Recent Progress in Photocathode Interface Engineering for Photoelectrochemical CO2 Reduction Reaction to C1 or C2+ Products

Jae Hak Kim , Sung Hyun Hong , Sang Hyun Ahn , Soo Young Kim

Exploration ›› 2025, Vol. 5 ›› Issue (2) : 70010

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (2) : 70010 DOI: 10.1002/EXP.20240014
REVIEW

Recent Progress in Photocathode Interface Engineering for Photoelectrochemical CO2 Reduction Reaction to C1 or C2+ Products

Author information +
History +
PDF

Abstract

Photoelectrochemical (PEC) systems harness light absorption to initiate chemical reactions, while electrochemical reactions facilitate the conversion of reactants into desired products, ensuring more efficient and sustainable energy conversion in PECs. Central to optimizing the performance of PECs was the pivotal role played by interface engineering. This intricate process involves manipulating material interfaces at the atomic or nanoscale to enhance charge transfer, improve catalytic activity, and address limitations associated with bulk materials. The careful tuning of factors such as band gap, surface energy, crystallinity, defect characteristics, and structural attributes through interface engineering led to superior catalytic efficiency. Specifically, interface engineering significantly enhanced the efficiency of semiconductor-based PECs. Engineers strategically designed heterojunctions and manipulated catalyst surface properties to optimize the separation and migration of photogenerated charge carriers, minimizing recombination losses and improving performance overall. This review categorizes the discussion into four sections focusing on the interface engineering of PECs, providing valuable insights into recent research trends. Overall, the synergy between PECs and interface engineering holds tremendous promise for advancing renewable energy technologies and addressing environmental challenges by offering innovative solutions for sustainable energy conversion and storage.

Keywords

cocatalysts engineering / defect engineering / interface engineering / junction engineering / nanostructure engineering / photoelectrochemical CO2 reduction

Cite this article

Download citation ▾
Jae Hak Kim, Sung Hyun Hong, Sang Hyun Ahn, Soo Young Kim. Recent Progress in Photocathode Interface Engineering for Photoelectrochemical CO2 Reduction Reaction to C1 or C2+ Products. Exploration, 2025, 5(2): 70010 DOI:10.1002/EXP.20240014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. R. Anderson, E. Hawkins, and P. D. Jones, “CO2, the Greenhouse Effect and Global Warming: From the Pioneering Work of Arrhenius and Callendar to Today's Earth System Models,” Endeavour 40 (2016): 178.

[2]

Y. Xie, T. T. Wang, X. H. Liu, K. Zou, and W. Q. Deng, “Capture and Conversion of CO2 at Ambient Conditions by a Conjugated Microporous Polymer,” Nature Communications 4 (2013): 1960.

[3]

S. Xiang, Y. He, Z. Zhang, et al., “Microporous Metal-organic Framework With Potential for Carbon Dioxide Capture at Ambient Conditions,” Nature Communications 3 (2012): 954.

[4]

Z. Liu, Z. Deng, B. Zhu, et al., “Global Patterns of Daily CO2 Emissions Reductions in the First Year of COVID-19,” Nature Geoscience 15 (2022): 615.

[5]

V. Masson-Delmotte, P. Zhai, A. Pirani, et al., IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021), 2391.

[6]

Z. Liu, Z. Deng, S. Davis, and P. Ciais, “Monitoring Global Carbon Emissions in 2022,” Nature Reviews Earth & Environment 4 (2023): 205.

[7]

Y. R. Wang, Q. Huang, C. T. He, et al., “Oriented Electron Transmission in Polyoxometalate-Metalloporphyrin Organic Framework for Highly Selective Electroreduction of CO2,” Nature Communications 9 (2018): 4466.

[8]

N. T. Nesbitt, M. Ma, B. J. Trześniewski, et al., “Au Dendrite Electrocatalysts for CO2 Electrolysis,” Journal of Physical Chemistry C 122 (2018): 10006.

[9]

Y. T. Guntern, J. R. Pankhurst, J. Vavra, et al., “Nanocrystal/Metal-Organic Framework Hybrids as Electrocatalytic Platforms for CO2 Conversion,” Angewandte Chemie 131 (2019): 12762.

[10]

L. K. Putri, W. J. Ong, W. S. Chang, and S. P. Chai, “Enhancement in the Photocatalytic Activity of Carbon Nitride Through Hybridization With Light-Sensitive AgCl for Carbon Dioxide Reduction to Methane,” Catalysis Science & Technology 6 (2016): 744.

[11]

X. Y. Kong, T. Tong, B. J. Ng, et al., “Topotactic Transformation of Bismuth Oxybromide Into Bismuth Tungstate: Bandgap Modulation of Single-Crystalline {001}-Faceted Nanosheets for Enhanced Photocatalytic CO2 Reduction,” ACS Appl Mater Interfaces 12 (2020): 26991.

[12]

X. Y. Kong, Y. Y. Choo, S. P. Chai, A. K. Soh, and A. R. Mohamed, “Oxygen Vacancy Induced Bi 2 WO 6 for the Realization of Photocatalytic CO2 Reduction Over the Full Solar Spectrum: From the UV to the NIR Region,” Chemical Communications 52 (2016): 14242.

[13]

X. Y. Kong, W. L. Tan, B. J. Ng, S. P. Chai, and A. R. Mohamed, “Harnessing Vis-NIR Broad Spectrum for Photocatalytic CO2 Reduction Over Carbon Quantum Dots-decorated Ultrathin Bi2WO6 Nanosheets,” Nano Research 10 (2017): 1720.

[14]

Z. Yang, Y. Qi, F. Wang, et al., “State-of-the-art Advancements in Photo-assisted CO2 Hydrogenation: Recent Progress in Catalyst Development and Reaction Mechanisms,” Journal of Materials Chemistry A 8 (2020): 24868.

[15]

T. Kulandaivalu, A. R. Mohamed, K. A. Ali, and M. Mohammadi, “Photocatalytic Carbon Dioxide Reforming of Methane as an Alternative Approach for Solar Fuel Production-a Review,” Renewable & Sustainable Energy Reviews 134 (2020): 110363.

[16]

T. Amrillah, A. R. Supandi, V. Puspasari, A. Hermawan, and Z. W. Seh, “MXene-Based Photocatalysts and Electrocatalysts for CO2 Conversion to Chemicals,” Transactions of Tianjin University 28 (2022): 307.

[17]

J. H. Cho, J. Ma, and S. Y. Kim, “Toward High-Efficiency Photovoltaics-Assisted Electrochemical and Photoelectrochemical CO2 Reduction: Strategy and Challenge,” Exploration 3 (2023): 20230001.

[18]

D. Yang, H. Yu, T. He, et al., “Visible-light-switched Electron Transfer Over Single Porphyrin-metal Atom Center for Highly Selective Electroreduction of Carbon Dioxide,” Nature Communications 10 (2019): 3844.

[19]

G. H. Han, J. Bang, G. Park, et al., “Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction of CO2 to C2+ Products,” Small 19 (2023): 2205765.

[20]

R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, and M. T. Koper, “Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide,” Journal of Physical Chemistry Letters 6 (2015): 4073.

[21]

J. T. Feaster, C. Shi, E. R. Cave, et al., “Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes,” ACS Catalysis 7 (2017): 4822.

[22]

A. Bagger, W. Ju, A. S. Varela, P. Strasser, and J. Rossmeisl, “Electrochemical CO2 Reduction: A Classification Problem,” Chemphyschem 18 (2017): 3266.

[23]

J. Santatiwongchai, K. Faungnawakij, and P. Hirunsit, “Comprehensive Mechanism of CO2 Electroreduction Toward Ethylene and Ethanol: The Solvent Effect From Explicit Water-Cu(100) Interface Models,” ACS Catalysis 11 (2021): 9688.

[24]

M. Halmann, “Photoelectrochemical Reduction of Aqueous Carbon Dioxide on p-Type Gallium Phosphide in Liquid Junction Solar Cells,” Nature 275 (1978): 115.

[25]

V. H. Nguyen, B. S. Nguyen, Z. Jin, et al., “Towards Artificial Photosynthesis: Sustainable Hydrogen Utilization for Photocatalytic Reduction of CO2 to High-Value Renewable Fuels,” Journal of Chemical Engineering 402 (2020): 126184.

[26]

T. P. Nguyen, D. L. T. Nguyen, V. H. Nguyen, et al., “Recent Advances in TiO2-Based Photocatalysts for Reduction of CO2 to Fuels,” Nanomaterials 10 (2020): 337.

[27]

H. H. Do, D. L. T. Nguyen, X. C. Nguyen, et al., “Recent Progress in TiO2-based Photocatalysts for Hydrogen Evolution Reaction: A Review,” Arabian Journal of Chemistry 13 (2020): 3653.

[28]

S. Thiele, J. Bachmann, and S. Cherevko, “Dissolution of WO3 Modified With IrOx Overlayers During Photoelectrochemical Water Splitting,” SusMat 3 (2023): 128.

[29]

P. Ding, T. Jiang, N. Han, and Y. Li, “Photocathode Engineering for Efficient Photoelectrochemical CO2 Reduction,” Materials Today Nano 10 (2020): 100077.

[30]

W. Zhang, Z. Jin, and Z. Chen, “Rational-Designed Principles for Electrochemical and Photoelectrochemical Upgrading of CO2 to Value-Added Chemicals,” Advancement of Science 9 (2022): 2105204.

[31]

A. U. Pawar, C. W. Kim, M.-T. Nguyen-Le, and Y. S. Kang, “General Review on the Components and Parameters of Photoelectrochemical System for CO2 Reduction With In Situ Analysis,” ACS Sustainable Chemistry & Engineering 7 (2019): 7431.

[32]

Y. Deng and B. S. Yeo, “Characterization of Electrocatalytic Water Splitting and CO2 Reduction Reactions Using In Situ/Operando Raman Spectroscopy,” ACS Catalysis 7 (2017): 7873.

[33]

M. J. Kang, C. W. Kim, A. U. Pawar, et al., “Selective Alcohol on Dark Cathodes by Photoelectrochemical CO2 Valorization and Their In Situ Characterization,” ACS Energy Letters 4 (2019): 1549.

[34]

H. Gong, Z. Wei, Z. Gong, et al., “Low-Coordinated Co-N-C on Oxygenated Graphene for Efficient Electrocatalytic H2O2 Production,” Advanced Functional Materials 32 (2022): 2106886.

[35]

J. Ma, J. H. Cho, C. Lee, et al., “Unraveling the Harmonious Coexistence of Ruthenium States on a Self-Standing Electrode for Enhanced Hydrogen Evolution Reaction,” Energy & Environmental Materials 7 (2024): e12766.

[36]

Y. Sun, S. Ding, B. Xia, J. Duan, M. Antonietti, and S. Chen, “Biomimetic FeMo(Se, Te) as Joint Electron Pool Promoting Nitrogen Electrofixation,” Angewandte Chemie 134 (2022): e202115198.

[37]

A. Molinari, L. Samiolo, and R. Amadelli, “EPR Spin Trapping Evidence of Radical Intermediates in the Photo-reduction of Bicarbonate/CO2 in TiO2 Aqueous Suspensions,” Photochemical & Photobiological Sciences 14 (2015): 1039.

[38]

J. Ma, S. H. Ahn, and S. Y. Kim, “Integration of Earth-abundant Cocatalysts for High-performance Photoelectrochemical Energy Conversion,” Journal of Energy Chemistry 88 (2024): 336.

[39]

J. Liu, C. Xia, S. Zaman, Y. Su, L. Tan, and S. Chen, “Surface Plasmon Assisted Photoelectrochemical Carbon Dioxide Reduction: Progress and Perspectives,” Journal of Materials Chemistry A 11 (2023): 16918.

[40]

K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, “Photochemistry on Metal Nanoparticles,” Chemical Reviews 106 (2006): 4301.

[41]

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal Nanostructures for Efficient Conversion of Solar to Chemical Energy,” Nature Materials 10 (2011): 911.

[42]

G. Baffou and R. Quidant, “Nanoplasmonics for Chemistry,” Chemical Society Reviews 43 (2014): 3898.

[43]

U. Aslam, V. G. Rao, S. Chavez, and S. Linic, “Catalytic Conversion of Solar to Chemical Energy on Plasmonic Metal Nanostructures,” Nature Catalysis 1 (2018): 656.

[44]

S. Chen, W. H. Li, W. Jiang, et al., “MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis,” Angewandte Chemie International Edition 134 (2022): e202114450.

[45]

V. H. Nguyen, B. S. Nguyen, and C. C. Hu, “Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts Toward Photocatalytic Hydrogen Production: A Mini-Review,” Nanomaterials 10 (2020): 602.

[46]

S. Bae, S. Lee, H. Ryu, and W. J. Lee, “Improvement of Photoelectrochemical Properties of CuO Photoelectrode by Li Doping,” Korean Journal of Metals and Materials 60 (2022): 577.

[47]

V. Kumar, R. K. Mishra, L. G. Trung, et al., “Copper, Palladium, and Reduced Graphene Oxide co-doped Layered WS2/WO3 Nanostructures for Electrocatalytic Hydrogen Generation,” Electronic Materials Letters 20 (2024): 414.

[48]

G. Liu, R. Cai, Z. Lv, et al., “Ameliorating the Carrier Dynamics Behavior via Plasmonic Ag-modified CuBi2O4 Inverse Opal for the Efficient Photoelectrocatalytic Reduction of CO2 to CO,” Journal of Catalysis 424 (2023): 130.

[49]

K. Wang, N. Fan, B. Xu, et al., “Steering the Pathway of Plasmon-Enhanced Photoelectrochemical CO2 Reduction by Bridging Si and Au Nanoparticles Through a TiO2 Interlayer,” Small 18 (2022): 2201882.

[50]

G. Bharath, J. Prakash, K. Rambabu, et al., “Synthesis of TiO2/RGO With Plasmonic Ag Nanoparticles for Highly Efficient Photoelectrocatalytic Reduction of CO2 to Methanol Toward the Removal of an Organic Pollutant From the Atmosphere,” Environmental Pollution 281 (2021): 116990.

[51]

G. Bharath, K. Rambabu, A. Hai, et al., “Dual-functional Paired Photoelectrocatalytic System for the Photocathodic Reduction of CO2 to Fuels and the Anodic Oxidation of Furfural to Value-Added Chemicals,” Applied Catalysis B 298 (2021): 120520.

[52]

G. Li, M. Wang, H. Shao, et al., “Light-Driven Carbon Dioxide Reduction Over the Ag-Decorated Modified TS-1 Zeolite,” Catalysis Science & Technology 12 (2022): 2490.

[53]

Y. Zhang, Q. Wang, K. Wang, et al., “Plasmonic Ag-decorated Cu2O Nanowires for Boosting Photoelectrochemical CO2 Reduction to Multi-Carbon Products,” Chemical Communications 58 (2022): 9421.

[54]

L. K. Putri, B. J. Ng, W. J. Ong, S. P. Chai, and A. R. Mohamed, “Toward Excellence in Photocathode Engineering for Photoelectrochemical CO2 Reduction: Design Rationales and Current Progress,” Advanced Energy Materials 12 (2022): 2201093.

[55]

J. C. Matsubu, E. T. Lin, K. L. Gunther, K. N. Bozhilov, Y. Jiang, and P. Christopher, “Critical Role of Interfacial Effects on the Reactivity of Semiconductor-cocatalyst Junctions for Photocatalytic Oxygen Evolution From Water,” Catalysis Science & Technology 6 (2016): 6836.

[56]

C. Shi, H. A. Hansen, A. C. Lausche, and J. K. Nørskov, “Trends in Electrochemical CO2 Reduction Activity for Open and Close-packed Metal Surfaces,” Physical Chemistry Chemical Physics 16 (2014): 4720.

[57]

Y. Sun, X. Liu, M. Zhu, et al., “Non-Noble Metal Single Atom-Based Catalysts for Electrochemical Reduction of CO2: Synthesis Approaches and Performance Evaluation,” DeCarbon 2 (2023): 100018.

[58]

P. Rao, Y. Yu, S. Wang, et al., “Understanding the Improvement Mechanism of Plasma Etching Treatment on Oxygen Reduction Reaction Catalysts,” Exploration 4 (2024): 20230034.

[59]

S. K. Choi, U. Kang, S. Lee, D. J. Ham, S. M. Ji, and H. Park, “Sn-Coupled p-Si Nanowire Arrays for Solar Formate Production From CO2,” Advanced Energy Materials 4 (2014): 1301614.

[60]

Q. Shen, Z. Chen, X. Huang, M. Liu, and G. Zhao, “High-Yield and Selective Photoelectrocatalytic Reduction of CO2 to Formate by Metallic Copper Decorated Co3O4 Nanotube Arrays,” Environmental Science & Technology 49 (2015): 5828.

[61]

K. Alenezi, S. K. Ibrahim, P. Li, and C. J. Pickett, “Solar Fuels: Photoelectrosynthesis of CO From CO2 at p-Type Si Using Fe Porphyrin Electrocatalysts,” Chemistry - A European Journal 19 (2013): 13522.

[62]

B. Shang, C. L. Rooney, D. J. Gallagher, et al., “Aqueous Photoelectrochemical CO2 Reduction to CO and Methanol Over a Silicon Photocathode Functionalized With a Cobalt Phthalocyanine Molecular Catalyst,” Angewandte Chemie 135 (2023): e202215213.

[63]

S. Roy, M. Miller, J. Warnan, J. J. Leung, C. D. Sahm, and E. Reisner, “Electrocatalytic and Solar-Driven Reduction of Aqueous CO2 With Molecular Cobalt Phthalocyanine-Metal Oxide Hybrid Materials,” ACS Catalysis 11 (2021): 1868.

[64]

Z. Wen, S. Xu, Y. Zhu, et al., “Aqueous CO2 Reduction on Si Photocathodes Functionalized by Cobalt Molecular Catalysts/Carbon Nanotubes,” Angewandte Chemie 134 (2022): e202201086.

[65]

J. J. Leung, J. Warnan, K. H. Ly, et al., “Solar-Driven Reduction of Aqueous CO2 With a Cobalt Bis(Terpyridine)-Based Photocathode,” Nat Catalysis 2 (2019): 354.

[66]

W. J. Dong, I. A. Navid, Y. Xiao, J. W. Lim, J. L. Lee, and Z. Mi, “CuS-Decorated GaN Nanowires on Silicon Photocathodes for Converting CO2 Mixture Gas to HCOOH,” Journal of the American Chemical Society 143 (2021): 10099.

[67]

W. J. Dong, I. A. Navid, Y. Xiao, et al., “Bi Catalysts Supported on GaN Nanowires Toward Efficient Photoelectrochemical CO2 Reduction,” Journal of Materials Chemistry A 10 (2022): 7869.

[68]

B. Zhou, X. Kong, S. Vanka, et al., “A GaN:Sn Nanoarchitecture Integrated on a Silicon Platform for Converting CO2 to HCOOH by Photoelectrocatalysis,” Energy & Environmental Science 12 (2019): 2842.

[69]

X. Deng, R. Li, S. Wu, et al., “Metal-Organic Framework Coating Enhances the Performance of Cu2O in Photoelectrochemical CO2 Reduction,” Journal of the American Chemical Society 141 (2019): 10924.

[70]

K. Wang, Y. Liu, Q. Wang, et al., “Asymmetric Cu-N Sites on Copper Oxide Photocathode for Photoelectrochemical CO2 Reduction towards C2 Products,” Applied Catalysis B 316 (2022): 121616.

[71]

I. Roh, S. Yu, C. K. Lin, S. Louisia, S. Cestellos-Blanco, and P. Yang, “Photoelectrochemical CO2 Reduction Toward Multicarbon Products With Silicon Nanowire Photocathodes Interfaced With Copper Nanoparticles,” Journal of the American Chemical Society 144 (2022): 8002.

[72]

C. Kim, A. J. King, S. Aloni, F. M. Toma, A. Z. Weber, and A. T. Bell, “Codesign of an Integrated Metal-Insulator-Semiconductor Photocathode for Photoelectrochemical Reduction of CO2 to Ethylene,” Energy & Environmental Science 16 (2023): 2968.

[73]

L. Liu, Y. Zhang, and H. Huang, “Junction Engineering for Photocatalytic and Photoelectrocatalytic CO2 Reduction,” Solar RRL 5 (2021): 2000430.

[74]

T. Ouyang, Y. Q. Ye, C. Tan, et al., “1D α-Fe2O3 /ZnO Junction Arrays Modified by Bi as Photocathode: High Efficiency in Photoelectrochemical Reduction of CO2 to HCOOH,” Journal of Physical Chemistry Letters 13 (2022): 6867.

[75]

X. X. Jiang, X. De Hu, M. Tarek, et al., “Tailoring the Properties of G-C3N4 With CuO for Enhanced Photoelectrocatalytic CO2 Reduction to Methanol,” Journal of CO2 Utilization 40 (2020): 101222.

[76]

Z. Pan, E. Han, J. Zheng, et al., “Highly Efficient Photoelectrocatalytic Reduction of CO2 to Methanol by a p-n Heterojunction CeO2/CuO/Cu Catalyst,” Nano-Micro Letters 12 (2020): 18.

[77]

J. Zheng, X. Li, Y. Qin, et al., “Zn Phthalocyanine/Carbon Nitride Heterojunction for Visible Light Photoelectrocatalytic Conversion of CO2 to Methanol,” Journal of Catalysis 371 (2019): 214.

[78]

M. Tarek, K. M. R. Karim, S. M. Sarkar, et al., “Hetero-structure CdS-CuFe2O4 as an Efficient Visible Light Active Photocatalyst for Photoelectrochemical Reduction of CO2 to Methanol,” International Journal of Hydrogen Energy 44 (2019): 26271.

[79]

Y. Xu, F. Wang, S. Lei, et al., “In Situ Grown Two-dimensional TiO2/Ti3CN MXene Heterojunction Rich in Ti3+ Species for Highly Efficient Photoelectrocatalytic CO2 Reduction,” Journal of Chemical Engineering 452 (2023): 139392.

[80]

M. Lu, D. Jia, H. Xue, J. Tian, and T. Jiang, “0D/1D CuFeO2/CuO Nanowire Heterojunction Arrays for Improved Photoelectrocatalytic Reduction of CO2 to Ethanol,” Journal of Alloys and Compounds 960 (2023): 170626.

[81]

L. Zhang, H. Cao, Y. Lu, et al., “Effective Combination of CuFeO2 With High Temperature Resistant Nb-doped TiO2 Nanotube Arrays for CO2 Photoelectric Reduction,” Journal of Colloid & Interface Science 568 (2020): 198.

[82]

J. Wang, Y. Wei, B. Yang, B. Wang, J. Chen, and H. Jing, “In Situ Grown Heterojunction of Bi2WO6/BiOCl for Efficient Photoelectrocatalytic CO2 Reduction,” Journal of Catalysis 377 (2019): 209.

[83]

Q. Wang, X. Wang, Z. Yu, et al., “Artificial Photosynthesis of Ethanol Using Type-II G-C3N4/ZnTe Heterojunction in Photoelectrochemical CO2 Reduction System,” Nano Energy 60 (2019): 827.

[84]

J. Wang, Y. Guan, X. Yu, et al., “Photoelectrocatalytic Reduction of CO2 to Paraffin Using Pn Heterojunctions,” iScience 23 (2020): 100768.

[85]

J. Luo, L. Steier, M. K. Son, M. Schreier, M. T. Mayer, and M. Grätzel, “Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting,” Nano Letters 16 (2016): 1848.

[86]

M. A. Rahman, J. P. Thomas, and K. T. Leung, “A Delaminated Defect-Rich ZrO2 Hierarchical Nanowire Photocathode for Efficient Photoelectrochemical Hydrogen Evolution,” Advanced Energy Materials 8 (2018): 1701234.

[87]

C. A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, and A. Tacca, “Nanostructured Photoelectrodes Based on WO3: Applications to Photooxidation of Aqueous Electrolytes,” Chemical Society Reviews 42 (2013): 2228.

[88]

J. Pan, G. Liu, G. Q. Lu, and H. M. Cheng, “On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals,” Angewandte Chemie International Edition 50 (2011): 2133.

[89]

G. Liu, L. C. Yin, J. Pan, et al., “Greatly Enhanced Electronic Conduction and Lithium Storage of Faceted TiO2 Crystals Supported on Metallic Substrates by Tuning Crystallographic Orientation of TiO2,” Advanced Materials 27 (2015): 3507.

[90]

S. Selcuk and A. Selloni, “Facet-dependent Trapping and Dynamics of Excess Electrons at Anatase TiO2 Surfaces and Aqueous Interfaces,” Nature Materials 15 (2016): 1107.

[91]

M. Zhao, H. Xu, H. Chen, et al., “Photocatalytic Reactivity of {121} and {211} Facets of Brookite TiO2 Crystals,” Journal of Materials Chemistry A 3 (2015): 2331.

[92]

Y. Li, X. Yun, H. Chen, W. Zhang, and Y. Li, “Facet-Selective Charge Carrier Transport, Deactivation Mechanism and Stabilization of a Cu2O Photo-Electro-Catalyst,” Physical Chemistry Chemical Physics 18 (2016): 7023.

[93]

N. Li, M. Liu, Z. Zhou, J. Zhou, Y. Sun, and L. Guo, “Charge Separation in Facet-engineered Chalcogenide Photocatalyst: A Selective Photocorrosion Approach,” Nanoscale 6 (2014): 9695.

[94]

G. Liu, P. R. Narangari, Q. T. Trinh, et al., “Manipulating Intermediates at the Au-TiO2 Interface Over InP Nanopillar Array for Photoelectrochemical CO2 Reduction,” ACS Catalysis 11 (2021): 11416.

[95]

J. Hu, N. Fan, C. Chen, et al., “Facet Engineering in Au Nanoparticles Buried in p-Si Photocathodes for Enhanced Photoelectrochemical CO2 Reduction,” Applied Catalysis B 327 (2023): 122438.

[96]

S. Mubarak, D. Dhamodharan, H. S. Byun, S. B. Arya, and D. K. Pattanayak, “Effective Photoelectrocatalytic Reduction of CO2 to Formic Acid Using Controllably Annealed TiO2 Nanoparticles Derived From Porous Structured Ti Foil,” Journal of CO2 Utilization 63 (2022): 102152.

[97]

B. Paul, N. Manwar, P. Bhanja, et al., “Morphology Controlled Synthesis of 2D Heterostructure Ag/WO3 Nanocomposites for Enhanced Photoelectrochemical CO2 Reduction Performance,” Journal of CO2 Utilization 41 (2020): 101284.

[98]

J. W. Beeman, J. Bullock, H. Wang, et al., “Si Photocathode With Ag‑Supported Dendritic Cu Catalyst for CO2 Reduction,” Energy & Environmental Science 12 (2019): 1068.

[99]

P. A. Kempler, M. H. Richter, W. H. Cheng, B. S. Brunschwig, and N. S. Lewis, “Si Microwire-Array Photocathodes Decorated With Cu Allow CO2 Reduction With Minimal Parasitic Absorption of Sunlight,” ACS Energy Letters 5 (2020): 2528.

[100]

J. C. Wu, J. Zheng, P. Wu, and R. Xu, “Study of Native Defects and Transition-Metal (Mn, Fe, Co, and Ni) Doping in a Zinc-Blende CdS Photocatalyst by DFT and Hybrid DFT Calculations,” Journal of Physical Chemistry C 115 (2011): 5675.

[101]

B. Zhang, L. Wang, Y. Zhang, Y. Ding, and Y. Bi, “Ultrathin FeOOH Nanolayers With Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation,” Angewandte Chemie International Edition 57 (2018): 2248.

[102]

D. Liu, Y. Lv, M. Zhang, et al., “Defect-related Photoluminescence and Photocatalytic Properties of Porous ZnO Nanosheets,” Journal of Materials Chemistry A 2 (2014): 15377.

[103]

H. Wu, F. Meng, L. Li, S. Jin, and G. Zheng, “Dislocation-Driven CdS and CdSe Nanowire Growth,” ACS Nano 6 (2012): 4461.

[104]

S. W. Lee, S. Chen, W. Sheng, et al., “Roles of Surface Steps on Pt Nanoparticles in Electro-oxidation of Carbon Monoxide and Methanol,” Journal of the American Chemical Society 131 (2009): 15669.

[105]

J. Yan, G. Wu, N. Guan, L. Li, Z. Li, and X. Cao, “Understanding the Effect of Surface/Bulk Defects on the Photocatalytic Activity of TiO2: Anatase versus Rutile,” Physical Chemistry Chemical Physics 15 (2013): 10978.

[106]

M. Kong, Y. Li, X. Chen, et al., “Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency,” Journal of the American Chemical Society 133 (2011): 16414.

[107]

R. Qu, W. Zhang, N. Liu, et al., “Antioil Ag3PO4 Nanoparticle/Polydopamine/Al2O3 Sandwich Structure for Complex Wastewater Treatment: Dynamic Catalysis Under Natural Light,” ACS Sustainable Chemistry & Engineering 6 (2018): 8019.

[108]

Y. Yang, L. C. Yin, Y. Gong, et al., “An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies,” Advanced Materials 30 (2018): 1704479.

[109]

J. Yan, T. Wang, G. Wu, et al., “Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting,” Advanced Materials 27 (2015): 1580.

[110]

W. J. Dong, J. W. Lim, D. M. Hong, et al., “Grain Boundary Engineering of Cu-Ag Thin-Film Catalysts for Selective (Photo)Electrochemical CO2 Reduction to CO and CH4,” ACS Applied Materials & Interfaces 13 (2021): 18905.

[111]

J. Cheng, X. Yang, X. Xuan, N. Liu, and J. Zhou, “Development of an Efficient Catalyst With Controlled Sulfur Vacancies and High Pyridine Nitrogen Content for the Photoelectrochemical Reduction of CO2 Into Methanol,” Science of the Total Environment 702 (2020): 134981.

[112]

M. Kan, C. Yang, Q. Wang, et al., “Defect-Assisted Electron Tunneling for Photoelectrochemical CO2 Reduction to Ethanol at Low Overpotentials,” Advanced Energy Materials 12 (2022): 2201134.

[113]

S. Zhou, K. Sun, J. Huang, et al., “Accelerating Electron-Transfer and Tuning Product Selectivity through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO2 Reduction,” Small 17 (2021): 2100496.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/