Synthetic Biology-Based Engineering Living Therapeutics for Antimicrobial Application

Shun Huang , Shuihao Zhao , Haijie Zhao , Mingzhang Wen , Zhong Guo

Exploration ›› 2025, Vol. 5 ›› Issue (4) : 20240045

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (4) : 20240045 DOI: 10.1002/EXP.20240045
PERSPECTIVE

Synthetic Biology-Based Engineering Living Therapeutics for Antimicrobial Application

Author information +
History +
PDF

Abstract

There is currently a pressing issue of antimicrobial resistance, with numerous pathogenic superbugs continually emerging, posing significant threats to both human health and the economy. However, the development of new antibiotics has not kept up in pace with the development of microbial resistance, necessitating the exploration of more effective approaches to combat microbes. Synthetic biology offers a novel paradigm by employing selective screening and assembling diverse biological components to redesign biological systems that can specifically target and eliminate microbes. In particular, engineering living therapeutics enables the detection and precise eradication of pathogenic microorganisms in a controlled means. This review provides an overview of recent advancements in engineering living therapeutics using synthetic biology for antibacterial treatment. It focuses on modifying bacteriophages, microbes, and mammalian cells through engineering approaches for antibacterial therapy. The advantages of each approach are delineated along with potential challenges they may encounter. Finally, a prospective outlook is presented highlighting the potential impact and future prospects of this innovative antimicrobial strategy.

Keywords

antimicrobial therapy / engineering living therapeutics / synthetic biology

Cite this article

Download citation ▾
Shun Huang, Shuihao Zhao, Haijie Zhao, Mingzhang Wen, Zhong Guo. Synthetic Biology-Based Engineering Living Therapeutics for Antimicrobial Application. Exploration, 2025, 5(4): 20240045 DOI:10.1002/EXP.20240045

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Gaynes, “The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use,” Emerging Infectious Diseases 23 (2017): 849-853.

[2]

A. E. Aiello, E. L. Larson, and R. Sedlak, “The Health Revolution Medical and Socioeconomic Advances,” American Journal of Infection Control 36 (2008): S116-S127.

[3]

V. Tiwari, “Post-Translational Modification of ESKAPE Pathogens as a Potential Target in Drug Discovery,” Drug Discovery Today 24 (2019): 814-822.

[4]

Antimicrobial Resistance Collaborators, “Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis,” Lancet 399 (2022): 629-655.

[5]

J. O'Neill, Tackling Drug-Resistant Infections Globally: Final Report and Recommendations, The Review on Antimicrobial Resistance (Government of the United Kingdom, 2016).

[6]

S. M. Schrader, H. Botella, R. Jansen, et al., “Multiform Antimicrobial Resistance from a Metabolic Mutation,” Science Advances 7, no. 35 (2021): eabh2037.

[7]

G. V. Asokan, T. Ramadhan, E. Ahmed, and H. Sanad, “WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain,” Oman Medical Journal 34 (2019): 184-193.

[8]

A. C. Singer, C. Kirchhelle, and A. P. Roberts, “(Inter)nationalising the Antibiotic Research and Development Pipeline,” Lancet Infectious Diseases 20 (2020): e54-e62.

[9]

B. Yang, D. Fang, Q. Lv, Z. Wang, and Y. Liu, “Targeted Therapeutic Strategies in the Battle Against Pathogenic Bacteria,” Frontiers in Pharmacology 12 (2021): 673239.

[10]

X. Yan, X. Liu, C. Zhao, and G. Q. Chen, “Applications of Synthetic Biology in Medical and Pharmaceutical Fields,” Signal Transduction and Targeted Therapy 8 (2023): 199.

[11]

B. M. Slepchenko and M. Terasaki, “Bio-Switches: What Makes Them Robust?,” Current Opinion in Genetics & Development 14 (2004): 428-434.

[12]

Y. Gao, L. Wang, and B. Wang, “Customizing Cellular Signal Processing by Synthetic Multi-Level Regulatory Circuits,” Nature Communications 14 (2023): 8415.

[13]

P. D. Hsu, E. S. Lander, and F. Zhang, “Development and Applications of CRISPR-Cas9 for Genome Engineering,” Cell 157 (2014): 1262-1278.

[14]

E. R. Mardis, “Next-Generation Sequencing Platforms,” Annual Review of Analytical Chemistry 6 (2013): 287-303.

[15]

P. Braendstrup, B. L. Levine, and M. Ruella, “The Long Road to the First FDA-Approved Gene Therapy: Chimeric Antigen Receptor T Cells Targeting CD19,” Cytotherapy 22 (2020): 57-69.

[16]

C. J. Paddon, P. J. Westfall, D. J. Pitera, et al., “High-Level Semi-Synthetic Production of the Potent Antimalarial Artemisinin,” Nature 496 (2013): 528-532.

[17]

A. Courbet, D. Endy, E. Renard, F. Molina, and J. Bonnet, “Detection of Pathological Biomarkers in Human Clinical Samples via Amplifying Genetic Switches and Logic Gates,” Science Translational Medicine 7 (2015): 289ra83.

[18]

R. W. Hendrix, “Bacteriophages: Evolution of the Majority,” Theoretical Population Biology 61 (2002): 471-480.

[19]

M. d'Herelle, “Sur un Microbe Invisible Antagoniste des Bacilles Dysentériques,” Acta Kravsi 3 (1961): 102-106.

[20]

W. C. Summers, “The Strange History of Phage Therapy,” Bacteriophage 2, no. 2 (2012): 130-133.

[21]

N. Chanishvili, “Phage Therapy-History From Twort and d'Herelle Through Soviet Experience to Current Approaches,” Advances in Virus Research 83 (2012): 3-40.

[22]

T. Luong, A. C. Salabarria, and D. R. Roach, “Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going?,” Clinical Therapeutics 42 (2020): 1659-1680.

[23]

A. Petrovic Fabijan, R. C. Y. Lin, J. Ho, S. Maddocks, N. L. Ben Zakour, and J. R. Iredell, “Safety of Bacteriophage Therapy in Severe Staphylococcus aureus Infection,” Nature Microbiology 5 (2020): 465-472.

[24]

J. A. Nick, R. M. Dedrick, A. L. Gray, et al., “Host and Pathogen Response to Bacteriophage Engineered Against Mycobacterium abscessus Lung Infection,” Cell 185 (2022): 1860-1874.e12.

[25]

B. Al-Shayeb, R. Sachdeva, L. X. Chen, et al., “Clades of Huge Phages From Across Earth's Ecosystems,” Nature 578 (2020): 425-431.

[26]

D. P. Pires, S. Cleto, S. Sillankorva, J. Azeredo, and T. K. Lu, “Genetically Engineered Phages: A Review of Advances Over the Last Decade,” Microbiology and Molecular Biology Reviews 80 (2016): 523-543.

[27]

A. D. Silverman, A. S. Karim, and M. C. Jewett, “Cell-Free Gene Expression: An Expanded Repertoire of Applications,” Nature Reviews Genetics 21 (2020): 151-170.

[28]

D. L. Court, J. A. Sawitzke, and L. C. Thomason, “Genetic Engineering Using Homologous Recombination,” Annual Review of Genetics 36 (2002): 361-388.

[29]

B. Guttman, Brenner's Encyclopedia of Genetics (Second Edition), ed. S. Maloy, K. Hughes (Academic Press, 2013).

[30]

T. Fehér, I. Karcagi, F. R. Blattner, and G. Pósfai, “Bacteriophage Recombineering in the Lytic State Using the Lambda Red Recombinases,” Microbial Biotechnology 5 (2012): 466-476.

[31]

L. J. Marinelli, M. Piuri, Z. Swigonová, et al., “BRED: A Simple and Powerful Tool for Constructing Mutant and Recombinant Bacteriophage Genomes,” PLoS ONE 3 (2008): e3957.

[32]

C. Milho and S. Sillankorva, “Implication of a Gene Deletion on a Salmonella Enteritidis Phage Growth Parameters,” Virus Research 308 (2022): 198654.

[33]

Y. J. Pan, T. L. Lin, C. C. Chen, et al., “Klebsiella Phage ΦK64-1 Encodes Multiple Depolymerases for Multiple Host Capsular Types,” Journal of Virology 91, no. 6 (2017): e0245716.

[34]

J. Zhang, H. Ning, H. Lin, et al., “Expansion of the Plaquing Host Range and Improvement of the Absorption Rate of a T5-Like Salmonella Phage by Altering the Long Tail Fibers,” Applied and Environmental Microbiology 88 (2022): e0089522.

[35]

P. Huss, A. Meger, M. Leander, K. Nishikawa, and S. Raman, “Mapping the Functional Landscape of the Receptor Binding Domain of T7 Bacteriophage by Deep Mutational Scanning,” Elife 10 (2021): e63775.

[36]

J. W. Wu, J. T. Wang, T. L. Lin, Y. Z. Liu, L. T. Wu, and Y. J. Pan, “Identification of Three Capsule Depolymerases in a Bacteriophage Infecting Klebsiella pneumoniae Capsular Types K7, K20, and K27 and Therapeutic Application,” Journal of Biomedical Science 30, no. 1 (2023): 31.

[37]

R. M. Dedrick, C. A. Guerrero-Bustamante, R. A. Garlena, et al., “Engineered Bacteriophages for Treatment of a Patient With a Disseminated Drug-Resistant Mycobacterium Abscessus,” Nature Medicine 25 (2019): 730-733.

[38]

R. O. Bak, N. Gomez-Ospina, and M. H. Porteus, “Gene Editing on Center Stage,” Trends in Genetics 34 (2018): 600-611.

[39]

K. S. Makarova, Y. I. Wolf, J. Iranzo, et al., “Evolutionary Classification of CRISPR-Cas Systems: A Burst of Class 2 and Derived Variants,” Nature Reviews Microbiology 18 (2020): 67-83.

[40]

B. Martel and S. Moineau, “CRISPR-Cas: An Efficient Tool for Genome Engineering of Virulent Bacteriophages,” Nucleic Acids Research 42 (2014): 9504-9513.

[41]

M. Zhao, X. Tan, Z. Q. Liu, et al., “Engineered Phage With Cell-Penetrating Peptides for Intracellular Bacterial Infections,” Msystems 8 (2023): e0064623.

[42]

J. Du, S. Meile, J. Baggenstos, et al., “Enhancing Bacteriophage Therapeutics Through In Situ Production and Release of Heterologous Antimicrobial Effectors,” Nature Communications 14 (2023): 4337.

[43]

Y. W. Huan, V. Torraca, R. Brown, et al., “P1 Bacteriophage-Enabled Delivery of CRISPR-Cas9 Antimicrobial Activity Against Shigella flexneri,” ACS Synthetic Biology 12 (2023): 709-712.

[44]

K. Yehl, S. Lemire, A. C. Yang, et al., “Engineering Phage Host-Range and Suppressing Bacterial Resistance Through Phage Tail Fiber Mutagenesis,” Cell 179 (2019): 459-469.

[45]

J. Y. Park, B. Y. Moon, J. W. Park, J. A. Thornton, Y. H. Park, and K. S. Seo, “Genetic Engineering of a Temperate Phage-Based Delivery System for CRISPR/Cas9 Antimicrobials Against Staphylococcus aureus,” Scientific Reports 7 (2017): 44929.

[46]

A. M. Box, M. J. McGuffie, B. J. O'Hara, and K. D. Seed, “Functional Analysis of Bacteriophage Immunity Through a Type I-E CRISPR-Cas System in Vibrio Cholerae and Its Application in Bacteriophage Genome Engineering,” Journal of Bacteriology 198 (2016): 578-590.

[47]

Y. E. Gencay, D. Jasinskytė, C. Robert, et al., “Engineered Phage With Antibacterial CRISPR-Cas Selectively Reduce E. coli Burden in Mice,” Nature Biotechnology 42 (2024): 265-274.

[48]

K. Selle, J. R. Fletcher, H. Tuson, et al., “In Vivo Targeting of Clostridioides difficile Using Phage-Delivered CRISPR-Cas3 Antimicrobials,” MBio 11 (2020): e00019.

[49]

W. Zheng, Y. Xia, X. Wang, et al., “Precise Genome Engineering in Pseudomonas Using Phage-encoded Homologous Recombination and the Cascade-Cas3 System,” Nature Protocols 18 (2023): 2642-2670.

[50]

A. M. Grigonyte, C. Harrison, P. R. MacDonald, et al., “Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7,” Viruses 12 (2020): 193.

[51]

K. S. Wetzel, C. A. Guerrero-Bustamante, R. M. Dedrick, et al., “CRISPY-BRED and CRISPY-BRIP: Efficient Bacteriophage Engineering,” Scientific Reports 11, no. 1 (2021): 6796.

[52]

L. M. Malone, N. Birkholz, and P. C. Fineran, “Conquering CRISPR: How Phages Overcome Bacterial Adaptive Immunity,” Current Opinion in Biotechnology 68 (2021): 30-36.

[53]

S. van Houte, A. Buckling, and E. R. Westra, “Conquering CRISPR: How Phages Overcome Bacterial Adaptive Immunity,” Microbiology and Molecular Biology Reviews 80 (2016): 745-763.

[54]

A. J. Meeske, S. Nakandakari-Higa, and L. A. Marraffini, “Cas13-Induced Cellular Dormancy Prevents the Rise of CRISPR-Resistant Bacteriophage,” Nature 570 (2019): 241-245.

[55]

B. A. Adler, T. Hessler, B. F. Cress, et al., “Broad-Spectrum CRISPR-Cas13a Enables Efficient Phage Genome Editing,” Nature Microbiology 7 (2022): 1967-1979.

[56]

J. Guan, A. Oromí-Bosch, S. D. Mendoza, S. Karambelkar, J. D. Berry, and J. Bondy-Denomy, “Bacteriophage Genome Engineering With CRISPR-Cas13a,” Nature Microbiology 7 (2022): 1956-1966.

[57]

H. Ando, S. Lemire, D. P. Pires, and T. K. Lu, “Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing,” Cell Systems 1 (2015): 187-196.

[58]

E. M. Pulkkinen, T. C. Hinkley, and S. R. Nugen, “Utilizing In Vitro DNA Assembly to Engineer a Synthetic T7 Nanoluc Reporter Phage for Escherichia coli Detection,” Integrative Biology 11, no. 3 (2019): 63-68.

[59]

M. S. Faber, J. T. Van Leuven, M. M. Ederer, et al., “Saturation Mutagenesis Genome Engineering of Infective ΦX174 Bacteriophage via Unamplified Oligo Pools and Golden Gate Assembly,” ACS Synthetic Biology 9 (2020): 125.

[60]

D. P. Pires, R. Monteiro, D. Mil-Homens, A. Fialho, T. K. Lu, and J. Azeredo, “Designing P. aeruginosa Synthetic Phages With Reduced Genomes,” Scientific Reports 11 (2021): 2164.

[61]

E. J. Allan, C. Hoischen, and J. Gumpert, “Bacterial L-Forms,” Advances in Applied Microbiology 68 (2009): 1-39.

[62]

S. Kilcher, P. Studer, C. Muessner, J. Klumpp, and M. J. Loessner, “Cross-Genus Rebooting of Custom-Made, Synthetic Bacteriophage Genomes in L-Form Bacteria,” Proceedings National Academy of Science USA 115 (2018): 567-572.

[63]

T. Chikada, T. Kanai, M. Hayashi, T. Kasai, T. Oshima, and D. Shiomi, “Direct Observation of Conversion from Walled Cells to Wall-Deficient L-Form and Vice Versa in Escherichia coli Indicates the Essentiality of the Outer Membrane for Proliferation of L-Form Cells,” Frontiers in Microbiology 12 (2021): 645965.

[64]

Q. Emslander, K. Vogele, P. Braun, et al., “Cell-Free Production of Personalized Therapeutic Phages Targeting Multidrug-Resistant Bacteria,” Cell Chemical Biology 29 (2022): 1434-1445.

[65]

S. Mitsunaka, K. Yamazaki, A. K. Pramono, et al., “Synthetic Engineering and Biological Containment of Bacteriophages,” Proceedings National Academy of Science USA 119 (2022): e2206739119.

[66]

R. Brooks, L. Morici, and N. Sandoval, “Cell Free Bacteriophage Synthesis From Engineered Strains Improves Yield,” ACS Synthetic Biology 12 (2023): 2418-2431.

[67]

A. Levrier, I. Karpathakis, B. Nash, S. D. Bowden, A. B. Lindner, and V. Noireaux, “PHEIGES: All-Cell-Free Phage Synthesis and Selection From Engineered Genomes,” Nature Communications 15, no. 1 (2024): 2223.

[68]

S. Heilbronner, B. Krismer, H. Brötz-Oesterhelt, and A. Peschel, “The Microbiome-Shaping Roles of Bacteriocins,” Nature Reviews Microbiology 19 (2021): 726-739.

[69]

P. Alvarez-Sieiro, M. Montalbán-López, D. Mu, and O. P. Kuipers, “Bacteriocins of Lactic Acid Bacteria: Extending the Family,” Applied Microbiology and Biotechnology 100 (2016): 2939-2951.

[70]

J. P. Lynch, L. Goers, and C. F. Lesser, “Emerging Strategies for Engineering Escherichia coli Nissle 1917-Based Therapeutics,” Trends in Pharmacological Sciences 43 (2022): 772-786.

[71]

M. Yu, S. Hu, B. Tang, H. Yang, and D. Sun, “Engineering Escherichia coli Nissle 1917 as a Microbial Chassis for Therapeutic and Industrial Applications,” Biotechnology Advances 67 (2023): 108202.

[72]

S. S. W. Effendi and I. S. Ng, “Prospective and Challenges of Live Bacterial Therapeutics From a Superhero Escherichia coli Nissle 1917,” Critical Reviews in Microbiology 49 (2023): 611-627.

[73]

N. Saeidi, C. K. Wong, T. M. Lo, et al., “Engineering Microbes to Sense and Eradicate Pseudomonas aeruginosa , a Human Pathogen,” Molecular Systems Biology 7 (2011): 521.

[74]

S. Qin, W. Xiao, C. Zhou, et al., “Pseudomonas aeruginosa: Pathogenesis, Virulence Factors, Antibiotic Resistance, Interaction With Host, Technology Advances and Emerging Therapeutics,” Signal Transduction and Targeted Therapy 7 (2022): 199.

[75]

K. G. Chan, Y. C. Liu, and C. Y. Chang, “Inhibiting N-Acyl-Homoserine Lactone Synthesis and Quenching Pseudomonas Quinolone Quorum Sensing to Attenuate Virulence,” Frontiers in Microbiology 6 (2015): 1173.

[76]

I. Y. Hwang, M. H. Tan, E. Koh, C. L. Ho, C. L. Poh, and M. W. Chang, “Reprogramming Microbes to be Pathogen-Seeking Killers,” ACS Synthetic Biology 3 (2014): 228-237.

[77]

I. Y. Hwang, E. Koh, A. Wong, et al., “Engineered Probiotic Escherichia coli Can Eliminate and Prevent Pseudomonas aeruginosa Gut Infection in Animal Models,” Nature Communications 8 (2017): 15028.

[78]

H. Kim, J. H. Jang, I. Y. Jung, H. R. Kim, and J. H. Cho, “Novel Genetically Engineered Probiotics for Targeted Elimination of Pseudomonas aeruginosa in Intestinal Colonization,” Biomedicines 11, no. 10 (2023): 2645.

[79]

M. Ali, A. R. Nelson, A. L. Lopez, and D. A. Sack, “Updated Global Burden of Cholera in Endemic Countries,” PLOS Neglected Tropical Diseases 9 (2015): e0003832.

[80]

J. D. Clemens, G. B. Nair, T. Ahmed, F. Qadri, and J. Holmgren, “Cholera,” Lancet 390 (2017): 1539.

[81]

R. C. Kelly, M. E. Bolitho, D. A. Higgins, et al., “The Vibrio Cholerae Quorum-Sensing Autoinducer CAI-1: Analysis of the Biosynthetic Enzyme CqsA,” Nature Chemical Biology 5 (2009): 891-895.

[82]

F. Duan and J. C. March, “Engineered Bacterial Communication Prevents Vibrio Cholerae Virulence in an Infant Mouse Model,” Proceedings of the National Academy of Sciences of the United States of America 107 (2010): 11260.

[83]

P. Jayaraman, M. B. Holowko, J. W. Yeoh, S. Lim, and C. L. Poh, “Repurposing a Two-Component System-Based Biosensor for the Killing of Vibrio Cholerae,” ACS Synthetic Biology 6 (2017): 1403-1415.

[84]

J. M. Besser, “Salmonella Epidemiology: A Whirlwind of Change,” Food Microbiology 71 (2018): 55-59.

[85]

N. A. Feasey, G. Dougan, R. A. Kingsley, R. S. Heyderman, and M. A. Gordon, “Invasive Non-Typhoidal Salmonella Disease: An Emerging and Neglected Tropical Disease in Africa,” Lancet 379 (2012): 2489-2499.

[86]

B. Forkus, S. Ritter, M. Vlysidis, K. Geldart, and Y. N. Kaznessis, “Antimicrobial Probiotics Reduce Salmonella Enterica in Turkey Gastrointestinal Tracts,” Scientific Reports 7 (2017): 40695.

[87]

S. E. Winter, P. Thiennimitr, M. G. Winter, et al., “Gut Inflammation Provides a Respiratory Electron Acceptor for Salmonella,” Nature 467 (2010): 426-429.

[88]

J. D. Palmer, E. Piattelli, B. A. McCormick, M. W. Silby, C. J. Brigham, and V. Bucci, “Engineered Probiotic for the Inhibition of Salmonella via Tetrathionate-Induced Production of Microcin H47,” ACS Infectious Diseases 4 (2018): 39-45.

[89]

M. A. Díaz, M. R. Alberto, E. G. Vega-Hissi, S. N. González, and M. E. Arena, “Interference in Staphylococcus Aureus Biofilm and Virulence Factors Production by Human Probiotic Bacteria With Antimutagenic Activity,” Arabian Journal for Science and Engineering 47 (2022): 241-253.

[90]

A. P. Kourtis, K. Hatfield, J. Baggs, et al., “Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections — United States,” MMWR Morbidity and Mortality Weekly Report 68 (2019): 214-219.

[91]

K. Fang, X. Jin, and S. H. Hong, “Probiotic Escherichia coli Inhibits Biofilm Formation of Pathogenic E. coli via Extracellular Activity of DegP,” Scientific Reports 8 (2018): 4939.

[92]

R. K. Gupta, T. T. Luong, and C. Y. Lee, “RNAIII of the Staphylococcus aureus Agr System Activates Global Regulator MgrA by Stabilizing mRNA,” Proceedings of the National Academy of Sciences of the United States of America 112 (2015): 14036.

[93]

D. Lubkowicz, C. L. Ho, I. Y. Hwang, W. S. Yew, Y. S. Lee, and M. W. Chang, “Reprogramming Probiotic Lactobacillus Reuteri as a Biosensor for Staphylococcus aureus Derived AIP-I Detection,” ACS Synthetic Biology 7 (2018): 1229.

[94]

H. Li, M. Jia, Q. Qi, and Q. Wang, “Engineered Probiotic Lactobacillus Plantarum WCSF I for Monitoring and Treatment of Staphylococcus aureus Infection,” Microbiology Spectrum 11 (2023): e0182923.

[95]

K. Chen, Y. Zhu, Y. Zhang, et al., “A Probiotic Yeast-Based Immunotherapy Against Clostridioides Difficile Infection,” Science Translational Medicine 12 (2020): eaax4905.

[96]

R. Mazzolini, I. Rodríguez-Arce, L. Fernández-Barat, et al., “Engineered Live Bacteria Suppress Pseudomonas aeruginosa Infection in Mouse Lung and Dissolve Endotracheal-Tube Biofilms,” Nature Biotechnology 41 (2023): 1089-1098.

[97]

D. M. Watstein and M. P. Styczynski, “Development of a Pigment-Based Whole-Cell Zinc Biosensor for Human Serum,” ACS Synthetic Biology 7 (2018): 267-275.

[98]

K. N. Daeffler, J. D. Galley, R. U. Sheth, et al., “Engineering Bacterial Thiosulfate and Tetrathionate Sensors for Detecting Gut Inflammation,” Molecular Systems Biology 13 (2017): 923.

[99]

J. Y. Xia, C. Hepler, P. Tran, N. J. Waldeck, J. Bass, and A. Prindle, “Engineered Calprotectin-Sensing Probiotics for IBD Surveillance in Humans,” Proceedings National Academy of Science USA 120 (2023): e2221121120.

[100]

C. R. Gurbatri, N. Arpaia, and T. Danino, “Engineering Bacteria as Interactive Cancer Therapies,” Science 378 (2022): 858-864.

[101]

M. J. Liao, M. O. Din, L. Tsimring, and J. Hasty, “Rock-Paper-Scissors: Engineered Population Dynamics Increase Genetic Stability,” Science 365 (2019): 1045-1049.

[102]

S. M. Soucy, J. Huang, and J. P. Gogarten, “Horizontal Gene Transfer: Building the Web of Life,” Nature Reviews Genetics 16 (2015): 472-482.

[103]

L. H. Dang, C. Bettegowda, D. L. Huso, K. W. Kinzler, and B. Vogelstein, “Combination Bacteriolytic Therapy for the Treatment of Experimental Tumors,” Proceedings of the National Academy of Sciences of the United States of America 98 (2001): 15155-15160.

[104]

A. Miano, M. J. Liao, and J. Hasty, “Inducible Cell-To-Cell Signaling for Tunable Dynamics in Microbial Communities,” Nature Communications 11 (2020): 1193.

[105]

Y. Ding, Y. Wang, and Q. Hu, “Recent Advances in Overcoming Barriers to Cell-Based Delivery Systems for Cancer Immunotherapy,” Exploration 2 (2022): 20210106.

[106]

W. Goldner, “Cancer-Related Hypercalcemia,” Journal of Oncology Practice 12 (2016): 426-432.

[107]

L. Schukur, B. Geering, G. Charpin-El Hamri, and M. Fussenegger, “Implantable Synthetic Cytokine Converter Cells With AND-Gate Logic Treat Experimental Psoriasis,” Science Translational Medicine 7 (2015): 318ra201.

[108]

H. Ye, M. Xie, S. Xue, et al., “Self-Adjusting Synthetic Gene Circuit for Correcting Insulin Resistance,” Nature Biomedical Engineering 1 (2017): 0005.

[109]

F. Sedlmayer, T. Jaeger, U. Jenal, and M. Fussenegger, “Quorum-Quenching Human Designer Cells for Closed-Loop Control of Pseudomonas aeruginosa Biofilms,” Nano Letters 17 (2017): 5043-5050.

[110]

F. Sedlmayer, D. Hell, M. Müller, D. Ausländer, and M. Fussenegger, “Designer Cells Programming Quorum-Sensing Interference With Microbes,” Nature Communications 9 (2018): 1822.

[111]

Y. Liu, P. Bai, A. K. Woischnig, et al., “Immunomimetic Designer Cells Protect Mice From MRSA Infection,” Cell 174 (2018): 259-270.

[112]

S. Azimi, A. D. Klementiev, M. Whiteley, and S. P. Diggle, “Bacterial Quorum Sensing During Infection,” Annual Review of Microbiology 74 (2020): 201-219.

[113]

J. A. Thompson, R. A. Oliveira, A. Djukovic, C. Ubeda, and K. B. Xavier, “Manipulation of the Quorum Sensing Signal AI-2 Affects the Antibiotic-Treated Gut Microbiota,” Cell Reports 10 (2015): 1861-1871.

[114]

M. Sadelain, I. Rivière, and S. Riddell, “Therapeutic T Cell Engineering,” Nature 545 (2017): 423-431.

[115]

K. H. Lim and L. M. Staudt, “The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis,” Cold Spring Harbor Perspectives in Biology 5 (2013): a011247.

[116]

R. T. Schooley, B. Biswas, J. J. Gill, et al., “Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient With a Disseminated Resistant Acinetobacter Baumannii Infection,” Antimicrobial Agents and Chemotherapy 61 (2017): e0095417.

[117]

J. Lin, F. Du, M. Long, and P. Li, “Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review,” Molecules 27 (2022): 1857.

[118]

J. Ma, Y. Lyu, X. Liu, et al., “Engineered Probiotics,” Microbial Cell Factories 21 (2022): 72.

[119]

D. M. Camacho, K. M. Collins, R. K. Powers, J. C. Costello, and J. J. Collins, “Next-Generation Machine Learning for Biological Networks,” Cell 173 (2018): 1581-1592.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/