Oostenveld, A. Engelien, B. Ross, L. E. Roberts, and M. Hoke, “Increased Auditory Cortical Representation in Musicians,” Nature 392, no. 6678 (1998): 811-814.

[75]

K. L. Hyde, J. Lerch, A. Norton, et al., “The Effects of Musical Training on Structural Brain Development a Longitudinal Study,” in Neurosciences and Music III: Disorders and Plasticity, ed. S. DallaBella, et al. (New York Academy of Sciences, 2009): 182-186.

[76]

F. W. Zhang, C. Benson, and Q. J. Fu, “Cortical Encoding of Pitch Contour Changes in Cochlear Implant Users: A Mismatch Negativity Study,” Audiology and Neuro-Otology 18, no. 5 (2013): 275-288.

[77]

F. Hsiao, “Mandarin Melody Recognition by Pediatric Cochlear Implant Recipients,” Journal of Music Therapy 45, no. 4 (2008): 390-404.

[78]

X. T. Cheng, Y. W. Y. Liu, Y. L. Shu, et al., “Music Training Can Improve Music and Speech Perception in Pediatric Mandarin-Speaking Cochlear Implant Users,” Trends in Hearing 22 (2018): 2331216518759214.

[79]

J. Kosaner, A. Kilinc, and M. Deniz, “Developing a Music Programme for Preschool Children With Cochlear Implants,” Cochlear Implants International 13, no. 4 (2012): 237-247.

[80]

M. Friedrich and A. D. Friederici, “Word Learning in 6-Month-Olds: Fast Encoding-Weak Retention,” Journal of Cognitive Neuroscience 23, no. 11 (2011): 3228-3240.

[81]

B. M. S. Inguscio, G. Cartocci, N. Sciaraffa, et al., “Two Are Better Than One: Differences in Cortical EEG Patterns During Auditory and Visual Verbal Working Memory Processing Between Unilateral and Bilateral Cochlear Implanted Children,” Hearing Research 446 (2024): 109007.

[82]

Z. Hu, J. Q. Sun, R. R. Guan, L. Chen, J. W. Sun, and X. T. Guo, “Deficient Sensory and Cognitive Processing in Children With Cochlear Implants: An Event-related Potential Study,” Hearing Research 408 (2021): 108295.

[83]

P. Kallioinen, J. Olofsson, C. N. von Mentzer, et al., “Semantic Processing in Deaf and Hard-of-Hearing Children: Large N400 Mismatch Effects in Brain Responses, Despite Poor Semantic Ability,” Frontiers in Psychology 7 (2016): 1146.

[84]

N. K. Vavatzanidis, D. Mürbe, A. D. Friederici, and A. Hahne, “Establishing a Mental Lexicon With Cochlear Implants: An ERP Study With Young Children,” Scientific Reports 8 (2018): 910.

[85]

S. J. Wang, M. Lin, L. W. Sun, et al., “Neural Mechanisms of Hearing Recovery for Cochlear-Implanted Patients: An Electroencephalogram Follow-Up Study,” Frontiers in Neuroscience 14 (2021):624484.

[86]

S. Wang, C. Li, Y. Liu, et al., “Features of Beta-Gamma Phase-Amplitude Coupling in Cochlear Implant Users Derived From EEG,” Hearing Research 428 (2023): 108668.

[87]

A. Obrycka, A. Lorens, J.-L. Padilla García, A. Piotrowska, and H. Skarzynski, “Validation of the LittlEARS Auditory Questionnaire in Cochlear Implanted Infants and Toddlers,” International Journal of Pediatric Otorhinolaryngology 93 (2017): 107-116.

[88]

G. Zhang, L.-C. Xu, M.-F. Zhang, et al., “Changes of the Brain Causal Connectivity Networks in Patients with Long-Term Bilateral Hearing Loss,” Frontiers in Neuroscience 15 (2021): 628866.

[89]

B. E. Butler and S. G. Lomber, “Functional and Structural Changes Throughout the Auditory System Following Congenital and Early-Onset Deafness: Implications for Hearing Restoration,” Frontiers in Systems Neuroscience 7 (2013): 92.

[90]

A. Kral and G. M. O'Donoghue, “Profound Deafness in Childhood,” New England Journal of Medicine 363 (2010): 1438-1450.

[91]

X. Zhou, M. Feng, Y. Hu, et al., “The Effects of Cortical Reorganization and Applications of Functional Near-Infrared Spectroscopy in Deaf People and Cochlear Implant Users,” Brain Sciences 12, no. 9 (2022): 1150.

[92]

M. Sur, “Rewiring Cortex: Cross-Modal Plasticity and Its Implications for Cortical Development and Function,” in Handbook of Multisensory Processing (MIT Press, 2004), 681-694.

[93]

L. Xu, C. D. Wang, M. J. Liang, Y. X. Cai, and Y. Q. Zheng, “Brain Network Regional Synchrony Analysis in Deafness,” BioMed Research International 2018 (2018): 1-11.

[94]

M. J. Polonenko, B. C. Papsin, and K. A. Gordon, “Delayed Access to Bilateral Input Alters Cortical Organization in Children With Asymmetric Hearing,” Neuroimage-Clinical 17 (2018): 415-425.

[95]

H. J. Lee, D. Smieja, M. J. Polonenko, S. L. Cushing, B. C. Papsin, and K. A. Gordon, “Consistent and Chronic Cochlear Implant Use Partially Reverses Cortical Effects of Single Sided Deafness in Children,” Scientific Reports 10, no. 1 (2020): 21526.

[96]

D. A. Smieja, B. T. Dunkley, B. C. Papsin, et al., “Interhemispheric Auditory Connectivity Requires Normal Access to Sound in Both Ears During Development,” Neuroimage 208 (2020): 116455.

[97]

K. A. Gordon, D. D. E. Wong, and B. C. Papsin, “Bilateral Input Protects the Cortex From Unilaterally-Driven Reorganization in Children Who Are Deaf,” Brain 136 (2013): 1609-1625.

[98]

D. V. M. Bishop, “Cerebral Asymmetry and Language Development: Cause, Correlate, or Consequence?,” Science 340, no. 6138 (2013): 1230531.

[99]

C. A. Anderson, S. L. Cushing, B. C. Papsin, and K. A. Gordon, “Cortical Imbalance Following Delayed Restoration of Bilateral Hearing in Deaf Adolescents,” Human Brain Mapping 43, no. 12 (2022): 3662-3679.

[100]

D. P. Corina, S. Coffey-Corina, E. Pierotti, K. Mankel, and L. M. Miller, “Electrophysiological Study of Visual Processing in Children With Cochlear Implants,” Neuropsychologia 194 (2024): 108774.

[101]

M. Stropahl and S. Debener, “Auditory Cross-Modal Reorganization in Cochlear Implant Users Indicates Audio-Visual Integration,” Neuroimage-Clinical 16 (2017): 514-523.

[102]

A. Weglage, N. Layer, H. Meister, et al., “Changes in Visually and Auditory Attended Audiovisual Speech Processing in Cochlear Implant Users: A Longitudinal ERP Study,” Hearing Research 447 (2024): 109023.

[103]

J. Campbell and A. Sharma, “Visual Cross-Modal Re-Organization in Children With Cochlear Implants,” PLoS ONE 11, no. 1 (2016): e0147793.

[104]

G. Cardon and A. Sharma, “Somatosensory Cross-Modal Reorganization in Children with Cochlear Implants,” Frontiers in Neuroscience 13 (2019): 469.

[105]

K. Y. Lai, J. H. Liu, J. B. Wang, Y. Q. Zheng, M. J. Liang, and S. P. Wang, “Resting-State EEG Reveals Global Network Deficiency in Prelingually Deaf Children With Late Cochlear Implantation,” Frontiers in Pediatrics 10 (2022): 909069.

[106]

J. B. Erhardt, E. Fuhrer, O. G. Gruschke, et al., “Should Patients With Brain Implants Undergo MRI?,” Journal of Neural Engineering 15, no. 4 (2018): 041002.

[107]

S. H. Oh, C. S. Kim, E. J. Kang, et al., “Speech Perception After Cochlear Implantation Over a 4-Year Time Period,” Acta Oto-Laryngologica 123, no. 2 (2003): 148-153.

[108]

R. Grech, T. Cassar, J. Muscat, et al., “Review on Solving the Inverse Problem in EEG Source Analysis,” Journal of Neuroengineering and Rehabilitation 5 (2019): 32.

[109]

C. Pantev, A. Dinnesen, B. Ross, A. Wollbrink, and A. Knief, “Dynamics of Auditory Plasticity After Cochlear Implantation: A Longitudinal Study,” Cerebral Cortex 16, no. 1 (2005): 31-36.

[110]

J. H. Han, H. J. Lee, H. Kang, S. H. Oh, and D. S. Lee, “Brain Plasticity Can Predict the Cochlear Implant Outcome in Adult-Onset Deafness,” Frontiers in Human Neuroscience 13 (2019): 38.

[111]

S. Baillet, “Magnetoencephalography for Brain Electrophysiology and Imaging,” Nature Neuroscience 20 (2017): 327-339.

[112]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short Separation Channel Location Impacts the Performance of Short Channel Regression in NIRS,” Neuroimage 59, no. 3 (2012): 2518-2528.

[113]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, and M. Wolf, “A Review on Continuous Wave Functional Near-Infrared Spectroscopy and Imaging Instrumentation and Methodology,” Neuroimage 85, no. Pt 1 (2014): 6-27.

[114]

R. Gransier, F. Guérit, R. P. Carlyon, and J. Wouters, “Frequency Following Responses and Rate Change Complexes in Cochlear Implant Users,” Hearing Research 404 (2021): 108200.

[115]

B. Intartaglia, A. G. Zeitnouni, and A. Lehmann, “Recording EEG in Cochlear Implant Users: Guidelines for Experimental Design and Data Analysis for Optimizing Signal Quality and Minimizing Artifacts,” Journal of Neuroscience Methods 375 (2022): 109592.

[116]

R. Alemi, J. Wolfe, S. Neumann, et al., “Audiovisual Integration in Children With Cochlear Implants Revealed Through EEG and fNIRS,” Brain Research Bulletin 205 (2023): 110817.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/