Understanding the Engineering Tactics to Achieve the Stabilized Anode in Next-Generation Zn-Air Batteries

Subramani Surendran , Yoongu Lim , Seona Lee , Sebastian Cyril Jesudass , Gnanaprakasam Janani , Heechae Choi , Gibum Kwon , Kyoungsuk Jin , Uk Sim

Exploration ›› 2025, Vol. 5 ›› Issue (3) : 20240054

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (3) : 20240054 DOI: 10.1002/EXP.20240054
REVIEW

Understanding the Engineering Tactics to Achieve the Stabilized Anode in Next-Generation Zn-Air Batteries

Author information +
History +
PDF

Abstract

The modern technical era demands sustainable and green energy production and storage methods that overcome the limitations of conventional fuel resources. Electrochemical energy storage (ECS) technologies are widely anticipated to store and release energy on repeated cycles for domestic and commercial utilization. Several ECS devices were developed over the years to achieve higher energy density and energy sustainability. Zn-air batteries are developed to deliver higher energy density and their lower maintenance, flexibility, and rechargeability made them the significant sustainable energy device. However, the Zn anodes face several issues due to dendrite formation during several discharge cycles, HER at higher negative potentials, and corrosion behavior. Therefore, Zn-anode design strategies and significant electrolyte modifications were adopted to limit the critical issues. The review promptly exhibits the significance of Zn-air battery and their construction strategies. The present review highlights the rational design strategies for the stabilization of the Zn anode, such as coating with a passive layer, heterostructure and alloy-composite formation, and the major electrolyte modifications, such as using organic electrolytes, additives in aqueous electrolytes, and solid-state polymer gel electrolytes. The review is expected to attract a wide range of readers, from beginners to industrialists, which serve as a guide for developing Zn-air batteries.

Keywords

anode stabilization / electrolyte / energy storage / surface engineering strategy / zinc-air battery

Cite this article

Download citation ▾
Subramani Surendran, Yoongu Lim, Seona Lee, Sebastian Cyril Jesudass, Gnanaprakasam Janani, Heechae Choi, Gibum Kwon, Kyoungsuk Jin, Uk Sim. Understanding the Engineering Tactics to Achieve the Stabilized Anode in Next-Generation Zn-Air Batteries. Exploration, 2025, 5(3): 20240054 DOI:10.1002/EXP.20240054

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, et al., “Electrochemical Energy Storage for Green Grid,” Chemical Reviews 111 (2011): 3577-3613.

[2]

J. B. Goodenough, “Electrochemical Energy Storage in a Sustainable Modern Society,” Energy & Environmental Science 7 (2014): 14-18.

[3]

R. Zhang, H. Si, Q. Hu, et al., “Hydrangea Macrophylla-Like CeO2 Coated by Nitrogen-Doped Carbon as Highly Efficient ORR Cathode Catalyst in a Hybrid Proton Battery,” Electronic Materials Letters 20, no. 6 (2024): 807-817, https://doi.org/10.1007/s13391-024-00515-x.

[4]

J. Liu, J.-G. Zhang, Z. Yang, et al., “Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid,” Advanced Functional Materials 23 (2013): 929-946.

[5]

L. Zhang, X. Hu, Z. Wang, et al., “Hybrid Electrochemical Energy Storage Systems: An Overview for Smart Grid and Electrified Vehicle Applications,” Renewable and Sustainable Energy Reviews 139 (2021): 110581.

[6]

H. Ritchie, “Sector by Sector: Where do Global Greenhouse Gas Emissions Come From?,” Our World in Data, accessed September 18, 2020, https://ourworldindata.org/ghg-emissions-by-sector.

[7]

D. Larcher and J. M. Tarascon, “Towards Greener and More Sustainable Batteries for Electrical Energy Storage,” Nature Chemistry 7 (2015): 19-29.

[8]

Y. Liang, C.-Z. Zhao, H. Yuan, et al., “A Review of Rechargeable Batteries for Portable Electronic Devices,” InfoMat 1 (2019): 6-32.

[9]

M. Asmare Alemu, A. Ketema Worku, and M. Zegeye Getie, “Recent Advancement of Electrically Rechargeable Alkaline Metal-Air Batteries for Future Mobility,” Results in Chemistry 6 (2023): 101048.

[10]

K. Kordesch, J. Gsellmann, M. Cifrain, et al., “Intermittent Use of a Low-Cost Alkaline Fuel Cell-Hybrid System for Electric Vehicles,” Journal of Power Sources 80 (1999): 190-197.

[11]

E. J. Cairns and P. Albertus, “Batteries for Electric and Hybrid-Electric Vehicles,” Annual Review of Chemical and Biomolecular Engineering 1 (2010): 299-320.

[12]

J. B. Goodenough and M. H. Braga, “Batteries for Electric Road Vehicles,” Dalton Transactions 47 (2018): 645-648.

[13]

J.-N. Liu, C.-X. Zhao, J. Wang, D. Ren, B.-Q. Li, and Q. Zhang, “A Brief History of Zinc-Air Batteries: 140 Years of Epic Adventures,” Energy & Environmental Science 15 (2022): 4542-4553.

[14]

N.-Q. Meng, Y.-X. Fan, and J.-S. Cai, “Zn-Air Batteries for Electric Vehicles,” Tungsten 6, no. 1 (2024): 164-173.

[15]

W. Li, Y. Wang, R. Liu, W. Chen, H. Zhang, and Z. Zhang, “Gel Polymer-Based Composite Solid-State Electrolyte for Long-Cycle-Life Rechargeable Zinc-Air Batteries,” ACS Sustainable Chemistry & Engineering 11 (2023): 3732-3739.

[16]

G. Nam, H. Jang, J. Sung, et al., “Evaluation of the Volumetric Activity of the Air Electrode in a Zinc-Air Battery Using a Nitrogen and Sulfur Co-Doped Metal-Free Electrocatalyst,” ACS Applied Materials & Interfaces 12 (2020): 57064-57070.

[17]

H. Pang, M. Wang, P. Sun, et al., “Super-assembled Compressible Carbon Frameworks Featuring Enriched Heteroatom Defect Sites for Flexible Zn-Air Batteries,” NPG Asia Materials 15 (2023): 15.

[18]

W. Sun, V. Küpers, F. Wang, P. Bieker, and M. Winter, “A Non-Alkaline Electrolyte for Electrically Rechargeable Zinc-Air Batteries With Long-Term Operation Stability in Ambient Air,” Angewandte Chemie International Edition 61 (2022): e202207353.

[19]

H. Zhang, Z. Qu, H. Tang, et al., “On-Chip Integration of a Covalent Organic Framework-Based Catalyst Into a Miniaturized Zn-Air Battery With High Energy Density,” ACS Energy Letters 6 (2021): 2491-2498.

[20]

M. Baumann, L. Barelli, and S. Passerini, “The Potential Role of Reactive Metals for a Clean Energy Transition,” Advanced Energy Materials 10 (2020): 2001002.

[21]

M. Baumann, J. F. Peters, M. Weil, and A. Grunwald, “CO2 Footprint and Life-Cycle Costs of Electrochemical Energy Storage for Stationary Grid Applications,” Energy Technology 5 (2017): 1071-1083.

[22]

J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, and Z. Chen, “Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives,” Advanced Materials 29 (2017): 1604685.

[23]

J. Fu, R. Liang, G. Liu, et al., “Recent Progress in Electrically Rechargeable Zinc-Air Batteries,” Advanced Materials 31 (2019): 1805230.

[24]

D. Stock, S. Dongmo, J. Janek, and D. Schröder, “Benchmarking Anode Concepts: The Future of Electrically Rechargeable Zinc-Air Batteries,” ACS Energy Letters 4 (2019): 1287-1300.

[25]

R. Khezri, S. Rezaei Motlagh, M. Etesami, et al., “Stabilizing Zinc Anodes for Different Configurations of Rechargeable Zinc-Air Batteries,” Chemical Engineering Journal 449 (2022): 137796.

[26]

K. W. Leong, Y. Wang, M. Ni, W. Pan, S. Luo, and D. Y. C. Leung, “Rechargeable Zn-Air Batteries: Recent Trends and Future Perspectives,” Renewable and Sustainable Energy Reviews 154 (2022): 111771.

[27]

V. K. Arepalli, E. Yang, and C.-H. Chung, “Enhanced Light-Scattering Properties of Aqueous Chemical Bath Deposited ZnO Nanowires: Influence of Zinc Source Concentration,” Electronic Materials Letters (2025), https://doi.org/10.1007/s13391-025-00545-z.

[28]

S. Boonphan, S. Prachakiew, A. Prasatkhetragarn, and A. Klinbumrung, “Investigation of Crystallography and Charge Transfer Dynamics of CeO2-ZnO Nanocomposites Prepared via Facial Thermal Decomposition,” Electronic Materials Letters (2024), https://doi.org/10.1007/s13391-024-00539-3.

[29]

K. Chen, D.-Y. Yang, G. Huang, and X.-B. Zhang, “Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization,” Accounts of Chemical Research 54 (2021): 632-641.

[30]

S. A. Freunberger, Y. Chen, Z. Peng, et al., “Reactions in the Rechargeable Lithium-O2 Battery With Alkyl Carbonate Electrolytes,” Journal of the American Chemical Society 133 (2011): 8040-8047.

[31]

Y. Chen, S. A. Freunberger, Z. Peng, F. Bardé, and P. G. Bruce, “LiO2 Battery With a Dimethylformamide Electrolyte,” Journal of the American Chemical Society 134 (2012): 7952-7957.

[32]

D. Xu, Z.-l. Wang, J.-j. Xu, L.-l. Zhang, and X.-b. Zhang, “Novel DMSO-Based Electrolyte for high Performance Rechargeable LiO2 Batteries,” Chemical Communications 48 (2012): 6948-6950.

[33]

A. A. Uludağ, M. Tokur, H. Algul, T. Cetinkaya, M. Uysal, and H. Akbulut, “High Stable Li-Air Battery Cells by Using PEO and PVDF Additives in the TEGDME/LiPF6 Electrolytes,” International Journal of Hydrogen Energy 41 (2016): 6954-6964.

[34]

F. Bardé, Y. Chen, L. Johnson, S. Schaltin, J. Fransaer, and P. G. Bruce, “Sulfone-Based Electrolytes for Nonaqueous Li-O2 Batteries,” Journal of Physical Chemistry C 118 (2014): 18892-18898.

[35]

F. Wang, H. Chen, Q. Wu, et al., “Study on the Mixed Electrolyte of N, N-Dimethylacetamide/Sulfolane and Its Application in Aprotic Lithium-Air Batteries,” ACS Omega 2 (2017): 236-242.

[36]

M. Iliksu, A. Khetan, S. Yang, U. Simon, H. Pitsch, and D. U. Sauer, “Elucidation and Comparison of the Effect of LiTFSI and LiNO3 Salts on Discharge Chemistry in Nonaqueous Li-O2 Batteries,” ACS Applied Materials & Interfaces 9 (2017): 19319-19325.

[37]

S. S. Zhang, K. Xu, and J. Read, “A Non-Aqueous Electrolyte for the Operation of Li/Air Battery in Ambient Environment,” Journal of Power Sources 196 (2011): 3906-3910.

[38]

X. Lin, Q. Sun, H. Yadegari, et al., “On the Cycling Performance of Na-O2 Cells: Revealing the Impact of the Superoxide Crossover Toward the Metallic Na Electrode,” Advanced Functional Materials 28 (2018): 1801904.

[39]

V. S. Dilimon, C. Hwang, Y.-G. Cho, et al., “Superoxide Stability for Reversible Na-O2 Electrochemistry,” Scientific Reports 7 (2017): 17635.

[40]

S. Wu, Y. Qiao, K. Jiang, Y. He, S. Guo, and H. Zhou, “Tailoring Sodium Anodes for Stable Sodium-Oxygen Batteries,” Advanced Functional Materials 28 (2018): 1706374.

[41]

J.-l. Ma, F.-l. Meng, Y. Yu, et al., “Prevention of Dendrite Growth and Volume Expansion to Give High-Performance Aprotic Bimetallic Li-Na Alloy-O2 Batteries,” Nature Chemistry 11 (2019): 64-70.

[42]

X. Lin, F. Sun, Q. Sun, et al., “O2/O2 Crossover and Dendrite-Free Hybrid Solid-State NaO2 Batteries,” Chemistry of Materials 31 (2019): 9024-9031.

[43]

S. K. Das, S. Xu, and L. A. Archer, “Carbondioxide Assist for Non-Aqueous Sodium-Oxygen Batteries,” Electrochemistry Communications 27 (2013): 59-62.

[44]

Y. Zhang, N. Ortiz-Vitoriano, B. Acebedo, et al., “Elucidating the Impact of Sodium Salt Concentration on the Cathode-Electrolyte Interface of Na-Air Batteries,” Journal of Physical Chemistry C 122 (2018): 15276-15286.

[45]

X. Liu, X. Lei, Y.-G. Wang, and Y. Ding, “Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na-Air Batteries,” ACS Central Science 7 (2021): 335-344.

[46]

X. Guo and G. He, “Opportunities and Challenges of Zinc Anodes in Rechargeable Aqueous Batteries,” Journal of Materials Chemistry A 11 (2023): 11987-12001.

[47]

A. G. Olabi, E. T. Sayed, T. Wilberforce, et al., “Metal-Air Batteries—A Review,” Energies 14, no. 21 (2021): 7373.

[48]

J. Pan, Y. Y. Xu, H. Yang, Z. Dong, H. Liu, and B. Y. Xia, “Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries,” Advanced Science 5 (2018): 1700691.

[49]

X. X. Wang, X. Yang, H. Liu, et al., “Air Electrodes for Flexible and Rechargeable Zn-Air Batteries,” Small Structures 3 (2022): 2100103.

[50]

J.-S. Lee, S. Tai Kim, R. Cao, et al., “Metal-Air Batteries With High Energy Density: Li-Air versus Zn-Air,” Advanced Energy Materials 1 (2011): 34-50.

[51]

W. Lao-Atiman, K. Bumroongsil, A. Arpornwichanop, P. Bumroongsakulsawat, S. Olaru, and S. Kheawhom, “Model-Based Analysis of an Integrated Zinc-Air Flow Battery/Zinc Electrolyzer System,” Frontiers in Energy Research 7 (2019): 15.

[52]

I. Dincer and O. Siddiqui, “Analysis and Modeling” in Ammonia Fuel Cells, ed. I. Dincer and O. Siddiqui (Elsevier, 2020), 123-156.

[53]

D. Jiao, Z. Ma, J. Li, et al., “Test Factors Affecting the Performance of Zinc-Air Battery,” Journal of Energy Chemistry 44 (2020): 1-7.

[54]

R. Nandan, O. Y. Bisen, and K. K. Nanda, “The Untold Tale of the ORR Polarization Curve,” Journal of Physical Chemistry C 125 (2021): 10378-10385.

[55]

Y. Li and H. Dai, “Recent Advances in Zinc-Air Batteries,” Chemical Society Reviews 43 (2014): 5257-5275.

[56]

J. W. Diggle, A. R. Despic, and J. O. M. Bockris, “The Mechanism of the Dendritic Electrocrystallization of Zinc,” Journal of The Electrochemical Society 116 (1969): 1503.

[57]

K. I. Popov, M. D. Maksimović, J. D. Trnjančev, and M. G. Pavlović, “Dendritic Electrocrystallization and the Mechanism of Powder Formation in the Potentiostatic Electrodeposition of Metals,” Journal of Applied Electrochemistry 11 (1981): 239-246.

[58]

Y. Nam Jo, P. Santhoshkumar, K. Prasanna, K. Vediappan, and C. Woo Lee, “Improving Self-Discharge and Anti-Corrosion Performance of Zn-Air Batteries Using Conductive Polymer-Coated Zn Active Materials,” Journal of Industrial and Engineering Chemistry 76 (2019): 396-402.

[59]

W. Sun, M. Ma, M. Zhu, et al., “Chemical Buffer Layer Enabled Highly Reversible Zn Anode for Deeply Discharging and Long-Life Zn-Air Battery,” Small 18 (2022): 2106604.

[60]

Z. Zhao, X. Fan, J. Ding, W. Hu, C. Zhong, and J. Lu, “Challenges in Zinc Electrodes for Alkaline Zinc-Air Batteries: Obstacles to Commercialization,” ACS Energy Letters 4 (2019): 2259-2270.

[61]

L.-F. Zhou, T. Du, J.-Y. Li, et al., “A Strategy for Anode Modification for Future Zinc-Based Battery Application,” Materials Horizons 9 (2022): 2722-2751.

[62]

B. Li, X. Zhang, T. Wang, et al., “Interfacial Engineering Strategy for High-Performance Zn Metal Anodes,” Nano-Micro Letters 14 (2021): 6.

[63]

D. Yang, J. Li, C. Liu, J. Ge, W. Xing, and J. Zhu, “Regulating the MXene-Zinc Interfacial Structure Toward a Highly Revisable Metal Anode of Zinc-Air Batteries,” ACS Applied Materials & Interfaces 15 (2023): 10651-10659.

[64]

Y. Li, Q. Zhu, M. Xu, B. Zang, Y. Wang, and B. Xu, “Cu-Modified Ti3C2Cl2 MXene With Zincophilic and Hydrophobic Characteristics as a Protective Coating for Highly Stable Zn Anode,” Advanced Functional Materials 33 (2023): 2213416.

[65]

X. Hui, P. Zhang, J. Li, et al., “In Situ Integrating Highly Ionic Conductive LDH-Array@PVA Gel Electrolyte and MXene/Zn Anode for Dendrite-Free High-Performance Flexible Zn-Air Batteries,” Advanced Energy Materials 12 (2022): 2201393.

[66]

Q. Li, B. Yan, D. Wang, et al., “Mechanistic Study of Interfacial Modification for Stable Zn Anode Based on a Thin Separator,” Small 18 (2022): 2201045.

[67]

M. Li, X. Zhou, X. He, et al., “Controllable CF4 Plasma In Situ Modification Strategy Enables Durable Zinc Metal Anode,” ACS Applied Materials & Interfaces 15 (2023): 3017-3027.

[68]

P. Liu, X. Ling, C. Zhong, Y. Deng, X. Han, and W. Hu, “Porous Zinc Anode Design for Zn-Air Chemistry,” Frontiers in Chemistry 7 (2019): 656.

[69]

Y. Peng, C. Lai, M. Zhang, et al., “Zn-Sn Alloy Anode With Repressible Dendrite Grown and Meliorative Corrosion Resistance for Zn-Air Battery,” Journal of Power Sources 526 (2022): 231173.

[70]

C. W. Lee, K. Sathiyanarayanan, S. W. Eom, and M. S. Yun, “Novel Alloys to Improve the Electrochemical Behavior of Zinc Anodes for Zinc/Air Battery,” Journal of Power Sources 160 (2006): 1436-1441.

[71]

Y. Song, Y. Liu, S. Luo, et al., “Solvation Structure Regulation of Deep Eutectic Solvents: Stabilization of the Zinc Anode in Rechargeable Zinc-Air Batteries,” Journal of Materials Chemistry A 12 (2024): 6572-6581.

[72]

D. Alwast, J. Schnaidt, Z. Jusys, and R. J. Behm, “Ionic Liquid Electrolytes for Metal-Air Batteries: Interactions Between O2, Zn2+ and H2O Impurities,” Journal of The Electrochemical Society 167 (2020): 070505.

[73]

D. Alwast, J. Schnaidt, Y. T. Law, and R. J. Behm, “A Novel Approach for Differential Electrochemical Mass Spectrometry Studies on the Decomposition of Ionic Liquids,” Electrochimica Acta 197 (2016): 290-299.

[74]

F. A. Getie, D. W. Ayele, N. G. Habtu, F. A. Yihun, and T. A. Yemata, “Development of Electrolytes for rechargeable Zinc-Air Batteries: Current Progress, Challenges, and Future Outlooks,” SN Applied Sciences 4 (2022): 270.

[75]

M. Cui, N. Ma, H. Lei, et al., “I3/I Redox Reaction-Mediated Organic Zinc-Air Batteries With Accelerated Kinetics and Long Shelf Lives,” Angewandte Chemie International Edition 62 (2023): e202303845.

[76]

S. Hosseini, H.-C. Fang, H. Pourzolfaghar, F. Mazari, and Y.-Y. Li, “The Influence of SO Anion Groups of Organic/Inorganic Additives in Rechargeability of Zinc-Air Batteries,” Journal of Energy Storage 67 (2023): 107319.

[77]

T. Ishihara, Y. Inoishi, S. Kim, et al., “Controlled Solvation Structure of a Zn Ion in an Aqueous Electrolyte by Amine Additives for Long Cycle Life of a Large Capacity Zn-Air Rechargeable Battery,” Journal of Physical Chemistry C 127 (2023): 6619-6628.

[78]

M.-H. Lin, C.-J. Huang, P.-H. Cheng, J.-H. Cheng, and C.-C. Wang, “Revealing the Effect of Polyethylenimine on Zinc Metal Anodes in Alkaline Electrolyte Solution for Zinc-Air Batteries: Mechanism Studies of Dendrite Suppression and Corrosion Inhibition,” Journal of Materials Chemistry A 8 (2020): 20637-20649.

[79]

P. Wang, F. Zhao, H. Chang, Q. Sun, and Z. Zhang, “Effects of BTA and TBAB Electrolyte Additives on the Properties of Zinc Electrodes in Zinc-Air Batteries,” Journal of Materials Science: Materials in Electronics 31 (2020): 17953-17966.

[80]

A. R. Mainar, L. C. Colmenares, H.-J. Grande, and J. A. Blázquez, “Enhancing the Cycle Life of a Zinc-Air Battery by Means of Electrolyte Additives and Zinc Surface Protection Batteries,” Batteries 4 (2018): 46.

[81]

X. Fan, H. Wang, X. Liu, et al., “Functionalized Nanocomposite Gel Polymer Electrolyte With Strong Alkaline-Tolerance and High Zinc Anode Stability for Ultralong-Life Flexible Zinc-Air Batteries,” Advanced Materials 35 (2023): 2209290.

[82]

M. Shimizu, K. Hirahara, and S. Arai, “Morphology Control of Zinc Electrodeposition by Surfactant Addition for Alkaline-Based Rechargeable Batteries,” Physical Chemistry Chemical Physics 21 (2019): 7045-7052.

[83]

W. Zhang, S. Chen, K. Shen, J. Zhu, Y. Liu, and X. Mao, “Understanding Photo(Electro)catalysts for Energy Conversion via Operando Functional Imaging,” Chemical & Biomedical Imaging 1 (2023): 522-536.

[84]

H. Miao, B. Chen, S. Li, et al., “All-Solid-State Flexible Zinc-Air Battery With Polyacrylamide Alkaline Gel Electrolyte,” Journal of Power Sources 450 (2020): 227653.

[85]

X. Fan, J. Liu, Z. Song, et al., “Porous Nanocomposite Gel Polymer Electrolyte With High Ionic Conductivity and Superior Electrolyte Retention Capability for Long-Cycle-Life Flexible Zinc-Air Batteries,” Nano Energy 56 (2019): 454-462.

[86]

J. Fu, D. U. Lee, F. M. Hassan, et al., “Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries,” Advanced Materials 27 (2015): 5617-5622.

[87]

S. S. Shinde, C. H. Lee, J.-Y. Jung, et al., “Unveiling Dual-Linkage 3D Hexaiminobenzene Metal-Organic Frameworks Towards Long-Lasting Advanced Reversible Zn-Air Batteries,” Energy & Environmental Science 12 (2019): 727-738.

[88]

W. Wang, M. Tang, Z. Zheng, and S. Chen, “Alkaline Polymer Membrane-Based Ultrathin, Flexible, and High-Performance Solid-State Zn-Air Battery,” Advanced Energy Materials 9 (2019): 1803628.

[89]

X. Chen, B. Liu, C. Zhong, et al., “Ultrathin Co3O4 Layers With Large Contact Area on Carbon Fibers as High-Performance Electrode for Flexible Zinc-Air Battery Integrated With Flexible Display,” Advanced Energy Materials 7 (2017): 1700779.

[90]

L. Ma, S. Chen, D. Wang, et al., “Super-Stretchable Zinc-Air Batteries Based on an Alkaline-Tolerant Dual-Network Hydrogel Electrolyte,” Advanced Energy Materials 9 (2019): 1803046.

[91]

C. Guan, A. Sumboja, W. Zang, et al., “Decorating Co/CoNx Nanoparticles in Nitrogen-Doped Carbon Nanoarrays for Flexible and Rechargeable Zinc-Air Batteries,” Energy Storage Materials 16 (2019): 243-250.

[92]

Y. Li, C. Zhong, J. Liu, et al., “Atomically Thin Mesoporous Co3O4 Layers Strongly Coupled With N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable Zinc-Air Batteries,” Advanced Materials 30 (2018): 1703657.

[93]

J. Park, M. Park, G. Nam, J.-s. Lee, and J. Cho, “All-Solid-State Cable-Type Flexible Zinc-Air Battery,” Advanced Materials 27 (2015): 1396-1401.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/