Exploring the Potential and Advancements of Circular RNA Therapeutics

Lei Wang , Lianqing Wang , Chunbo Dong , Jialong Liu , Guoxin Cui , Shan Gao , Zhida Liu

Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240044

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240044 DOI: 10.1002/EXP.20240044
REVIEW

Exploring the Potential and Advancements of Circular RNA Therapeutics

Author information +
History +
PDF

Abstract

Messenger RNA (mRNA) technology is revolutionizing the pharmaceutical industry owing to its superior safety profile, manufacturing capabilities, and potential applications in previously undruggable therapeutic targets. In addition to linear mRNA, such as conventional mRNA, self-amplifying mRNA, and trans-amplifying mRNA, circular mRNA has emerged as a promising candidate. Circular RNA (circRNA) is a class of single-stranded RNA with a covalently closed loop structure that offers enhanced stability compared to linear RNA by resisting degradation from RNases. Recent studies have revolutionized our understanding of their biological functions, surpassing the notion that they are merely byproducts of aberrant splicing events. Given the remarkable success achieved in cancer and SARS-CoV-2/monkeypox virus (MPXV) vaccines, circRNA is being intensively investigated for gene and cell therapies. In this review, we provide an overview of circRNA biogenesis mechanisms in vivo, along with synthesis strategies in vitro, while discussing translation regulation mechanisms and quality control processes involved in circRNA production. Furthermore, we explore the potential application scenarios for circRNAs.

Keywords

back-splicing / circRNA / IRES / mRNA / ribozyme / therapeutics

Cite this article

Download citation ▾
Lei Wang, Lianqing Wang, Chunbo Dong, Jialong Liu, Guoxin Cui, Shan Gao, Zhida Liu. Exploring the Potential and Advancements of Circular RNA Therapeutics. Exploration, 2025, 5(4): e20240044 DOI:10.1002/EXP.20240044

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Qin, X. Tang, Y. Chen, et al., “mRNA-Based Therapeutics: Powerful and Versatile Tools to Combat Diseases,” Signal Transduction and Targeted Therapy 7 (2022): 166.

[2]

E. Rohner, R. Yang, K. S. Foo, A. Goedel, and K. R. Chien, “Unlocking the Promise of mRNA Therapeutics,” Nature Biotechnology 40 (2022): 1586-1600.

[3]

S. C. Kim, S. S. Sekhon, W. R. Shin, et al., “Modifications of mRNA Vaccine Structural Elements for Improving mRNA Stability and Translation Efficiency,” Molecular and Cellular Toxicology 18 (2022): 1-8.

[4]

a) Y. Zong, Y. Lin, T. Wei, and Q. Cheng, “Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy,” Advanced Materials 35, no. 51 (2023): e2303261. b) J. Chen, Z. Ye, C. Huang, et al., “Lipid Nanoparticle-mediated Lymph Node-Targeting Delivery of mRNA Cancer Vaccine Elicits Robust CD8 + T Cell Response,” PNAS 119 (2022): e2207841119. c) M. P. Lokugamage, D. Vanover, J. Beyersdorf, et al., “Optimization of Lipid Nanoparticles for the Delivery of Nebulized Therapeutic mRNA to the Lungs,” Nature Biomedical Engineering 5 (2021): 1059-1068. d) L. J. Kubiatowicz, A. Mohapatra, N. Krishnan, R. H. Fang, and L. Zhang, “mRNA Nanomedicine: Design and Recent Applications,” Exploration (Beijing) 2 (2022): 20210217.

[5]

C. Schmidt and B. S. Schnierle, “Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development,” Pathogens 12 (2023): 138.

[6]

T. Beissert, M. Perkovic, A. Vogel, et al., “A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity,” Molecular Therapy 28 (2020): 119-128.

[7]

a) L. Qu, Z. Yi, Y. Shen, et al., “Circular RNA Vaccines Against SARS-CoV-2 and Emerging Variants,” Cell 185 (2022): 1728-1744. b) P. Su, L. Zhang, F. Zhou, and L. Zhang, “Circular RNA Vaccine, a Novel mRNA Vaccine Design Strategy for SARS-CoV-2 and Variants,” MedComm 3 (2022): e153.

[8]

T. Loan Young, K. Chang Wang, A. James Varley, and B. Li, “Clinical Delivery of Circular RNA: Lessons Learned From RNA Drug Development,” Advanced Drug Delivery Reviews 197 (2023): 114826.

[9]

X. Li, L. Yang, and L. L. Chen, “The Biogenesis, Functions, and Challenges of Circular RNAs,” Molecular Cell 71 (2018): 428-442.

[10]

H. L. Sanger, G. Klotz, D. Riesner, H. J. Gross, and A. K. Kleinschmidt, “Viroids are Single-Stranded Covalently Closed Circular RNA Molecules Existing as Highly Base-paired Rod-Like Structures,” PNAS 73 (1976): 3852.

[11]

a) W. Y. Zhou, Z. R. Cai, J. Liu, D. S. Wang, H. Q. Ju, and R. H. Xu, “Circular RNA: Metabolism, Functions and Interactions With Proteins,” Molecular Cancer 19 (2020): 172. b) P. Zhang and M. Dai, “CircRNA: A Rising Star in Plant Biology,” Journal of Genetics and Genomics 49 (2022): 1081-1092.

[12]

a) M. Lei, G. Zheng, Q. Ning, J. Zheng, and D. Dong, “Translation and Functional Roles of Circular RNAs in Human Cancer,” Molecular Cancer 19 (2020): 30. b) I. L. Patop, S. Wust, and S. Kadener, “Past, Present, and Future of Circ RNAs,” Embo Journal 38 (2019): e100836.

[13]

J. O. Westholm, P. Miura, S. Olson, et al., “Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation,” Cell Reports 9 (2014): 1966-1980.

[14]

A. Ivanov, S. Memczak, E. Wyler, et al., “Analysis of Intron Sequences Reveals Hallmarks of Circular RNA Biogenesis in Animals,” Cell Reports 10 (2015): 170-177.

[15]

a) L. L. Chen, “The Expanding Regulatory Mechanisms and Cellular Functions of Circular RNAs,” Nature Reviews Molecular Cell Biology 21 (2020): 475-490. b) S. Wang, K. Zhang, S. Tan, et al., “Circular RNAs in Body Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies,” Molecular Cancer 20 (2021): 13. c) Q. Zhang, W. Wang, Q. Zhou, et al., “Roles of circRNAs in the Tumour Microenvironment,” Molecular Cancer 19 (2020): 14.

[16]

a) A. T. He, J. Liu, F. Li, and B. B. Yang, “Targeting Circular RNAs as a Therapeutic Approach: Current Strategies and Challenges,” Signal Transduction and Targeted Therapy 6 (2021): 185. b) T. Tian, Y. Zhao, J. Zheng, S. Jin, Z. Liu, and T. Wang, “Circular RNA: A Potential Diagnostic, Prognostic, and Therapeutic Biomarker for Human Triple-Negative Breast Cancer,” Molecular Therapy Nucleic Acids 26 (2021): 63-80.

[17]

a) I. Legnini, G. Di Timoteo, F. Rossi, et al., “Circ-ZNF609 Is a Circular RNA That Can Be Translated and Functions in Myogenesis,” Molecular Cell 66 (2017): 22-37. b) N. R. Pamudurti, O. Bartok, M. Jens, et al., “Translation of CircRNAs,” Molecular Cell 66 (2017): 9-21.

[18]

a) B. D. Lee, U. Neri, S. Roux, et al., “Mining Metatranscriptomes Reveals a Vast World of Viroid-Like Circular RNAs,” Cell 186 (2023): 646-661. b) L. Chen, C. Wang, H. Sun, et al., “The Bioinformatics Toolbox for circRNA Discovery and Analysis,” Briefings in Bioinformatics 22 (2021): 1706-1728.

[19]

a) J. Cheng, G. Li, W. Wang, D. B. Stovall, G. Sui, and D. Li, “Circular RNAs With Protein-Coding Ability in Oncogenesis,” Biochimica et Biophysica Acta: Reviews on Cancer 1878 (2023): 188909. b) C. Xu, L. Zhang, W. Wang, et al., Improving the Circularization Efficiency, Stability and Translatability of Circular RNA by circDesign, preprint, bioRxiv 548293, July 10, 2023, https://doi.org/10.1101/2023.07.09.548293.

[20]

R. A. Wesselhoeft, P. S. Kowalski, and D. G. Anderson, “Engineering Circular RNA for Potent and Stable Translation in Eukaryotic Cells,” Nature Communications 9 (2018): 2629.

[21]

R. A. Wesselhoeft, P. S. Kowalski, F. C. Parker-Hale, Y. Huang, N. Bisaria, and D. G. Anderson, “RNA Circularization Diminishes Immunogenicity and can Extend Translation Duration In Vivo,” Molecular Cell 74 (2019): 508-520.

[22]

a) H. Li, K. Peng, K. Yang, et al., “Circular RNA Cancer Vaccines Drive Immunity in Hard-To-Treat Malignancies,” Theranostics 12 (2022): 6422-6436. b) J. Zhou, T. Ye, Y. Yang, et al., “Circular RNA Vaccines Against Monkeypox Virus Provide Potent Protection Against Vaccinia Virus Infection in Mice,” Molecular Therapy 32(2024): 1779-1789. c) L. Wang, C. Dong, W. Zhang, et al., “Developing an Enhanced Chimeric Permuted Intron-Exon System for Circular RNA Therapeutics,” Theranostics 14 (2024): 5869-5882.

[23]

J. Li, D. Sun, W. Pu, J. Wang, and Y. Peng, “Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance,” Trends in Cancer 6 (2020): 319-336.

[24]

a) Y. Zhang, X. O. Zhang, T. Chen, et al., “Circular Intronic Long Noncoding RNAs,” Molecular Cell 51 (2013): 792-806. b) C. A. Schmidt, J. D. Giusto, A. Bao, A. K. Hopper, and A. G. Matera, “Molecular Determinants of Metazoan tricRNA Biogenesis,” Nucleic Acids Research 47 (2019): 6452-6465.

[25]

J. U. Guo, V. Agarwal, H. Guo, and D. P. Bartel, “Expanded Identification and Characterization of Mammalian Circular RNAs,” Genome Biology 15 (2014): 409.

[26]

a) L. L. Chen and L. Yang, “Regulation of circRNA Biogenesis,” RNA Biology 12 (2015): 381-388. b) L. S. Kristensen, M. S. Andersen, L. V. W. Stagsted, K. K. Ebbesen, T. B. Hansen, and J. Kjems, “The Biogenesis, Biology and Characterization of Circular RNAs,” Nature Reviews Genetics 20 (2019): 675.

[27]

C. Yan, R. Wan, and Y. Shi, “Molecular Mechanisms of Pre-mRNA Splicing Through Structural Biology of the Spliceosome,” Cold Spring Harbor Perspectives in Biology 11 (2019): a032409.

[28]

B. Xu, Y. Meng, and Y. Jin, “RNA Structures in Alternative Splicing and Back-Splicing,” Wiley Interdisciplinary Reviews: RNA 12 (2021): e1626.

[29]

a) L. L. Chen, “The Biogenesis and Emerging Roles of Circular RNAs,” Nature Reviews Molecular Cell Biology 17 (2016): 205-211. b) X. O. Zhang, H. B. Wang, Y. Zhang, X. Lu, L. L. Chen, and L. Yang, “Complementary Sequence-Mediated Exon Circularization,” Cell 159 (2014): 134-147.

[30]

a) R. Ashwal-Fluss, M. Meyer, N. R. Pamudurti, et al., “circRNA Biogenesis Competes With Pre-mRNA Splicing,” Molecular Cell 56 (2014): 55-66. b) S. J. Conn, K. A. Pillman, J. Toubia, et al., “The RNA Binding Protein Quaking Regulates Formation of circRNAs,” Cell 160 (2015): 1125-1134.

[31]

S. P. Barrett, P. L. Wang, and J. Salzman, “Circular RNA Biogenesis can Proceed Through an Exon-Containing Lariat Precursor,” Elife 4 (2015): e07540.

[32]

A. Robic and C. Kuhn, “Beyond Back Splicing, a Still Poorly Explored World: Non-Canonical Circular RNAs,” Genes (Basel) 11 (2020): 1111.

[33]

Z. Lu, G. S. Filonov, J. J. Noto, et al., “Metazoan tRNA Introns Generate Stable Circular RNAs In Vivo,” RNA 21 (2015): 1554-1565.

[34]

S. Petkovic and S. Muller, “RNA Circularization Strategies In Vivo and In Vitro,” Nucleic Acids Research 43 (2015): 2454-2465.

[35]

R. Flores, D. Grubb, A. Elleuch, M. A. Nohales, S. Delgado, and S. Gago, “Rolling-Circle Replication of Viroids, Viroid-Like Satellite RNAs and Hepatitis Delta Virus: Variations on a Theme,” RNA Biology 8 (2011): 200-206.

[36]

a) D. C. Tatomer, D. Liang, and J. E. Wilusz, “Inducible Expression of Eukaryotic Circular RNAs From Plasmids,” Methods in Molecular Biology 1648 (2017): 143-154. b) D. Liu, V. Conn, G. J. Goodall, and S. J. Conn, “A Highly Efficient Strategy for Overexpressing circRNAs,” Methods in Molecular Biology 1724 (2018): 97-105. c) J. L. Litke and S. R. Jaffrey, “Highly Efficient Expression of Circular RNA Aptamers in Cells Using Autocatalytic Transcripts,” Nature Biotechnology 37 (2019): 667-675.

[37]

P. Obi and Y. G. Chen, “The Design and Synthesis of Circular RNAs,” Methods 196 (2021): 85-103.

[38]

B. Beckert and B. Masquida, “Synthesis of RNA by In Vitro Transcription,” Methods in Molecular Biology 703 (2011): 29-41.

[39]

a) N. G. Dolinnaya, N. I. Sokolova, D. T. Ashirbekova, and Z. A. Shabarova, “The Use of BrCN for Assembling Modified DNA Duplexes and DNA-RNA Hybrids; Comparison With Water-Soluble Carbodiimide,” Nucleic Acids Research 19 (1991): 3067-3072. b) K. Nakamoto, N. Abe, G. Tsuji, et al., “Chemically Synthesized Circular RNAs With Phosphoramidate Linkages Enable Rolling Circle Translation,” Chemical Communications 56 (2020): 6217-6220.

[40]

S. Petkovic and S. Muller, “Synthesis and Engineering of Circular RNAs,” Methods in Molecular Biology 1724 (2018): 167-180.

[41]

X. Chen and Y. Lu, “Circular RNA: Biosynthesis In Vitro,” Frontiers in Bioengineering and Biotechnology 9 (2021): 787881.

[42]

N. Abe, A. Kodama, and H. Abe, “Circular RNAs, methods and protocols - preparation of circRNA in vitro,” Methods in Molecular Biology 1724 (2018): 181-192.

[43]

M. J. Moore and C. C. Query, “Joining of RNAs by Splinted Ligation,” Methods in Enzymology 317 (2000): 109-123.

[44]

E. M. Carmona, “Circular RNA: Design Criteria for Optimal Therapeutical Utility” (PhD diss., Harvard University, 2019).

[45]

S. Muller and B. Appel, “In Vitro Circularization of RNA,” RNA Biology 14 (2017): 1018-1027.

[46]

a) J. Nandakumar, C. K. Ho, C. D. Lima, and S. Shuman, “RNA Substrate Specificity and Structure-Guided Mutational Analysis of Bacteriophage T4 RNA Ligase 2,” Journal of Biological Chemistry 279 (2004): 31337-31347. b) D. R. Bullard and R. P. Bowater, “Direct Comparison of Nick-Joining Activity of the Nucleic Acid Ligases From Bacteriophage T4,” Biochemical Journal 398 (2006): 135-144.

[47]

a) S. Petkovic and S. Muller, “RNA Self-Processing: Formation of Cyclic Species and Concatemers From a Small Engineered RNA,” FEBS Letters 587 (2013): 2435-2440. b) H. Chen, K. Cheng, X. Liu, R. An, M. Komiyama, and X. Liang, “Preferential Production of RNA Rings by T4 RNA Ligase 2 Without Any Splint Through Rational Design of Precursor Strand,” Nucleic Acids Research 48 (2020): e54.

[48]

A. R. Ferre-D'Amare and W. G. Scott, “Small Self-Cleaving Ribozymes,” Cold Spring Harbor Perspectives in Biology 2 (2010): a003574.

[49]

C. Chen, H. Wei, K. Zhang, et al., “A Flexible, Efficient, and Scalable Platform to Produce Circular RNAs as New Therapeutics,” preprint, bioRxiv 494115, May 31, 2022, https://doi.org/10.1101/2022.05.31.494115.

[50]

R. M. Jimenez, J. A. Polanco, and A. Luptak, “Chemistry and Biology of Self-Cleaving Ribozymes,” Trends in Biochemical Sciences 40 (2015): 648-661.

[51]

A. M. Diegelman and E. T. Kool, “Generation of Circular RNAs and Trans-Cleaving Catalytic RNAs by Rolling Transcription of Circular DNA Oligonucleotides Encoding Hairpin Ribozymes,” Nucleic Acids Research 26 (1998): 3235-3241.

[52]

a) S. M. Nesbitt, H. A. Erlacher, and M. J. Fedor, “The Internal Equilibrium of the Hairpin Ribozyme: Temperature, Ion and pH Effects,” Journal of Molecular Biology 286 (1999): 1009-1024. b) A. Dallas, S. V. Balatskaya, T. C. Kuo, et al., “Hairpin Ribozyme-Antisense RNA Constructs Can Act as Molecular Lassos,” Nucleic Acids Research 36 (2008): 6752-6766. c) D. Strohbach, N. Novak, and S. Muller, “Redox-Active Riboswitching: Allosteric Regulation of Ribozyme Activity by Ligand-Shape Control,” Angewandte Chemie International Edition in English 45 (2006): 2127-2129. d) S. A. Kazakov, S. V. Balatskaya, and B. H. Johnston, “Ligation of the Hairpin Ribozyme in CIS Induced by Freezing and Dehydration,” RNA 12 (2006): 446-456.

[53]

P. Haugen, D. M. Simon, and D. Bhattacharya, “The Natural History of Group I Introns,” Trends in Genetics 21 (2005): 111-119.

[54]

H. Nielsen and S. D. Johansen, “Group I Introns: Moving in New Directions,” RNA Biology 6 (2009): 375-383.

[55]

D. Bhattacharya, V. Reeb, D. M. Simon, and F. Lutzoni, “Phylogenetic Analyses Suggest Reverse Splicing Spread of Group I Introns in Fungal Ribosomal DNA,” BMC Evolutionary Biology 5 (2005): 68.

[56]

M. Felletti and J. S. Hartig, “Ligand-Dependent Ribozymes,” Wiley Interdisciplinary Reviews: RNA 8 (2017): e1395.

[57]

J. W. Rausch, W. F. Heinz, M. J. Payea, C. Sherpa, M. Gorospe, and S. F. J. Le Grice, “Characterizing and Circumventing Sequence Restrictions for Synthesis of Circular RNA In Vitro,” Nucleic Acids Research 49 (2021): e35.

[58]

M. Puttaraju and M. D. Been, “Group I Permuted Intron-exon (PIE) Sequences Self-splice to Produce Circular Exons,” Nucleic Acids Research 20 (1992): 5357-5364.

[59]

E. Ford, “Synthesis of Circular RNA in Bacteria and Yeast Using RNA Cyclase Ribozymes Derived From a Group I Intron of Phage T4,” PNAS 91 (1994): 3117-3121.

[60]

A. M. Lambowitz and S. Zimmerly, “Group II Introns: Mobile Ribozymes That Invade DNA,” Cold Spring Harbor Perspectives in Biology 3 (2011): a003616.

[61]

a) A. M. Pyle, “The Tertiary Structure of Group II Introns: Implications for Biological Function and Evolution,” Critical Reviews in Biochemistry and Molecular Biology 45 (2010): 215-232. b) A. R. Robart, R. T. Chan, J. K. Peters, K. R. Rajashankar, and N. Toor, “Crystal Structure of a Eukaryotic Group II Intron Lariat,” Nature 514 (2014): 193-197. c) X. Ling, Y. Yao, and J. Ma, “Structures of a Natural Circularly Permuted Group II Intron Reveal Mechanisms of Branching and Backsplicing,” Nature Structural and Molecular Biology (2025): Online ahead of print.

[62]

A. M. Pyle, “Group II Intron Self-Splicing,” Annual Review of Biophysics 45 (2016): 183.

[63]

A. Barkan, Molecular Biology and Biotechnology of Plant Organelles: Chloroplasts and Mitochondria. (Springer, 2004).

[64]

R. T. Chan, J. K. Peters, A. R. Robart, T. Wiryaman, K. R. Rajashankar, and N. Toor, “Structural Basis for the Second Step of Group II Intron Splicing,” Nature Communications 9 (2018): 4676.

[65]

R. Perriman and M. Ares, “Circular mRNA Can Direct Translation of Extremely Long Repeating-sequence Proteins In Vivo,” RNA 4 (1998): 1047-1054.

[66]

a) N. Abe, M. Hiroshima, H. Maruyama, et al., “Rolling Circle Amplification in a Prokaryotic Translation System Using Small Circular RNA,” Angewandte Chemie International Edition in English 52 (2013): 7004-7008. b) N. Abe, K. Matsumoto, M. Nishihara, et al., “Rolling Circle Translation of Circular RNA in Living Human Cells,” Scientific Reports 5 (2015): 16435.

[67]

X. Fan, Y. Yang, C. Chen, and Z. Wang, “Pervasive Translation of Circular RNAs Driven by Short IRES-Like Elements,” Nature Communications 13 (2022): 3751.

[68]

a) L. J. Deng, W. Q. Deng, S. R. Fan, et al., “m6A Modification: Recent Advances, Anticancer Targeted Drug Discovery and Beyond,” Molecular Cancer 21 (2022): 52. b) I. A. Roundtree, M. E. Evans, T. Pan, and C. He, “Dynamic RNA Modifications in Gene Expression Regulation,” Cell 169 (2017): 1187-1200.

[69]

M. Imanishi, “Mechanisms and Strategies for Determining m6A RNA Modification Sites by Natural and Engineered m6A Effector Proteins,” Chemistry - An Asian Journal 17 (2022): e202200367.

[70]

a) J. Liu, Y. Yue, D. Han, et al., “A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation,” Nature Chemical Biology 10 (2014): 93-95. b) X. Deng, R. Su, H. Weng, H. Huang, Z. Li, and J. Chen, “RNA N6-Methyladenosine Modification in Cancers: Current Status and Perspectives,” Cell Research 28 (2018): 507-517.

[71]

a) Y. Yang, X. Fan, M. Mao, et al., “Extensive Translation of Circular RNAs Driven by N6-Methyladenosine,” Cell Research 27 (2017): 626-641. b) A. C. Prats, F. David, L. H. Diallo, et al., “Circular RNA, the Key for Translation,” International Journal of Molecular Sciences 21, (2020): 8591.

[72]

Y. Shi, X. Jia, and J. Xu, “The New Function of circRNA: Translation,” Clinical and Translational Oncology 22 (2020): 2162-2169.

[73]

R. Chen, S. K. Wang, J. A. Belk, et al., “Engineering Circular RNA for Enhanced Protein Production,” Nature Biotechnology 41 (2023): 262-272.

[74]

a) Y. G. Chen, R. Chen, S. Ahmad, et al., “N6-Methyladenosine Modification Controls Circular RNA Immunity,” Molecular Cell 76 (2019): 96-109. b) Y. G. Chen, M. V. Kim, X. Chen, et al., “Sensing Self and Foreign Circular RNAs by Intron Identity,” Molecular Cell 67 (2017): 228-238.

[75]

a) S. K. Jang, H. G. Krausslich, M. J. Nicklin, G. M. Duke, A. C. Palmenberg, and E. Wimmer, “A Segment of the 5' Nontranslated Region of Encephalomyocarditis Virus RNA Directs Internal Entry of Ribosomes During in Vitro Translation,” Journal of Virology 62 (1988): 2636-2643. b) S. Agalarov, P. A. Sakharov, D. Fattakhova, E. A. Sogorin, and A. S. Spirin, “Internal Translation Initiation and eIF4F/ATP-independent Scanning of mRNA by Eukaryotic Ribosomal Particles,” Scientific Reports 4 (2014): 4438.

[76]

a) S. D. Baird, M. Turcotte, R. G. Korneluk, and M. Holcik, “Searching for IRES,” RNA 12 (2006): 1755-1785. b) J. S. Kieft, “Viral IRES RNA Structures and Ribosome Interactions,” Trends in Biochemical Sciences 33 (2008): 274-283. c) P. Kolekar, A. Pataskar, U. Kulkarni-Kale, J. Pal, and A. Kulkarni, “IRESPred: Web Server for Prediction of Cellular and Viral Internal Ribosome Entry Site (IRES),” Scientific Reports 6 (2016): 27436. d) S. Weingarten-Gabbay, S. Elias-Kirma, R. Nir, et al., “Systematic Discovery of Cap-Independent Translation Sequences in Human and Viral Genomes,” Science 351 (2016): aad4939.

[77]

F. Buttgereit and M. D. Brand, “A Hierarchy of ATP-Consuming Processes in Mammalian Cells,” Biochemical Journal 312, (1995): 163-167.

[78]

a) A. Sriram, J. Bohlen, and A. A. Teleman, “Translation Acrobatics: How Cancer Cells Exploit Alternate Modes of Translational Initiation,” EMBO Reports 19 (2018): e45947. b) B. Liu and S. B. Qian, “Translational Reprogramming in Cellular Stress Response,” Wiley Interdisciplinary Reviews: RNA 5 (2014): 301-315.

[79]

a) Y. Yang and Z. Wang, “IRES-Mediated Cap-Independent Translation, A Path Leading to Hidden Proteome,” Journal of Molecular Cell Biology 11 (2019): 911-919. b) A. A. Komar and M. Hatzoglou, “Cellular IRES-Mediated Translation,” Cell Cycle 10 (2011): 229-240.

[80]

M. Tusup, T. Kundig, and S. Pascolo, “An eIF4G-Recruiting Aptamer Increases the Functionality of In Vitro Transcribed mRNA,” EPH-International Journal of Medical and Health Science 3 (2017): 20-25.

[81]

a) Y. Kanamori and N. Nakashima, “A Tertiary Structure Model of the Internal Ribosome Entry Site (IRES) for Methionine-Independent Initiation of Translation,” RNA 7 (2001): 266-274. b) T. Nishiyama, H. Yamamoto, N. Shibuya, et al., “Structural Elements in the Internal Ribosome Entry Site of Plautia Stali Intestine Virus Responsible for Binding With Ribosomes,” Nucleic Acids Research 31 (2003): 2434-2442.

[82]

a) C. M. Spahn, E. Jan, A. Mulder, R. A. Grassucci, P. Sarnow, and J. Frank, “Cryo-EM Visualization of a Viral Internal Ribosome Entry Site Bound to Human Ribosomes,” Cell 118 (2004): 465-475. b) M. Muhs, T. Hilal, T. Mielke, et al., “Cryo-EM of Ribosomal 80S Complexes With Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES,” Molecular Cell 57 (2015): 422-432.

[83]

A. V. Pisarev, L. S. Chard, Y. Kaku, H. L. Johns, I. N. Shatsky, and G. J. Belsham, “Functional and Structural Similarities Between the Internal Ribosome Entry Sites of Hepatitis C Virus and Porcine Teschovirus, a Picornavirus,” Journal of Virology 78 (2004): 4487-4497.

[84]

a) K. M. Lee, C. J. Chen, and S. R. Shih, “Regulation Mechanisms of Viral IRES-Driven Translation,” Trends in Microbiology 25 (2017): 546-561. b) T. R. Sweeney, I. S. Abaeva, T. V. Pestova, and C. U. Hellen, “The Mechanism of Translation Initiation on Type 1 Picornavirus IRESs,” EMBO Journal 33 (2014): 76-92.

[85]

A. Koch, L. Aguilera, T. Morisaki, B. Munsky, and T. J. Stasevich, “Quantifying the Dynamics of IRES and Cap Translation With Single-Molecule Resolution in Live Cells,” Nature Structural and Molecular Biology 27 (2020): 1095-1104.

[86]

H. Chen, D. Liu, A. Aditham, et al., “Chemical and Topological Design of Multicapped mRNA and Capped Circular RNA to Augment Translation,” Nature Biotechnology, (2024):

[87]

K. Fukuchi, Y. Nakashima, N. Abe, et al., “Internal Cap-Initiated Translation for Efficient Protein Production From Circular mRNA,” Nature Biotechnology (2025):

[88]

X. Zhao, Y. Zhong, X. Wang, J. Shen, and W. An, “Advances in Circular RNA and Its Applications,” International Journal of Medical Sciences 19 (2022): 975-985.

[89]

K. Garber, “Orna Therapeutics: Circular Logic,” Nature Biotechnology (2022):

[90]

a) A. Aditham, H. Shi, J. Guo, et al., “Chemically Modified mocRNAs for Highly Efficient Protein Expression in Mammalian Cells,” ACS Chemical Biology 17 (2022): 3352-3366. b) A. Kahvejian, Y. V. Svitkin, R. Sukarieh, M. N. M'Boutchou, and N. Sonenberg, “Mammalian Poly(A)-Binding Protein Is a Eukaryotic Translation Initiation Factor, Which Acts Via Multiple Mechanisms,” Genes and Development 19 (2005): 104-113.

[91]

Z. Qiu, Q. Hou, Y. Zhao, et al., “Clean-PIE: A Novel Strategy for Efficiently Constructing Precise circRNA With Thoroughly Minimized Immunogenicity to Direct Potent and Durable Protein Expression” preprint, bioRxiv 496777, June 20, 2022, https://doi.org/10.1101/2022.06.20.496777.

[92]

K. H. Lee, S. Kim, J. Song, S. R. Han, J. H. Kim, and S.-W. Lee, “Efficient Circular RNA Engineering by End-To-End Self-Targeting and Splicing Reaction Using Tetrahymena Group I Intron Ribozyme,” Molecular Therapy Nucleic Acids 33 (2023): 587-598.

[93]

C. X. Liu, S. K. Guo, F. Nan, Y. F. Xu, L. Yang, and L. L. Chen, “RNA Circles With Minimized Immunogenicity as Potent PKR Inhibitors,” Molecular Cell 82 (2022): 420-434.

[94]

S. Qi, H. Wang, G. Liu, Q. Qin, P. Gao, and B. Ying, “Efficient Circularization of Protein-Encoding RNAs Via a Novel Cis-Splicing System,” Nucleic Acids Research 52 (2024): 10400-10415.

[95]

C. I. Su, Z. S. Chuang, C. T. Shie, H. I. Wang, Y. T. Kao, and C. Y. Yu, “A Cis-Acting Ligase Ribozyme Generates Circular RNA In Vitro for Ectopic Protein Functioning,” Nature Communications 15 (2024): 6607.

[96]

J. Breuer, P. Barth, Y. Noe, et al., “What Goes Around Comes Around: Artificial Circular RNAs Bypass Cellular Antiviral Responses,” Molecular Therapy Nucleic Acids 28 (2022): 623-635.

[97]

B. T. Abe, R. A. Wesselhoeft, R. Chen, D. G. Anderson, and H. Y. Chang, “Circular RNA Migration in Agarose Gel Electrophoresis,” Molecular Cell 82 (2022): 1768-1777.

[98]

Z. Zhang, W. Li, X. Ren, et al., “Mitigating Cellular Dysfunction Through Contaminant Reduction in Synthetic circRNA for High-Efficiency mRNA-Based Cell Reprogramming,” Advanced Science 12 (2025): e2416629.

[99]

X. Meng, Q. Chen, P. Zhang, and M. Chen, “CircPro: An Integrated Tool for the Identification of circRNAs With Protein-Coding Potential,” Bioinformatics 33 (2017): 3314-3316.

[100]

M. Lu, “Circular RNA: Functions, Applications and Prospects,” ExRNA 2 (2020): 1.

[101]

C. X. Liu and L. L. Chen, “Circular RNAs: Characterization, Cellular Roles, and Applications,” Cell 185 (2022): 2390.

[102]

a) N. Khehra, I. Padda, U. Jaferi, H. Atwal, S. Narain, and M. S. Parmar, “Tozinameran (BNT162b2) Vaccine: The Journey From Preclinical Research to Clinical Trials and Authorization,” Aaps Pharmscitech 22 (2021): 172. b) P. Tang, M. R. Hasan, H. Chemaitelly, et al., “BNT162b2 and mRNA-1273 COVID-19 Vaccine Effectiveness Against the SARS-CoV-2 Delta Variant in Qatar,” Nature Medicine 27 (2021): 2136-2143.

[103]

a) J. A. Whitaker, H. M. E. Sahly, and C. M. Healy, “mRNA Vaccines Against Respiratory Viruses,” Current Opinion in Infectious Diseases 36 (2023): 385-393. b) S. John, O. Yuzhakov, A. Woods, et al., “Multi-Antigenic Human Cytomegalovirus mRNA Vaccines That Elicit Potent Humoral and Cell-Mediated Immunity,” Vaccine 36 (2018): 1689-1699. c) M. Ganley, L. E. Holz, J. J. Minnell, et al., “mRNA Vaccine Against Malaria Tailored for Liver-Resident Memory T Cells,” Nature Immunology 24 (2023): 1487-1498. d) M. A. Monslow, S. Elbashir, N. L. Sullivan, et al., “Immunogenicity Generated by mRNA Vaccine Encoding VZV gE Antigen Is Comparable to Adjuvanted Subunit Vaccine and Better Than Live Attenuated Vaccine in Nonhuman Primates,” Vaccine 38 (2020): 5793-5802. e) C. L. Lorentzen, J. B. Haanen, O. Met, and I. M. Svane, “Clinical Advances and Ongoing Trials of mRNA Vaccines for Cancer Treatment,” Lancet Oncology 23 (2022): e450-e458.

[104]

P. Rzymski, A. Szuster-Ciesielska, T. Dzieciatkowski, W. Gwenzi, and A. Fal, “mRNA Vaccines: The Future of Prevention of Viral Infections?,” Journal of Medical Virology 95 (2023): e28572.

[105]

F. Oguz and H. Atmaca, “mRNA as a Therapeutics: Understanding mRNA Vaccines,” Advanced Pharmaceutical Bulletin 12 (2022): 274-282.

[106]

Q. Wu, M. Z. Dudley, X. Chen, et al., “Evaluation of the Safety Profile of COVID-19 Vaccines: A Rapid Review,” BMC Medicine 19 (2021): 173.

[107]

M. N. Uddin and M. A. Roni, “Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines,” Vaccines (Basel) 9 (2021): 1033.

[108]

Y. Sang, Z. Zhang, F. Liu, et al., “Monkeypox Virus Quadrivalent mRNA Vaccine Induces Immune Response and Protects Against Vaccinia Virus,” Signal Transduction and Targeted Therapy 8 (2023): 172.

[109]

a) A. Magadum, “Modified mRNA Therapeutics for Heart Diseases,” International Journal of Molecular Sciences 23 (2022): 15514. b) D. An, A. Frassetto, E. Jacquinet, et al., “Long-Term Efficacy and Safety of mRNA Therapy in Two Murine Models of Methylmalonic Acidemia,” EBioMedicine 45 (2019): 519-528. c) D. An, J. L. Schneller, A. Frassetto, et al., “Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia,” Cell Reports 24 (2018): 2520. d) C. Y. Chen, D. M. Tran, A. Cavedon, et al., “Treatment of Hemophilia a Using Factor VIII Messenger RNA Lipid Nanoparticles,” Molecular Therapy Nucleic Acids 20 (2020): 534-544. e) F. DeRosa, B. Guild, S. Karve, et al., “Therapeutic Efficacy in a Hemophilia B Model Using a Biosynthetic mRNA Liver Depot System,” Gene Therapy 23 (2016): 699-707. f) S. Ramaswamy, N. Tonnu, K. Tachikawa, et al., “Systemic Delivery of Factor IX Messenger RNA for Protein Replacement Therapy,” PNAS 114 (2017): e1941-e1950. g) A. Haque, A. Dewerth, J. S. Antony, et al., “Chemically Modified hCFTR mRNAs Recuperate Lung Function in a Mouse Model of Cystic Fibrosis,” Scientific Reports 8 (2018): 16776. h) E. Robinson, K. D. MacDonald, K. Slaughter, et al., “Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis,” Molecular Therapy 26 (2018): 2034-2046. i) C. Liu, Q. Shi, X. Huang, S. Koo, N. Kong, and W. Tao, “mRNA-Based Cancer Therapeutics,” Nature Reviews Cancer 23 (2023): 526.

[110]

a) X. Liu, D. M. Barrett, S. Jiang, et al., “Improved Anti-Leukemia Activities of Adoptively Transferred T Cells Expressing Bispecific T-Cell Engager in Mice,” Blood Cancer Journal no. 6 (2016): e430. b) H. Meister, T. Look, P. Roth, et al., “Multifunctional mRNA-Based CAR T Cells Display Promising Antitumor Activity Against Glioblastoma,” Clinical Cancer Research 28 (2022): 4747-4756. c) C. R. Stadler, H. Bahr-Mahmud, L. Celik, et al., “Elimination of Large Tumors in Mice by mRNA-Encoded Bispecific Antibodies,” Nature Medicine 23 (2017): 815-817. d) A. Cirella, E. Bolanos, C. Luri-Rey, et al., “Intratumoral Immunotherapy With mRNAs Encoding Chimeric Protein Constructs Encompassing IL-12, CD137 Agonists, and TGF-β Antagonists,” Molecular Therapy Nucleic Acids 33 (2023): 668-682. e) Y. Xiao, J. Chen, H. Zhou, et al., “Combining p53 mRNA Nanotherapy With Immune Checkpoint Blockade Reprograms the Immune Microenvironment for Effective Cancer Therapy,” Nature Communications 13 (2022): 758. f) D. Zhang, G. Wang, X. Yu, et al., “Enhancing CRISPR/Cas Gene Editing Through Modulating Cellular Mechanical Properties for Cancer Therapy,” Nature Nanotechnology 17 (2022): 777-787. g) J. Cai, Z. Liu, S. Chen, et al., “Engineered Circular RNA-Based DLL3-Targeted CAR-T Therapy for Small Cell Lung Cancer,” Experimental Hematology and Oncology 14 (2025): 35.

[111]

a) J. Yang, J. Zhu, J. Sun, et al., “Intratumoral Delivered Novel Circular mRNA Encoding Cytokines for Immune Modulation and Cancer Therapy,” Molecular Therapy Nucleic Acids 30 (2022): 184-197. b) Y. Li, J. Gan, J. Lei, et al., “Catalytic Hybrid Lipid Nanoparticles Potentiate Circle RNA-Based Cytokine Immunotherapy,” ACS Nano 19 (2025): 7864-7876. c) K. Yang, B. Bai, X. Li, et al., “Coordinating Interleukin-2 Encoding circRNA With Immunomodulatory Lipid Nanoparticles to Potentiate Cancer Immunotherapy,” Science Advances 11 (2025): eadn7256.

[112]

Y. Zhang, X. Liu, T. Shen, et al., “Small Circular RNAs as Vaccines for Cancer Immunotherapy,” Nature Biomedical Engineering 9 (2025): 249-267.

[113]

N. Sonenberg and A. G. Hinnebusch, “Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets,” Cell 136 (2009): 731-745.

[114]

K. Pan, H. Farrukh, V. Chittepu, H. Xu, C. X. Pan, and Z. Zhu, “CAR Race to Cancer Immunotherapy: From CAR T, CAR NK to CAR Macrophage Therapy,” Journal of Experimental and Clinical Cancer Research 41 (2022): 119.

[115]

M. P. Jogalekar, R. L. Rajendran, F. Khan, C. Dmello, P. Gangadaran, and B. C. Ahn, “CAR T-Cell-Based Gene Therapy for Cancers: New Perspectives, Challenges, and Clinical Developments,” Frontiers in Immunology 13 (2022): 925985.

[116]

a) J. G. Rurik, I. Tombacz, A. Yadegari, et al., “CAR T Cells Produced In Vivo to Treat Cardiac Injury,” Science 375 (2022): 91-96. b) D. M. Barrett, Y. Zhao, X. Liu, et al., “Treatment of Advanced Leukemia in Mice With mRNA Engineered T Cells,” Human Gene Therapy 22 (2011): 1575-1586.

[117]

M. M. Billingsley, N. Singh, P. Ravikumar, R. Zhang, C. H. June, and M. J. Mitchell, “Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering,” Nano Letters 20 (2020): 1578-1589.

[118]

a) M. P. Hirakawa, R. Krishnakumar, J. A. Timlin, J. P. Carney, and K. S. Butler, “Gene Editing and CRISPR in the Clinic: Current and Future Perspectives,” Bioscience Reports 40, (2020): BSR20200127. b) H. Li, Y. Yang, W. Hong, M. Huang, M. Wu, and X. Zhao, “Applications of Genome Editing Technology in the Targeted Therapy of Human Diseases: Mechanisms, Advances and Prospects,” Signal Transduction and Targeted Therapy 5, (2020): 1.

[119]

a) J. A. Doudna, “The Promise and Challenge of Therapeutic Genome Editing,” Nature 578 (2020): 229-236. b) B. Zhang, “CRISPR/Cas Gene Therapy,” Journal of Cellular Physiology 236 (2021): 2459-2481. c) H. Zhang, C. Qin, C. An, et al., “Application of the CRISPR/Cas9-Based Gene Editing Technique in Basic Research, Diagnosis, and Therapy of Cancer,” Molecular Cancer 20 (2021): 126.

[120]

a) L. S. Qi, M. H. Larson, L. A. Gilbert, et al., “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression,” Cell 184 (2021): 844. b) L. A. Gilbert, M. H. Larson, L. Morsut, et al., “CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes,” Cell 154 (2013): 442-451. c) M. L. Maeder, S. J. Linder, V. M. Cascio, Y. Fu, Q. H. Ho, and J. K. Joung, “CRISPR RNA-Guided Activation of Endogenous Human Genes,” Nature Methods 10 (2013): 977-979. d) L. Bendixen, T. I. Jensen, and R. O. Bak, “CRISPR-Cas-Mediated Transcriptional Modulation: The Therapeutic Promises of CRISPRa and CRISPRi,” Molecular Therapy 31 (2023): 1920-1937. e) Y. Liu, C. Yu, T. P. Daley, et al., “CRISPR Activation Screens Systematically Identify Factors That Drive Neuronal Fate and Reprogramming,” Cell Stem Cell 23 (2018): 758-771. f) P. Liu, M. Chen, Y. Liu, L. S. Qi, and S. Ding, “CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency,” Cell Stem Cell 22 (2018): 252-261. g) M. N. Hsu, K. L. Huang, F. J. Yu, et al., “Coactivation of Endogenous Wnt10b and Foxc2 by CRISPR Activation Enhances BMSC Osteogenesis and Promotes Calvarial Bone Regeneration,” Molecular Therapy 28 (2020): 441-451. h) Z. Zhao, P. Shang, P. Mohanraju, and N. Geijsen, “Prime Editing: Advances and Therapeutic Applications,” Trends in Biotechnology 41, (2023): 1000-1012.

[121]

a) M. Chen, A. Mao, M. Xu, Q. Weng, J. Mao, and J. Ji, “CRISPR-Cas9 for Cancer Therapy: Opportunities and Challenges,” Cancer Letters 447 (2019): 48-55. b) D. Kim, S. Bae, J. Park, et al., “Digenome-seq: Genome-Wide Profiling of CRISPR-Cas9 Off-Target Effects in Human Cells,” Nature Methods 12 (2015): 237-243.

[122]

H. X. Zhang, Y. Zhang, and H. Yin, “Genome Editing With mRNA Encoding ZFN, TALEN, and Cas9,” Molecular Therapy 27 (2019): 735-746.

[123]

K. Wood, M. Pink, and J. Seitzer, “Development of NTLA-2001, a CRISPR/Cas9 Genome Editing Therapeutic for the Treatment of ATTR,” paper presented at the Second European Congress for ATTR Amyloidosis, Berlin, September 1-3, 2019.

[124]

J. D. Gillmore, E. Gane, J. Taubel, et al., “CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis,” New England Journal of Medicine 385 (2021): 493-502.

[125]

Intellia Therapeutics: Press Release (Annual Scientific Meeting of the American College of Allergy, Asthma and Immunology, 2022).

[126]

a) I. Hoerr, R. Obst, H. G. Rammensee, and G. Jung, “In Vivo Application of RNA Leads to Induction of Specific Cytotoxic T Lymphocytes and Antibodies,” European Journal of Immunology 30 (2000): 1-7. b) J. Devoldere, H. Dewitte, S. C. De Smedt, and K. Remaut, “Evading Innate Immunity in Nonviral mRNA Delivery: Don't Shoot the Messenger,” Drug Discovery Today 21 (2016): 11-25.

[127]

M. Tong, N. Palmer, A. Dailamy, et al., “Robust Genome and Cell Engineering via In Vitro and In Situ Circularized RNAs,” Nature Biomedical Engineering 9 (2025): 109-126.

[128]

a) Z. Yi, L. Qu, H. Tang, et al., “Engineered Circular ADAR-Recruiting RNAs Increase the Efficiency and Fidelity of RNA Editing In Vitro and In Vivo,” Nature Biotechnology 40 (2022): 946-955. b) D. Katrekar, J. Yen, Y. Xiang, et al., “Efficient In Vitro and In Vivo RNA Editing via Recruitment of Endogenous ADARs Using Circular Guide RNAs,” Nature Biotechnology 40 (2022): 938-945. c) X. Zhang, M. Li, K. Chen, et al., “Engineered Circular Guide RNAs Enhance Miniature CRISPR/Cas12f-Based Gene Activation and Adenine Base Editing,” Nature Communications 16 (2025): 3016. d) L. Liu, W. Li, J. Li, et al., “Circular Guide RNA for Improved Stability and CRISPR-Cas9 Editing Efficiency In Vitro and in Bacteria,” ACS Synthetic Biology 12 (2023): 350-359. e) X. Zhang, X. Wang, J. Lv, et al., “Engineered Circular Guide RNAs Boost CRISPR/Cas12a- and CRISPR/Cas13d-Based DNA and RNA Editing,” Genome Biology 24 (2023): 145. f) R. Liang, Z. He, K. T. Zhao, et al., “Prime Editing Using CRISPR-Cas12a and Circular RNAs in Human Cells,” Nature Biotechnology 42 (2024): 1867-1875.

[129]

Z. Xu, Q. Wang, H. Zhong, et al., “Carrier Strategies Boost the Application of CRISPR/Cas System in Gene Therapy,” Exploration (Beijing) 2 (2022): 20210081.

[130]

D. D. Kang, X. Hou, L. Wang, et al., “Engineering LNPs With Polysarcosine Lipids for mRNA Delivery,” Bioactive Materials 37 (2024): 86-93.

[131]

Y. Ju, W. S. Lee, E. H. Pilkington, et al., “Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine,” ACS Nano 16 (2022): 11769-11780.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/