Innovative PDK1-Degrading PROTACs Transform Cancer Aerobic Glycolysis and Induce Immunogenic Cell Death in Breast Cancer

Aohua Deng , Renming Fan , Jiakui Gou , Ruoxi Sang , Ruizhuo Lin , Ting Zhao , Junyan Zhuang , Yongrui Hai , Jialin Sun , Gaofei Wei

Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240031

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240031 DOI: 10.1002/EXP.20240031
RESEARCH ARTICLE

Innovative PDK1-Degrading PROTACs Transform Cancer Aerobic Glycolysis and Induce Immunogenic Cell Death in Breast Cancer

Author information +
History +
PDF

Abstract

Cancer cells are characterized by the Warburg effect, which hijacks glycolysis and hinders OXPHOS. Pyruvate dehydrogenase kinase 1 (PDK1) is a key modulator in the Warburg effect and is highly expressed in tumor cells. We utilize PROTAC technology to design compounds that could achieve long-lasting degradation on PDK1. After screening anti-tumor activity in vitro, we selected a top compound A04, among 22 chemical candidates in various structures. Compared to a conventional PDK1 inhibitor, A04 dramatically improves over 1000-fold proliferation inhibition efficacy. Besides, A04 reverses Warburg effect and causes tumor apoptosis. In vivo, A04 achieves potent therapeutic efficacy in tumor-bearing mice and dramatically prolongs their lifetime after surgery resection. For the mechanism, A04 induces immunogenic cell death and reverses immunosuppression in the TME to enhance antitumor immunoreactivity. Further, transcriptome analysis verifies the mechanisms and uncovers fluctuation in cancer related pathways. Combination with αPD-L1 improves therapeutic efficacy and promotes multiple immunocytes infiltration. In conclusion, we first utilize PROTAC technology on modulating aberrant expressed metabolic enzyme PDK1 in cancer cells and achieve a great pharmacological effect, rendering it promising for energy-aberrant cancer therapy.

Keywords

immunogenic cell death / PROTAC / pyruvate dehydrogenase kinase / Warburg effect

Cite this article

Download citation ▾
Aohua Deng, Renming Fan, Jiakui Gou, Ruoxi Sang, Ruizhuo Lin, Ting Zhao, Junyan Zhuang, Yongrui Hai, Jialin Sun, Gaofei Wei. Innovative PDK1-Degrading PROTACs Transform Cancer Aerobic Glycolysis and Induce Immunogenic Cell Death in Breast Cancer. Exploration, 2025, 5(4): e20240031 DOI:10.1002/EXP.20240031

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. A. Cairns, I. S. Harris, and T. W. Mak, “Regulation of Cancer Cell Metabolism,” Nature Reviews Cancer 11 (2011): 85-95.

[2]

L. K. Boroughs and R. J. DeBerardinis, “Metabolic Pathways Promoting Cancer Cell Survival and Growth,” Nature Cell Biology 17 (2015): 351-359.

[3]

W. H. Koppenol, P. L. Bounds, and C. V. Dang, “Otto Warburg's Contributions to Current Concepts of Cancer Metabolism,” Nature Reviews Cancer 11 (2011): 325-337.

[4]

X. S. Chen, L. Y Li, Y. D. Guan, J. M. Yang, and Y. Cheng, “Anticancer Strategies Based on the Metabolic Profile of Tumor Cells: Therapeutic Targeting of the Warburg Effect,” Acta Pharmacologica Sinica 37 (2016): 1013-1019.

[5]

S. Anwar, A. Shamsi, T. Mohammad, A. Islam, and M. I. Hassan, “Targeting Pyruvate Dehydrogenase Kinase Signaling in the Development of Effective Cancer Therapy,” Biochimica et Biophysica Acta: Reviews on Cancer 2021 (1876): 188568.

[6]

Z. E. Stine, Z. T. Schug, J. M. Salvino, and C. V. Dang, “Targeting Cancer Metabolism in the Era of Precision Oncology,” Nature Reviews Drug Discovery 21 (2022): 141-162.

[7]

L. Sun, Y. Xu, Y. Gao, et al., “Synergistic Amplification of Oxidative Stress-Mediated Antitumor Activity via Liposomal Dichloroacetic Acid and MOF-Fe2+,” Small 15 (2019): e1901156.

[8]

S. Savino, V. Gandin, J. D. Hoeschele, C. Marzano, G. Natile, and N. Margiotta, “Dual-Acting Antitumor Pt(iv) Prodrugs of Kiteplatin With Dichloroacetate Axial Ligands,” Dalton Transactions 47 (2018): 7144-7158.

[9]

Z. Sun, W. Chen, D. Huang, C. Jiang, and L. Lu, “A Mitochondria Targeted Cascade Reaction Nanosystem for Improved Therapeutic Effect by Overcoming Cellular Resistance,” Biomaterials Science 10 (2022): 5947-5955.

[10]

Z. Dai, Q. Wang, J. Tang, et al., “A Sub-6 nm MnFe2O4-Dichloroacetic Acid Nanocomposite Modulates Tumor Metabolism and Catabolism for Reversing Tumor Immunosuppressive Microenvironment and Boosting Immunotherapy,” Biomaterials 284 (2022): 121533.

[11]

B. Xu, Z. P. Wang, Q. Liu, et al., “Synthesis, Biological Evaluation and Structure-Activity Relationship of Novel Dichloroacetophenones Targeting Pyruvate Dehydrogenase Kinases With Potent Anticancer Activity,” European Journal of Medicinal Chemistry 214 (2021): 113225.

[12]

A. Sharma, J. Chun, M. S. Ji, S. Lee, C. Kang, and J. S. Kim, “Binary Prodrug of Dichloroacetic Acid and Doxorubicin With Enhanced Anticancer Activity,” ACS Applied Nano Materials 7 (2021): 2026-2032.

[13]

T. Tataranni and C. Piccoli, “Dichloroacetate (DCA) and Cancer: An Overview Towards Clinical Applications,” Oxidative Medicine and Cellular Longevity 2019 (2019): 8201079.

[14]

T. Ishiguro, M. Ishiguro, R. Ishiguro, and S. Iwai, “Cotreatment With Dichloroacetate and Omeprazole Exhibits a Synergistic Antiproliferative Effect on Malignant Tumors,” Oncology Letters 3 (2012): 726-728.

[15]

G. Wei, J. Sun, W. Luan, et al., “Natural Product Albiziabioside a Conjugated With Pyruvate Dehydrogenase Kinase Inhibitor Dichloroacetate To Induce Apoptosis-Ferroptosis-M2-TAMs Polarization for Combined Cancer Therapy,” Journal of Medicinal Chemistry 62 (2019): 8760-8772.

[16]

M. He, C. Cao, Z. Ni, et al., “PROTACs: Great Opportunities for Academia and Industry (An Update From 2020 to 2021)” Signal Transduction and Targeted Therapy 7 (2022): 181.

[17]

M. Hu, W. Zhou, and Y. Wang, et al., “Discovery of the First Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Indoleamine 2,3-Dioxygenase 1,” Acta Pharmaceutica Sinica B 10 (2020): 1943-1953.

[18]

K. Wang, X. Dai, A. Yu, C. Feng, K. Liu, and L. Huang, “Peptide-Based PROTAC Degrader of FOXM1 Suppresses Cancer and Decreases GLUT1 and PD-L1 Expression,” Journal of Experimental & Clinical Cancer Research 41 (2022): 289.

[19]

S. Khan, Y. He, X. Zhang, et al., “Proteolysis Targeting Chimeras (PROTACs) as Emerging Anticancer Therapeutics,” Oncogene 39 (2020): 4909-4924.

[20]

M. Bekes, D. R. Langley, and C. M. Crews, “PROTAC Targeted Protein Degraders: The Past Is Prologue,” Nature Reviews Drug Discovery 21 (2022): 181-200.

[21]

R. P. Law, J. Nunes, C. W. Chung, et al., “Discovery and Characterisation of Highly Cooperative FAK-Degrading PROTACs,” Angewandte Chemie (International Edition in English) 60 (2021): 23327-23334.

[22]

J. Min, A. Mayasundari, and F. Keramatnia, “Phenyl-Glutarimides: Alternative Cereblon Binders for the Design of PROTACs,” Angewandte Chemie (International Edition in English) 60 (2021): 26663-26670.

[23]

K. Tang, S. Wang, W. Gao, Y. Song, and B. Yu, “Harnessing the Cyclization Strategy for New Drug Discovery,” Acta Pharmaceutica Sinica B 12 (2022): 4309-4326.

[24]

M. Winzker, A. Friese, U. Koch, P. Janning, S. Ziegler, and H. Waldmann, “Development of a PDEδ-Targeting PROTACs That Impair Lipid Metabolism,” Angewandte Chemie (International Edition in English) 59 (2020): 5595-5601.

[25]

L. Zhao, J. Zhao, K. Zhong, A. Tong, and D. Jia, “Targeted Protein Degradation: Mechanisms, Strategies and Application,” Signal Transduction and Targeted Therapy 7 (2022): 113.

[26]

Y. Wu, C. Pu, Y. Fu, G. Dong, M. Huang, and C. Sheng, “NAMPT-Targeting PROTAC Promotes Antitumor Immunity via Suppressing Myeloid-Derived Suppressor Cell Expansion,” Acta Pharmaceutica Sinica B 12 (2022): 2859-2868.

[27]

R. Sang, R. Fan, A. Deng, et al., “Degradation of Hexokinase 2 Blocks Glycolysis and Induces GSDME-Dependent Pyroptosis to Amplify Immunogenic Cell Death for Breast Cancer Therapy,” Journal of Medicinal Chemistry 66 (2023): 8464-8483.

[28]

X. Sun, H. Gao, Y. Yang, et al., “PROTACs: Great Opportunities for Academia and Industry,” Signal Transduction and Targeted Therapy 4 (2019): 64.

[29]

Z. Xiao, S. Song, D. Chen, et al., “Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti-Proliferative Activity in Lung Cancer Cells,” Angewandte Chemie (International Edition in English) 60 (2021): 17514.

[30]

T. Song, Z. Wang, F. Ji, et al., “Deactivation of Mcl-1 by Dual-Function Small-Molecule Inhibitors Targeting the Bcl-2 Homology 3 Domain and Facilitating Mcl-1 Ubiquitination,” Angewandte Chemie (International Edition in English) 55 (2016): 14250-14256.

[31]

S. Papa, P. M. Choy, and C. Bubici, “The ERK and JNK Pathways in the Regulation of Metabolic Reprogramming,” Oncogene 38 (2019): 2223-2240.

[32]

R. Dhanasekaran, A. Deutzmann, W. D. Mahauad-Fernandez, A. S. Hansen, A. M. Gouw, and D. W. Felsher, “The MYC Oncogene — The Grand Orchestrator of Cancer Growth and Immune Evasion,” Nature Reviews Clinical Oncology 19 (2022): 23-36.

[33]

C. Lourenco, D. Resetca, C. Redel, et al., “MYC Protein Interactors in Gene Transcription and Cancer,” Nature Reviews Cancer 21 (2021): 579-591.

[34]

S. C. Casey. L. Tong. Y. Li, et al., “MYC Regulates the Antitumor Immune Response Through CD47 and PD-L1,” Science 352 (2016): 227-231.

[35]

G. Kroemer, C. Galassi, L. Zitvogel, and L. Galluzzi, “Immunogenic Cell Stress and Death,” Nature Immunology 23 (2022): 487.

[36]

J. Fucikova, R. Spisek, G. Kroemer, and L. Galluzzi, “Calreticulin and Cancer,” Cell Research 31 (2021): 5-16.

[37]

K. E. Scott and J. L. Cleveland, “Lactate Wreaks Havoc on Tumor-Infiltrating T and NK Cells,” Cell Metabolism 24 (2016): 649-650.

[38]

D. Kolb, N. Kolishetti, and B. Surnar, “Metabolic Modulation of the Tumor Microenvironment Leads to Multiple Checkpoint Inhibition and Immune Cell Infiltration,” ACS Nano 14 (2020): 11055-11066.

[39]

R. M. G. Johnson, T. Wen, and H. Dong, “Bidirectional Signals of PD-L1 in T Cells That Fraternize With Cancer Cells,” Nature Immunology 21 (2020): 365-366.

[40]

M. Y. Liu, J. D. Klement, C. J. Langan, van J. Riggelen, and K. Liu, “Expression Regulation and Function of PD-1 and PD-L1 in T Lymphoma Cells,” Cellular Immunology 366 (2021): 104397.

[41]

D. B. Doroshow, S. Bhalla, M. B. Beasley et al., “PD-L1 as a Biomarker of Response to Immune-Checkpoint Inhibitors,” Nature Reviews Clinical Oncology 18 (2021): 345-362.

[42]

Q. Gou, C. Dong, H. Xu, B. Khan, J. Jin, Q. Liu, J. Shi, and Y. Hou, “PD-L1 Degradation Pathway and Immunotherapy for Cancer,” Cell Death & Disease 11 (2020): 955.

[43]

C. Cao, J. Yang, Y. Chen, et al., “Discovery of SK-575 as a Highly Potent and Efficacious Proteolysis-Targeting Chimera Degrader of PARP1 for Treating Cancers,” Journal of Medicinal Chemistry 63 (2020): 11012-11033.

[44]

S. L. Degorce, O. Tavana, E. Banks, et al., “Discovery of Proteolysis-Targeting Chimera Molecules That Selectively Degrade the IRAK3 Pseudokinase,” Journal of Medicinal Chemistry 63 (2020): 10460-10473.

[45]

M. Hanafi, X. Chen, and N. Neamati, “Discovery of a Napabucasin PROTAC as an Effective Degrader of the E3 Ligase ZFP91,” Journal of Medicinal Chemistry 64 (2021): 1626-1648.

[46]

G. Nishiguchi, F. Keramatnia, J. Min, et al., “Identification of Potent, Selective, and Orally Bioavailable Small-Molecule GSPT1/2 Degraders From a Focused Library of Cereblon Modulators,” Journal of Medicinal Chemistry 64 (2021): 7296-7311.

[47]

S. Ma, J. Ji, Y. Tong, et al., “Non-Small Molecule PROTACs (NSM-PROTACs): Protein Degradation Kaleidoscope,” Acta Pharmaceutica Sinica B 12 (2022): 2990-3005.

[48]

K. Yuan, X. Wang, H. Dong, W. Min, H. Hao, and P. Yang, “Selective Inhibition of CDK4/6: A Safe and Effective Strategy for Developing Anticancer Drugs,” Acta Pharmaceutica Sinica B 11 (2021): 30-54.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/