Metal Nitride Catalysts for Photoelectrochemical and Electrochemical Catalysis

Hee Ryeong Kwon , Jin Wook Yang , Ho Won Jang

Exploration ›› 2025, Vol. 5 ›› Issue (3) : 20240013

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (3) : 20240013 DOI: 10.1002/EXP.20240013
REVIEW

Metal Nitride Catalysts for Photoelectrochemical and Electrochemical Catalysis

Author information +
History +
PDF

Abstract

Metal nitrides have emerged as promising materials for photoelectrochemical and electrochemical catalysis due to their unique electronic properties and structural versatility, offering high electrical conductivity and abundant active sites for catalytic reactions. Herein, we comprehensively explore the characteristics, synthesis, and application of diverse metal nitride catalysts. Fundamental features and catalytic advantages of metal nitrides are presented in terms of electronic structure and surface chemistry. We deal with synthetic principles and parameters of metal nitride catalysts in terms of nitrogen source, introducing synthesis strategies of metal nitrides with various morphologies and phases. Recent progress of metal nitride catalysts in (photo)electrochemical reactions, such as hydrogen evolution, oxygen evolution, oxygen reduction, nitrogen reduction, carbon dioxide reduction, and biomass valorization reactions, is discussed with their tailored roles. By providing future direction for remaining challenges, this review aims to guide the design of metal nitride catalysts from a materials point of view, contributing to expanding into energy and environmental technologies.

Keywords

electrocatalysis / hydrogen evolution / metal nitrides / oxygen evolution / photoelectrocatalysis

Cite this article

Download citation ▾
Hee Ryeong Kwon, Jin Wook Yang, Ho Won Jang. Metal Nitride Catalysts for Photoelectrochemical and Electrochemical Catalysis. Exploration, 2025, 5(3): 20240013 DOI:10.1002/EXP.20240013

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Li, H. Wang, C. Priest, S. Li, P. Xu, and G. Wu, “Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions,” Advanced Materials 33 (2021): 2000381.

[2]

M. S. Faber and S. Jin, “Earth-Abundant Inorganic Electrocatalysts and Their Nanostructures for Energy Conversion Applications,” Energy & Environmental Science 7 (2014): 3519.

[3]

H. R. Kwon, H. Park, S. E. Jun, S. Choi, and H. W. Jang, “High Performance Transition Metal-Based Electrocatalysts for Green Hydrogen Production,” Chemical Communications 58 (2022): 7874.

[4]

H. Wang, J. Li, K. Li, et al., “Transition Metal Nitrides for Electrochemical Energy Applications,” Chemical Society Reviews 50 (2021): 1354.

[5]

Z. Cheng, W. Qi, C. H. Pang, et al., “Recent Advances in Transition Metal Nitride-Based Materials for Photocatalytic Applications,” Advanced Functional Materials 31 (2021): 2100553.

[6]

W. J. Dong and Z. Mi, “One-Dimensional III-Nitrides: Towards Ultrahigh Efficiency, Ultrahigh Stability Artificial Photosynthesis,” Journal of Materials Chemistry A 11 (2023): 5427.

[7]

R. Jamil, R. Ali, S. Loomba, et al, “The Role of Nitrogen in Transition-Metal Nitrides in Electrochemical Water Splitting,” Chem Catalysis 1 (2021): 802.

[8]

S. Dong, X. Chen, X. Zhang, and G. Cui, “Nanostructured Transition Metal Nitrides for Energy Storage and Fuel Cells,” Coordination Chemistry Reviews 257 (2013): 1946.

[9]

J. L. Calaisa, “Band Structure of Transition Metal Compounds,” Advances in Physics 26 (1977): 847.

[10]

W. D. A. Papaconstantopoulos, W. E. Pickett, B. M. Klein, and L. L. Boyer, “Electronic Properties of Transition-Metal Nitrides: The Group-V and Group-VI Nitrides VN, NbN, TaN, CrN, MoN, and WN,” Physical Review B 31 (1985): 752.

[11]

P. Patsalas, N. Kalfagiannis, S. Kassavetis, et al., “Conductive Nitrides: Growth Principles, Optical and Electronic Properties, and Their Perspectives in Photonics and Plasmonics,” Materials Science and Engineering: R 123 (2018): 1.

[12]

Y. Ma, L. Xiong, Y. Lu, et al., “Advanced Inorganic Nitride Nanomaterials for Renewable Energy: A Mini Review of Synthesis Methods,” Frontiers in Chemistry 9 (2021): 638216.

[13]

J. Peng, J. J. Giner-Sanz, L. Giordano, et al., “Design Principles for Transition Metal Nitride Stability and Ammonia Generation in Acid,” Joule 7 (2023): 150.

[14]

W. Sun, C. J. Bartel, E. Arca, et al., “A Map of the Inorganic Ternary Metal Nitrides,” Nature Materials 18 (2019): 732.

[15]

P. Violet, E. Blanquet, and O. L.e Bacq, “Density Functional Study of the Stability and Electronic Properties of TaxNy Compounds Used as Copper Diffusion Barriers,” Microelectronic Engineering 83 (2006): 2077.

[16]

D. Li, F. Tian, D. Duan, et al., “Mechanical and Metallic Properties of Tantalum Nitrides from First-Principles Calculations,” RSC Advances 4 (2014): 10133.

[17]

Z. G. Yang, H. M. Xu, T. Y. Shuai, et al., “Recent Progress in the Synthesis of Transition Metal Nitride Catalysts and Their Applications in Electrocatalysis,” Nanoscale 15 (2023): 11777.

[18]

P. Zhang, J. Zhang, and J. Gong, “Tantalum-Based Semiconductors for Solar Water Splitting,” Chemical Society Reviews 43 (2014): 4395.

[19]

M. Kozejova, V. Latyshev, V. Kavecansky, et al., “Evaluation of Hydrogen Evolution Reaction Activity of Molybdenum Nitride Thin Films on Their Nitrogen Content,” Electrochimica Acta 315 (2019): 9.

[20]

H. Jin, X. Liu, A. Vasileff, et al., “Single-Crystal Nitrogen-Rich Two-Dimensional Mo5N6 Nanosheets for Efficient and Stable Seawater Splitting,” ACS Nano 12 (2018): 12761.

[21]

Y. Liu, L. Li, L. Wang, et al., “Janus Electronic state of Supported Iridium Nanoclusters for Sustainable Alkaline Water Electrolysis,” Nature Communications 15 (2024): 2851.

[22]

A. L. Greenaway, S. Ke, T. Culman, et al., “Zinc Titanium Nitride Semiconductor Toward Durable Photoelectrochemical Applications,” Journal of the American Chemical Society 144 (2022): 13673.

[23]

Y. L. Zhou, F. Xia, A. J. Xie, H. P. Peng, J. H. Wang, and Z. W. Li, “A Review—Effect of Accelerating Methods on Gas Nitriding: Accelerating Mechanism, Nitriding Behavior, and Techno-Economic Analysis,” Coatings 13 (2023): 1846.

[24]

W. P. Tong, C. Z. Liu, W. Wang, et al., “Gaseous Nitriding of Iron with a Nanostructured Surface Layer,” Scripta Materialia 57 (2007): 533.

[25]

M. Keddam, M. E. Djeghlal, and L. Barrallier, “A Diffusion Model for Simulation of Bilayer Growth (ε/γ′) of Nitrided Pure Iron,” Materials Science and Engineering: A 378 (2004): 475.

[26]

M. O. Cojocaru, M. Branzei, A. M. Ghinea, and L. N. Druga, “The Effects of Modifying the Activity of Nitriding Media by Diluting Ammonia with Nitrogen,” Materials 14 (2021): 2432.

[27]

Z. Zhang, X. Li, and H. Dong, “Plasma-Nitriding and Characterization of FeAl40 Iron Aluminide,” Acta Materialia 86 (2015): 341.

[28]

N. M. Le, C. Schimpf, H. Biermann, and A. Dalke, “Effect of Nitriding Potential KN on the Formation and Growth of a “White Layer” on Iron Aluminide Alloy,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 52 (2021): 414.

[29]

B. Mazumder and A. L. Hector, “Synthesis and Applications of Nanocrystalline Nitride Materials,” Journal of Materials Chemistry 19 (2009): 4673.

[30]

J. W. Yang, H. R. Kwon, S. G. Ji, et al., “Conjugated Polythiophene Frameworks as a Hole-Selective Layer on Ta3N5 Photoanode for High-Performance Solar Water Oxidation,” Advanced Functional Materials 34 (2024): 2400806.

[31]

Y. Zhu, Q. Qian, Y. Chen, et al., “Biphasic Transition Metal Nitride Electrode Promotes Nucleophile Oxidation Reaction for Practicable Hybrid Water Electrocatalysis,” Advanced Functional Materials 33 (2023): 2300547.

[32]

F. Song, W. Li, J. Yang, G. Han, P. Liao, and Y. Sun, “Interfacing Nickel Nitride and Nickel Boosts Both Electrocatalytic Hydrogen Evolution and Oxidation Reactions,” Nature Communications 9 (2018): 4531.

[33]

S. Wang, H. Ge, S. Sun, et al., “A New Molybdenum Nitride Catalyst with Rhombohedral MoS2 Structure for Hydrogenation Applications,” Journal of the American Chemical Society 137 (2015): 4815.

[34]

S. Xi, G. Lin, L. Jin, H. Li, and K. Xie, “Metallic Porous Nitride Single Crystals at Two-Centimeter Scale Delivering Enhanced Pseudocapacitance,” Nature Communications 10 (2019): 4727.

[35]

W. Li, C. Y. Cao, C. Q. Chen, Y. Zhao, W. G. Song, and L. Jiang, “Fabrication of Nanostructured Metal Nitrides with Tailored Composition and Morphology,” Chemical Communications 47 (2011): 3619.

[36]

Z. Cheng, A. Saad, H. Guo, et al., “Ordered Mesoporous Transition Metal Nitrides Prepared Through Hard Template Nanocasting and Rapid Nitridation Process,” Journal of Alloys and Compounds 838 (2020): 155375.

[37]

G. Jiang, H. Han, W. Zhuang, et al., “Three-Dimensional Ordered Mesoporous Cobalt Nitride for Fast-Kinetics and Stable-Cycling Lithium Storage,” Journal of Materials Chemistry A 7 (2019): 17561.

[38]

J. Lai, B. Huang, Y. Chao, X. Chen, and S. Guo, “Strongly Coupled Nickel-Cobalt Nitrides/Carbon Hybrid Nanocages with Pt-Like Activity for Hydrogen Evolution Catalysis,” Advanced Materials 31 (2019): 1805541.

[39]

Z. Chen, Y. Ha, Y. Liu, et al., “In Situ Formation of Cobalt Nitrides/Graphitic Carbon Composites as Efficient Bifunctional Electrocatalysts for Overall Water Splitting,” ACS Applied Materials & Interfaces 10 (2018): 7134.

[40]

Q. Luo, C. Lu, L. Liu, and M. Zhu, “A Review on the Synthesis of Transition Metal Nitride Nanostructures and Their Energy Related Applications,” Green Energy & Environment 8 (2023): 406.

[41]

F. Liu, J. Guan, T. Wei, S. Wang, M. Jiao, and S. Yang, “A Series of Inorganic Solid Nitrogen Sources for the Synthesis of Metal Nitride Clusterfullerenes: The Dependence of Production Yield on the Oxidation State of Nitrogen and Counter Ion,” Inorganic Chemistry 52 (2013): 3814.

[42]

N. Yao, R. Meng, F. Wu, Z. Fan, G. Cheng, and W. Luo, “Oxygen-Vacancy-Induced CeO2/Co4N Heterostructures Toward Enhanced pH-Universal Hydrogen Evolution Reactions,” Applied Catalysis B 277 (2020): 119282.

[43]

H. Zhao, M. Lei, X. Chen, and W. Tang, “Facile Route to Metal Nitrides Through Melamine and Metal Oxides,” Journal of Materials Chemistry 16 (2006): 4407.

[44]

Y. Wang, Y. Zhao, P. Zhu, et al., “A Promising One-Step Carbothermal Reduction Nitridation Strategy for Enhancing Photoelectrochemical Performance of TiO2 Nanowire Array-Based Catalysts with Stable Nitrogen Doping and Desired Core-Double Shell Structure,” Applied Surface Science 639 (2023): 158261.

[45]

D. Hirai, H. Tanaka, D. Nishio-Hamane, and Z. Hiroi, “Synthesis of Anti-Perovskite-Type Carbides and Nitrides from Metal Oxides and Melamine,” RSC Advances 8 (2018): 42025.

[46]

G. Jaysiva, S. Manavalan, S. M. Chen, P. Veerakumar, M. Keerthi, and H. S. Tu, “MoN Nanorod/Sulfur-Doped Graphitic Carbon Nitride for Electrochemical Determination of Chloramphenicol,” ACS Sustainable Chemistry & Engineering 8 (2020): 11088.

[47]

H. Yang, P. Ning, H. Cao, et al., “Selectively Anchored Vanadate Host for Self-Boosting Catalytic Synthesis of Ultra-Fine Vanadium Nitride/Nitrogen-Doped Hierarchical Carbon Hybrids as Superior Electrode Materials,” Electrochimica Acta 332 (2020): 135387.

[48]

C. Giordano, C. Erpen, W. Yao, and M. Antonietti, “Synthesis of Mo and W Carbide and Nitride Nanoparticles via a Simple “Urea Glass” Route,” Nano Letters 8 (2008): 4659.

[49]

T. Nakamura, H. Hayashi, and T. Ebina, “Preparation of Copper Nitride Nanoparticles Using Urea as a Nitrogen Source in a Long-Chain Alcohol,” Journal of Nanoparticle Research 16 (2014): 2699.

[50]

L. Ma, L. R. L. Ting, V. Molinari, C. Giordano, and B. S. Yeo, “Efficient Hydrogen Evolution Reaction Catalyzed by Molybdenum Carbide and Molybdenum Nitride Nanocatalysts Synthesized via the Urea Glass Route,” Journal of Materials Chemistry A 3 (2015): 8361.

[51]

Y. Yuan, J. Wang, S. Adimi, et al., “Zirconium Nitride Catalysts Surpass Platinum for Oxygen Reduction,” Nature Materials 19 (2020): 282.

[52]

S. H. Park, T. H. Jo, M. H. Lee, et al., “Highly Active and Stable Nickel-Molybdenum Nitride (Ni2Mo3 N) Electrocatalyst for Hydrogen Evolution,” Journal of Materials Chemistry A 9 (2021): 4945.

[53]

T. Jin, X. Sang, R. R. Unocic, et al., “Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride via a Soft Urea Strategy,” Advanced Materials 30 (2018): 707512.

[54]

X. Ma, X. Xiong, J. Zeng, P. Zou, Z. Lin, and M. Liu, “Melamine-Assisted Synthesis of Fe3N Featuring Highly Reversible Crystalline-Phase Transformation for Ultrastable Sodium Ion Storage,” Journal of Materials Chemistry A 8 (2020): 6768.

[55]

J. Liu, C. Wang, H. Sun, et al., “CoOx/CoNy Nanoparticles Encapsulated Carbon-Nitride Nanosheets as an Efficiently Trifunctional Electrocatalyst for Overall Water Splitting and Zn-Air Battery,” Applied Catalysis B 279 (2020): 119407.

[56]

H. Hu, X. Wang, J. P. Attfield, and M. Yang, “Metal Nitrides for Seawater Electrolysis,” Chemical Society Reviews 53 (2023): 163.

[57]

B. Mazumder, P. Chirico, and A. L. Hector, “Direct Solvothermal Synthesis of Early Transition Metal Nitrides,” Inorganic Chemistry 47 (2008): 9684.

[58]

J. Choi and E. G. Gillan, “Solvothermal Metal Azide Decomposition Routes to Nanocrystalline Metastable Nickel, Iron, and Manganese Nitrides,” Inorganic Chemistry 48 (2009): 4470.

[59]

Y. Xie, Y. Qian, W. Wang, S. Zhang, and Y. Zhang, “A Benzene-Thermal Synthetic Route to Nanocrystalline GaN,” Science 272 (1996): 1926.

[60]

S. Singh, R. Verma, N. Kaul, et al., “Surface Plasmon-Enhanced Photo-Driven CO2 Hydrogenation by Hydroxy-Terminated Nickel Nitride Nanosheets,” Nature Communications 14 (2023): 2551.

[61]

J. Choi and E. G. Gillan, “Solvothermal Synthesis of Nanocrystalline Copper Nitride from an Energetically Unstable Copper Azide Precursor,” Inorganic Chemistry 44 (2005): 7385.

[62]

H. Jin, Q. Gu, B. Chen, et al., “Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution,” Chemistry 6 (2020): 2382.

[63]

H. Guan, W. Yi, T. Li, et al., “Low Temperature Synthesis of Plasmonic Molybdenum Nitride Nanosheets for Surface Enhanced Raman Scattering,” Nature Communications 11 (2020): 3889.

[64]

H. Guan, W. Li, J. Han, et al, “General Molten-Salt Route to Three-Dimensional Porous Transition Metal Nitrides as Sensitive and Stable Raman Substrates,” Nature Communications 12 (2021): 1376.

[65]

Y. Zhu, Y. Zhang, K. Wang, et al., “One-Pot Synthesis of Ni/Ni3C/Ni3N Nanocomposite: Structure, Growth Mechanism and Magnetic Properties,” Materials Research Bulletin 95 (2017): 79.

[66]

D. D. Vaughn, J. Araujo, P. Meduri, J. F. Callejas, M. A. Hickner, and R. E. Schaak, “Solution Synthesis of Cu3 PdN Nanocrystals as Ternary Metal Nitride Electrocatalysts for the Oxygen Reduction Reaction,” Chemistry of Materials 26 (2014): 6226.

[67]

P. Xi, Z. Xu, D. Gao, et al, “Solvothermal Synthesis of Magnetic Copper Nitride Nanocubes with Highly Electrocatalytic Reduction Properties,” RSC Advances 4 (2014): 14206.

[68]

P. Yang, R. Wang, H. Tao, Y. Zhang, M. M. Titirici, and X. Wang, “Cobalt Nitride Anchored on Nitrogen-Rich Carbons for Efficient Carbon Dioxide Reduction with Visible Light,” Applied Catalysis B 280 (2021): 119454.

[69]

N. Fechler, T. P. Fellinger, and M. Antonietti, “Template-Free One-Pot Synthesis of Porous Binary and Ternary Metal Nitride@N-Doped Carbon Composites from Ionic Liquids,” Chemistry of Materials 24 (2012): 713.

[70]

Y. Li, K. Xiao, J. Li, et al., “Molybdenum Nitride Nanocatalyst Derived from Melamine and Polyoxometalate-Based Hybrid for Oxidative Coupling of Amines to Imines with Air,” Chemcatchem 10 (2018): 4317.

[71]

J. Li, M. Chen, D. A. Cullen, et al., “Atomically Dispersed Manganese Catalysts for Oxygen Reduction in Proton-Exchange Membrane Fuel Cells,” Nature Catalysis 1 (2018): 935.

[72]

Z. Qi, Y. Zeng, Z. Hou, et al., “Heterointerface Engineering of Ni/Ni3N Hierarchical Nanoarrays for Efficient Alkaline Hydrogen Evolution,” Nano Research 16 (2023): 4803.

[73]

A. P. Murthy, D. Govindarajan, J. Theerthagiri, J. Madhavan, and K. Parasuraman, “Metal-Doped Molybdenum Nitride Films for Enhanced Hydrogen Evolution in Near-Neutral Strongly Buffered Aerobic Media,” Electrochimica Acta 283 (2018): 1525.

[74]

C. C. Chang, J. Nogan, Z. P. Yang, et al., “Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering,” Scientific Reports 9 (2019): 15287.

[75]

T. Draher, T. Polakovic, J. Li, et al., “Ion-Beam Assisted Sputtering of Titanium Nitride Thin Films,” Scientific Reports 13 (2023): 6315.

[76]

N. Sun, D. Zhou, W. Liu, et al., “Sputtered Titanium Nitride Films with Finely Tailored Surface Activity and Porosity for High Performance On-Chip Micro-Supercapacitors,” Journal of Power Sources 489 (2021): 229406.

[77]

Y. Pihosh, T. Minegishi, V. Nandal, et al., “Ta3N5-Nanorods Enabling Highly Efficient Water Oxidation via Advantageous Light Harvesting and Charge Collection,” Energy & Environmental Science 13 (2020): 1519.

[78]

V. Nandal, Y. Pihosh, T. Higashi, et al., “Probing Fundamental Losses in Nanostructured Ta3N5 Photoanodes: Design Principles for Efficient Water Oxidation,” Energy & Environmental Science 14 (2021): 4038.

[79]

Y. Han, X. Yue, Y. Jin, X. Huang, and P. K. Shen, “Hydrogen Evolution Reaction in Acidic Media on Single-Crystalline Titanium Nitride Nanowires as an Efficient Non-Noble Metal Electrocatalyst,” Journal of Materials Chemistry A 4 (2016): 3673.

[80]

H. Wang, E. J. Sandoz-Rosado, S. H. Tsang, et al., “Elastic Properties of 2D Ultrathin Tungsten Nitride Crystals Grown by Chemical Vapor Deposition,” Advanced Functional Materials 29 (2019): 1902663.

[81]

E. Nurlaela, M. Nakabayashi, Y. Kobayashi, N. Shibata, T. Yamada, and K. Domen, “Plasma-Enhanced Chemical Vapor Deposition Ta3N5 Synthesis Leading to High Current Density during PEC Oxygen Evolution,” Sustainable Energy & Fuels 4 (2020): 2293.

[82]

S. M. George, “Atomic Layer Deposition: An Overview,” Chemical Reviews 110 (2010): 111.

[83]

J. W. Elam, M. Schuisky, J. D. Ferguson, and S. M. George, “Surface Chemistry and Film Growth during TiN Atomic Layer Deposition Using TDMAT and NH3,” Thin Solid Films 436 (2003): 145.

[84]

D. Longrie, D. Deduytsche, J. Haemers, P. F. Smet, K. Driesen, and C. Detavernier, “Thermal and Plasma-Enhanced Atomic Layer Deposition of TiN Using TDMAT and NH3 on Particles Agitated in a Rotary Reactor,” ACS Applied Materials & Interfaces 6 (2014): 7316.

[85]

B. Kim, N. Lee, J. Lee, et al., “Remote Plasma Enhanced Atomic Layer Deposition of Titanium Nitride Film Using Metal Organic Precursor (C12H23N3Ti) and N2 Plasma,” Applied Surface Science 541 (2021): 148482.

[86]

T. Nam, C. W. Lee, T. Cheon, et al., “Cobalt Titanium Nitride Amorphous Metal Alloys by Atomic Layer Deposition,” Journal of Alloys and Compounds 737 (2018): 684.

[87]

K. M. Seo, D. Mohapatra, G. W. Bae, et al., “Fluorine-Free Plasma Enhanced Atomic Layer Deposited Ultrathin Tungsten Nitride Thin Films for Dual Diffusion Barrier Performance,” ACS Applied Nano Materials 6 (2023): 21741.

[88]

F. Liu, C. Shi, X. Guo, et al., “Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review,” Advancement of Science 9 (2022): 2200307.

[89]

Y. Zheng, Y. Jiao, M. Jaroniec, and S. Z. Qiao, “Advancing the Electrochemistry of the Hydrogen-Evolution Reaction Through Combining Experiment and Theory,” Angewandte Chemie International Edition 54 (2015): 52.

[90]

Y. Chen, Y. Liu, L. Li, T. Sakthivel, Z. Guo, and Z. Dai, “Intensifying the Supported Ruthenium Metallic Bond to Boost the Interfacial Hydrogen Spillover Toward pH-Universal Hydrogen Evolution Catalysis,” Advanced Functional Materials 34 (2024): 2401452.

[91]

Y. Chen, Y. Liu, L. Li, T. Sakthivel, Z. Guo, and Z. Dai, “Asymmetric Bond Delta-Polarization at the Interfacial Se─Ru─O Bridge for Efficient pH-Robust Water Electrolysis,” Advanced Functional Materials 34 (2024): 2406587.

[92]

T. Wang, M. Wang, H. Yang, et al., “Weakening Hydrogen Adsorption on Nickel via Interstitial Nitrogen Doping Promotes Bifunctional Hydrogen Electrocatalysis in Alkaline Solution,” Energy & Environmental Science 12 (2019): 3522.

[93]

J. Liang, B. Zhang, H. Shen, et al., “Self-Supported Nickel Nitride Nanosheets as Highly Efficient Electrocatalysts for Hydrogen Evolution,” Applied Surface Science 503 (2020): 144143.

[94]

F. Zhang, S. Xi, G. Lin, X. Hu, X. W. Lou, and K. Xie, “Metallic Porous Iron Nitride and Tantalum Nitride Single Crystals with Enhanced Electrocatalysis Performance,” Advanced Materials 31 (2019): 1806552.

[95]

H. Yu, X. Yang, X. Xiao, et al., “Atmospheric-Pressure Synthesis of 2D Nitrogen-Rich Tungsten Nitride,” Advanced Materials 30 (2018): 1805655.

[96]

B. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic, and P. G. Khalifah, “Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction,” Journal of the American Chemical Society 135 (2013): 19186.

[97]

L. L. An, J. Yang, J. Zhu, C. Yang, X. Zhao, and D. Wang, “Heterostructural Ni-Ni 0.2 Mo 0.8 N Interface Engineering Boosts Alkaline Hydrogen Electrocatalysis,” Chemsuschem 16 (2023): 2300218.

[98]

H. Jin, H. Yu, H. Li, et al., “MXene Analogue: A 2D Nitridene Solid Solution for High-Rate Hydrogen Production,” Angewandte Chemie 134 (2022): e202203850.

[99]

H. Zhang, J. Wang, F. Qin, H. Liu, and C. Wang, “V-Doped Ni3N/Ni Heterostructure with Engineered Interfaces as a Bifunctional Hydrogen Electrocatalyst in Alkaline Solution: Simultaneously Improving Water Dissociation and Hydrogen Adsorption,” Nano Research 14 (2021): 3489.

[100]

Y. Liu, J. Zhang, Y. Li, et al., “Manipulating Dehydrogenation Kinetics through Dual-Doping Co3N Electrode Enables Highly Efficient Hydrazine Oxidation Assisting Self-Powered H2 Production,” Nature Communications 11 (2020): 1853.

[101]

C. Wang, H. Shi, H. Liu, et al., “Quasi-Atomic-Scale Platinum Anchored on Porous Titanium Nitride Nanorod Arrays for Highly Efficient Hydrogen Evolution,” Electrochimica Acta 292 (2018): 727.

[102]

Y. Wang, L. Chen, X. Yu, Y. Wang, and G. Zheng, “Superb Alkaline Hydrogen Evolution and Simultaneous Electricity Generation by Pt-Decorated Ni3N Nanosheets,” Advanced Energy Materials 7 (2017): 1601390.

[103]

V. H. Do, P. Prabhu, Y. Li, et al., “Surface Activation of Atomically Thin Metal Nitride by Confined Nanoclusters to Trigger pH-Universal Hydrogen Evolution,” Joule 7 (2023): 2118.

[104]

H. Hu, Z. Zhang, Y. Zhang, et al., “An Ultra-low Pt Metal Nitride Electrocatalyst for Sustainable Seawater Hydrogen Production,” Energy & Environmental Science 16 (2023): 4584.

[105]

A. Wu, Y. Gu, B. Yang, et al., “Porous Cobalt/Tungsten Nitride Polyhedra as Efficient Bifunctional Electrocatalysts for Overall Water Splitting,” Journal of Materials Chemistry A 8 (2020): 22938.

[106]

H. Sun, C. Tian, G. Fan, et al., “Boosting Activity on Co4 N Porous Nanosheet by Coupling CeO2 for Efficient Electrochemical Overall Water Splitting at High Current Densities,” Advanced Functional Materials 30 (2020): 1910596.

[107]

Y. Zang, B. Yang, A. Li, et al., “Tuning Interfacial Active Sites over Porous Mo2 N-Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes,” ACS Applied Materials & Interfaces 13 (2021): 41573.

[108]

T. Wu, E. Song, S. Zhang, et al., “Engineering Metallic Heterostructure Based on Ni3N and 2M-MoS2 for Alkaline Water Electrolysis with Industry-Compatible Current Density and Stability,” Advanced Materials 34 (2022): 2108505.

[109]

T. Guo, L. Li, and Z. Wang, “Recent Development and Future Perspectives of Amorphous Transition Metal-Based Electrocatalysts for Oxygen Evolution Reaction,” Advanced Energy Materials 12 (2022): 2200827.

[110]

I. C. Man, H. Y. Su, F. Calle-Vallejo, et al., “Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces,” Chemcatchem 3 (2011): 1159.

[111]

K. Zhang and R. Zou, “Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges,” Small 17 (2021): 2100129.

[112]

J. W. Yang, H. R. Kwon, J. H. Seo, S. Ryu, and H. W. Jang, “Nanoporous Oxide Electrodes for Energy Conversion and Storage Devices,” RSC Applied Interfaces 1 (2024): 11.

[113]

P. Chen, K. Xu, Z. Fang, et al., “Metallic Co4 N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction,” Angewandte Chemie 127 (2015): 14923.

[114]

P. Chen, K. Xu, Y. Tong, et al., “Cobalt Nitrides as a Class of Metallic Electrocatalysts for the Oxygen Evolution Reaction,” Inorganic Chemistry Frontiers 3 (2016): 236.

[115]

H. Liu, J. Lei, S. Yang, et al., “Boosting the Oxygen Evolution Activity over Cobalt Nitride Nanosheets Through Optimizing the Electronic Configuration,” Applied Catalysis B 286 (2021): 119894.

[116]

M. S. Fujii and S. P. Zwart, “The Origin of OB Runaway Stars,” Science 334 (2011): 1380.

[117]

K. Xu, P. Chen, X. Li, et al., “Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation,” Journal of the American Chemical Society 137 (2015): 4119.

[118]

C. Walter, P. W. Menezes, S. Orthmann, et al., “A Molecular Approach to Manganese Nitride Acting as a High Performance Electrocatalyst in the Oxygen Evolution Reaction,” Angewandte Chemie 130 (2018): 706.

[119]

L. An, J. Feng, Y. Zhang, et al., “Controllable Tuning of Fe-N Nanosheets by Co Substitution for Enhanced Oxygen Evolution Reaction,” Nano Energy 57 (2019): 644.

[120]

L. Wu, D. Shi, S. Yan, W. Qiao, W. Zhong, and Y. Du, “Iron-Doped Cobalt Nitride Nanoparticles (Fe-Co3N): An Efficient Electrocatalyst for Water Oxidation,” International Journal of Hydrogen Energy 46 (2021): 2086.

[121]

X. Gao, Y. Yu, Q. Liang, et al., “Surface Nitridation of Nickel-Cobalt Alloy Nanocactoids Raises the Performance of Water Oxidation and Splitting,” Applied Catalysis B 270 (2020): 118889.

[122]

H. P. Guo, B. Y. Ruan, W. Bin Luo, et al., “Ultrathin and Edge-Enriched Holey Nitride Nanosheets as Bifunctional Electrocatalysts for the Oxygen and Hydrogen Evolution Reactions,” ACS Catalysis 8 (2018): 9686.

[123]

Q. Chen, N. Gong, T. Zhu, et al, “Surface Phase Engineering Modulated Iron-Nickel Nitrides/Alloy Nanospheres with Tailored D-Band Center for Efficient Oxygen Evolution Reaction,” Small 18 (2022): 2105696.

[124]

D. Liu, H. Ai, J. Li, et al., “Surface Reconstruction and Phase Transition on Vanadium-Cobalt-Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation,” Advanced Energy Materials 10 (2020): 2002464.

[125]

Y. Yuan, S. Adimi, T. Thomas, et al., “Co3Mo3N—An Efficient Multifunctional Electrocatalyst,” Innovation 2 (2021): 100096.

[126]

C. Zhong, J. Zhang, L. Zhang, et al., “Composition-Tunable Co3-x FeXMo3 N Electrocatalysts for the Oxygen Evolution Reaction,” ACS Energy Letters 8 (2023): 1455.

[127]

H. Hu, X. Wang, J. P. Attfield, and M. Yang, “Metal Nitrides for Seawater Electrolysis,” Chemical Society Reviews 53 (2024): 163.

[128]

L. Yu, Q. Zhu, S. Song, et al., “Non-Noble Metal-Nitride Based Electrocatalysts for High-Performance Alkaline Seawater Electrolysis,” Nature Communications 10 (2019): 5106.

[129]

X. Wang, X. Han, R. Du, et al., “Cobalt Molybdenum Nitride-Based Nanosheets for Seawater Splitting,” ACS Applied Materials & Interfaces 14 (2022): 41924.

[130]

W. Ma, D. Li, L. Liao, et al., “High-Performance Bifunctional Porous Iron-Rich Phosphide/Nickel Nitride Heterostructures for Alkaline Seawater Splitting,” Small 19 (2023): 2207082.

[131]

J. Yin, Y. Li, F. Lv, et al., “NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn-Air Batteries,” ACS Nano 11 (2017): 2275.

[132]

W. Yuan, S. Wang, Y. Ma, Y. Qiu, Y. An, and L. Cheng, “Interfacial Engineering of Cobalt Nitrides and Mesoporous Nitrogen-Doped Carbon: Toward Efficient Overall Water-Splitting Activity with Enhanced Charge-Transfer Efficiency,” ACS Energy Letters 5 (2020): 692.

[133]

P. Zhai, C. Wang, Y. Zhao, et al., “Regulating Electronic States of Nitride/Hydroxide to Accelerate Kinetics for Oxygen Evolution at Large Current Density,” Nature Communications 14 (2023): 1873.

[134]

X. Han, T. Mou, A. Islam, et al., “Theoretical Prediction and Experimental Verification of IrOX Supported on Titanium Nitride for Acidic Oxygen Evolution Reaction,” Journal of the American Chemical Society 146 (2024): 16499.

[135]

H. Y. Jeong, J. Oh, G. S. Yi, et al., “High-Performance Water Electrolyzer with Minimum Platinum Group Metal Usage: Iron Nitride-Iridium Oxide Core-Shell Nanostructures for Stable and Efficient Oxygen Evolution Reaction,” Applied Catalysis B 330 (2023): 122596.

[136]

G. Yasin, S. Ibrahim, S. Ajmal, et al., “Tailoring of Electrocatalyst Interactions at Interfacial Level to Benchmark the Oxygen Reduction Reaction,” Coordination Chemistry Reviews 469 (2022): 214669.

[137]

A. Yu, S. Liu, and Y. Yang, “Recent Advances in Electrosynthesis of H2 O2 via Two-Electron Oxygen Reduction Reaction,” Chemical Communications 60 (2024): 5232.

[138]

M. E. Kreider, M. B. Stevens, Y. Liu, et al., “Nitride or Oxynitride? Elucidating the Composition-Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction,” Chemistry of Materials 32 (2020): 2946.

[139]

A. Miura, C. Rosero-Navarro, Y. Masubuchi, M. Higuchi, S. Kikkawa, and K. Tadanaga, “Nitrogen-Rich Manganese Oxynitrides with Enhanced Catalytic Activity in the Oxygen Reduction Reaction,” Angewandte Chemie 128 (2016): 8095.

[140]

J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, “Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries,” Nature Chemistry 3 (2011): 546.

[141]

H. Yu, Y. Luo, C. Wu, et al., “Conductive Tungsten Oxynitride Supported Highly Dispersed Cobalt Nanoclusters for Enhanced Oxygen Reduction,” Biochemical Engineering Journal 449 (2022): 137542.

[142]

H. Wu and W. Chen, “Copper Nitride Nanocubes: Size-Controlled Synthesis and Application as Cathode Catalyst in Alkaline Fuel Cells,” Journal of the American Chemical Society 133 (2011): 15236.

[143]

M. E. Kreider, A. Gallo, S. Back, et al., “Precious Metal-Free Nickel Nitride Catalyst for the Oxygen Reduction Reaction,” ACS Applied Materials & Interfaces 11 (2019): 26863.

[144]

W. Y. Noh, J. H. Lee, and J. S. Lee, “Nitrogen-Doped Carbon Nanotube-Graphene Hybrid Stabilizes MxN (M = Fe, Co) Nanoparticles for Efficient Oxygen Reduction Reaction,” Applied Catalysis B 268 (2020): 118415.

[145]

H. Ge, G. Li, J. Shen, W. Ma, X. Meng, and L. Xu, “Co4N Nanoparticles Encapsulated in N-Doped Carbon Box as Tri-Functional Catalyst for Zn-Air Battery and Overall Water Splitting,” Applied Catalysis B 275 (2020): 119104.

[146]

H. Tang, X. Tian, J. Luo, et al., “A Co-Doped Porous Niobium Nitride Nanogrid as an Effective Oxygen Reduction Catalyst,” Journal of Materials Chemistry A 5 (2017): 14278.

[147]

J. Luo, X. Tian, J. Zeng, Y. Li, H. Song, and S. Liao, “Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts Toward the Oxygen Reduction Reaction,” ACS Catalysis 6 (2016): 6165.

[148]

B. Cao, J. C. Neuefeind, R. R. Adzic, and P. G. Khalifah, “Molybdenum Nitrides as Oxygen Reduction Reaction Catalysts: Structural and Electrochemical Studies,” Inorganic Chemistry 54 (2015): 2128.

[149]

J. Ban, H. Xu, G. Cao, et al., “Synergistic Effects of Phase Transition and Electron-Spin Regulation on the Electrocatalysis Performance of Ternary Nitride,” Advanced Functional Materials 33 (2023): 2300623.

[150]

R. Zeng, Y. Yang, X. Feng, et al, “Nonprecious Transition Metal Nitrides as Efficient Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells,” Science Advances 8 (2022): eabj1584.

[151]

Y. Yang, R. Zeng, Y. Xiong, F. J. Disalvo, and H. D. Abruña, “Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts,” Journal of the American Chemical Society 141 (2019): 19241.

[152]

Z. Huang, M. Rafiq, A. R. Woldu, Q. X. Tong, D. Astruc, and L. Hu, “Recent Progress in Electrocatalytic Nitrogen Reduction to Ammonia (NRR),” Coordination Chemistry Reviews 478 (2023): 214981.

[153]

X. Yang, B. Xu, J. G. Chen, and X. Yang, “Proton Transfer Dynamics-Mediated CO2 Electroreduction,” Chemsuschem 16 (2023): 2201715.

[154]

Y. Abghoui, A. L. Garden, J. G. Howalt, T. Vegge, and E. Skúlason, “Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments,” ACS Catalysis 6 (2016): 635.

[155]

Y. Abghoui and E. Skúlason, “Electrochemical Synthesis of Ammonia via Mars-van Krevelen Mechanism on the (111) Facets of Group III-VII Transition Metal Mononitrides,” Catalysis Today 286 (2017): 78.

[156]

X. Yang, J. Nash, J. Anibal, et al., “Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles,” Journal of the American Chemical Society 140 (2018): 13387.

[157]

X. Yang, S. Kattel, J. Nash, et al., “Quantification of Active Sites and Elucidation of the Reaction Mechanism of the Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride,” Angewandte Chemie 131 (2019): 13906.

[158]

L. Zhang, X. Ji, X. Ren, et al., “Efficient Electrochemical N2 Reduction to NH3 on MoN Nanosheets Array Under Ambient Conditions,” ACS Sustainable Chemistry & Engineering 6 (2018): 9550.

[159]

X. Yang, F. Ling, J. Su, et al., “Insights into the Role of Cation Vacancy for Significantly Enhanced Electrochemical Nitrogen Reduction,” Applied Catalysis B 264 (2020): 118477.

[160]

M. Zhang, X. Ai, X. Liang, H. Chen, and X. Zou, “Key Role of Local Chemistry in Lattice Nitrogen-Participated N2-to-NH3 Electrocatalytic Cycle Over Nitrides,” Advanced Functional Materials 33 (2023): 2306358.

[161]

D. K. Yesudoss, G. Lee, and S. Shanmugam, “Strong Catalyst Support Interactions in Defect-Rich γ-Mo2N Nanoparticles Loaded 2D-h-BN Hybrid for Highly Selective Nitrogen Reduction Reaction,” Applied Catalysis B 287 (2021): 119952.

[162]

H. Jin, L. Li, X. Liu, et al., “Nitrogen Vacancies on 2D Layered W2N3: A Stable and Efficient Active Site for Nitrogen Reduction Reaction,” Advanced Materials 31 (2019): 1902709.

[163]

Z. Xi, K. Shi, X. Xu, et al., “Boosting Nitrogen Reduction Reaction via Electronic Coupling of Atomically Dispersed Bismuth with Titanium Nitride Nanorods,” Advancement of Science 9 (2022): 2104245.

[164]

Y. Liu, D. Tian, A. N. Biswas, et al., “Transition Metal Nitrides as Promising Catalyst Supports for Tuning CO/H2 Syngas Production from Electrochemical CO2 Reduction,” Angewandte Chemie 132 (2020): 11441.

[165]

H. Pan and C. J. Barile, “Titanium Nitride-Supported Cu-Ni Bifunctional Electrocatalysts for CO2 Reduction and the Oxygen Evolution Reaction,” Sustainable Energy & Fuels 4 (2020): 5654.

[166]

Z. Yin, C. Yu, Z. Zhao, et al., “Cu3 N Nanocubes for Selective Electrochemical Reduction of CO2 to Ethylene,” Nano Letters 19 (2019): 8658.

[167]

Z. Q. Liang, T. T. Zhuang, A. Seifitokaldani, et al., “Copper-On-Nitride Enhances the Stable Electrosynthesis of Multi-Carbon Products from CO2,” Nature Communications 9 (2018): 3828.

[168]

M. Ebaid, K. Jiang, Z. Zhang, W. S. Drisdell, A. T. Bell, and J. K. Cooper, “Production of C2/C3 Oxygenates from Planar Copper Nitride-Derived Mesoporous Copper via Electrochemical Reduction of CO2,” Chemistry of Materials 32 (2020): 3304.

[169]

F. L. P. Veenstra, A. J. Martín, and J. Pérez-Ramírez, “Nitride-Derived Copper Modified with Indium as a Selective and Highly Stable Catalyst for the Electroreduction of Carbon Dioxide,” Chemsuschem 12 (2019): 3501.

[170]

P. Hou, X. Wang, and P. Kang, “Membrane-Electrode Assembly Electrolysis of CO2 to Formate Using Indium Nitride Nanomaterials,” Journal of CO2 Utilization 45 (2021): 101449.

[171]

H. Luo, J. Barrio, N. Sunny, et al., “Progress and Perspectives in Photo- and Electrochemical-Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production,” Advanced Energy Materials 11 (2021): 2101180.

[172]

Y. Li, X. Wei, L. Chen, J. Shi, and M. He, “Nickel-Molybdenum Nitride Nanoplate Electrocatalysts for Concurrent Electrolytic Hydrogen and Formate Productions,” Nature Communications 10 (2019): 5335.

[173]

J. Li, X. Meng, X. Song, et al., “Valence Engineering via Manganese-Doping on Cobalt Nitride Nanoarrays for Efficient Electrochemically Paired Glycerol Valorization and H2 Production,” Advanced Functional Materials 34 (2024): 2316718.

[174]

K. Shi, D. Si, X. Teng, L. Chen, and J. Shi, “Enhanced Electrocatalytic Glycerol Oxidation on CuCoN0.6/CP at Significantly Reduced Potentials,” Chinese Journal of Catalysis 53 (2023): 143.

[175]

Y. Yang and T. Mu, “Electrochemical Oxidation of Biomass Derived 5-Hydroxymethylfurfural (HMF): Pathway, Mechanism, Catalysts and Coupling Reactions,” Green Chemistry 23 (2021): 4228.

[176]

S. Li, X. Sun, Z. Yao, et al., “Biomass Valorization via Paired Electrosynthesis over Vanadium Nitride-Based Electrocatalysts,” Advanced Functional Materials 29 (2019): 1904780.

[177]

N. Zhang, Y. Zou, L. Tao, et al., “Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy,” Angewandte Chemie 131 (2019): 16042.

[178]

B. Zhou, C. L. Dong, Y. C. Huang, et al., “Activity Origin and Alkalinity Effect of Electrocatalytic Biomass Oxidation on Nickel Nitride,” Journal of Energy Chemistry 61 (2021): 179.

[179]

J. H. Kim, D. Hansora, P. Sharma, J. W. Jang, and J. S. Lee, “Toward Practical Solar Hydrogen Production—An Artificial Photosynthetic Leaf-to-farm Challenge,” Chemical Society Reviews 48 (2019): 1908.

[180]

S. Hu, C. Xiang, S. Haussener, A. D. Berger, and N. S. Lewis, “An Analysis of the Optimal Band Gaps of Light Absorbers in Integrated Tandem Photoelectrochemical Water-Splitting Systems,” Energy & Environmental Science 6 (2013): 2984.

[181]

J. Seo and K. Domen, “Perovskite and Layered Perovskite Oxynitrides for Efficient Sunlight-Driven Artificial Synthesis,” Materials Chemistry Frontiers 8 (2023): 1451.

[182]

S. Akiyama, M. Nakabayashi, N. Shibata, et al, “Highly Efficient Water Oxidation Photoanode Made of Surface Modified LaTiO2 N Particles,” Small 12 (2016): 5468.

[183]

X. Xu, W. Wang, Y. Zhang, et al, “Centimeter-Scale Perovskite SrTaO2N Single Crystals with Enhanced Photoelectrochemical Performance,” Science Bulletin 67 (2022): 1458.

[184]

X. Luo, Y. Xiao, B. Zhang, C. Feng, Z. Fan, and Y. Li, “Direct Synthesis of BaTaO2N Nanoparticle Film on a Conductive Substrate for Photoelectrochemical Water Splitting,” Journal of Catalysis 411 (2022): 109.

[185]

K. Maeda, M. Higashi, B. Siritanaratkul, R. Abe, and K. Domen, “SrNbO2 N as a Water-Splitting Photoanode with a Wide Visible-Light Absorption Band,” Journal of the American Chemical Society 133 (2011): 12334.

[186]

J. Seo, T. Hisatomi, M. Nakabayashi, et al., “Efficient Solar-Driven Water Oxidation over Perovskite-Type BaNbO2 N Photoanodes Absorbing Visible Light up to 740 Nm,” Advanced Energy Materials 8 (2018): 1800094.

[187]

M. Pichler, W. Si, F. Haydous, et al., “LaTiOXNy Thin Film Model Systems for Photocatalytic Water Splitting: Physicochemical Evolution of the Solid-Liquid Interface and the Role of the Crystallographic Orientation,” Advanced Functional Materials 27 (2017): 1605690.

[188]

C. Lawley, M. Nachtegaal, J. Stahn, et al., “Examining the Surface Evolution of LaTiOxNy an Oxynitride Solar Water Splitting Photocatalyst,” Nature Communications 11 (2020): 1728.

[189]

J. Seo, M. Nakabayashi, T. Hisatomi, N. Shibata, T. Minegishi, and K. Domen, “Solar-Driven Water Splitting over a BaTaO2 N Photoanode Enhanced by Annealing in Argon,” ACS Applied Energy Materials 2 (2019): 5777.

[190]

J. Seo, H. Nishiyama, T. Yamada, and K. Domen, “Auf Sichtbares Licht Ansprechende Photoanoden für Hochaktive, Dauerhafte Wasseroxidation,” Angewandte Chemie 130 (2018): 8530.

[191]

P. Zhang, T. Wang, and J. Gong, “Passivation of Surface States by ALD-Grown TiO2 Overlayers on Ta3N5 Anodes for Photoelectrochemical Water Oxidation,” Chemical Communications 52 (2016): 8806.

[192]

X. Feng, T. J. LaTempa, J. I. Bastiam, G. K. Mor, O. K. Varghese, and C. A. Grimes, “Ta3N5 Nanotube Arrays for Visible Light Water Photoelectrolysis,” Nano Letters 10 (2010): 948.

[193]

P. Wang, C. Ding, Y. Deng, et al., “Simultaneous Improvement in Hole Storage and Interfacial Catalysis Over Ni-Fe Oxyhydroxide-Modified Tantalum Nitride Photoanodes,” ACS Catalysis 13 (2023): 2647.

[194]

H. R. Kwon, J. W. Yang, S. Choi, et al., “Low Onset-Potential Z-Scheme Ta3N5-Based Photoanode with Enhanced Light Harvesting and Charge Transport,” Advanced Energy Materials 14 (2024): 2303342.

[195]

H. Hajibabaei, D. J. Little, A. Pandey, D. Wang, Z. Mi, and T. W. Hamann, “Direct Deposition of Crystalline Ta3N5 Thin Films on FTO for PEC Water Splitting,” ACS Applied Materials & Interfaces 11 (2019): 15457.

[196]

Y. Kawase, T. Higashi, M. Katayama, K. Domen, and K. Takanabe, “Maximizing Oxygen Evolution Performance on a Transparent NiFeOX /Ta3N5 Photoelectrode Fabricated on an Insulator,” ACS Applied Materials & Interfaces 13 (2021): 16317.

[197]

Y. Pihosh, V. Nandal, R. Shoji, et al., “Nanostructured Tantalum Nitride for Enhanced Solar Water Splitting,” ACS Energy Letters 8 (2023): 2106.

[198]

J. Fu, F. Wang, Y. Xiao, et al., “Identifying Performance-Limiting Deep Traps in Ta3N5 for Solar Water Splitting,” ACS Catalysis 10 (2020): 10316.

[199]

Y. Li, L. Zhang, A. Torres-Pardo, et al., “Cobalt Phosphate-Modified Barium-Doped Tantalum Nitride Nanorod Photoanode with 1.5% Solar Energy Conversion Efficiency,” Nature Communications 4 (2013): 2566.

[200]

Y. Pihosh, V. Nandal, T. Higashi, et al., “Tantalum Nitride-Enabled Solar Water Splitting with Efficiency above 10%,” Advanced Energy Materials 13 (2023): 2301327.

[201]

B. Zhang, Z. Fan, Y. Chen, C. Feng, S. Li, and Y. Li, “Enhanced Spatial Charge Separation in a Niobium and Tantalum Nitride Core-Shell Photoanode: In Situ Interface Bonding for Efficient Solar Water Splitting,” Angewandte Chemie 135 (2023): e202305123.

[202]

L. Pei, Z. Xu, Z. Shi, H. Zhu, S. Yan, and Z. Zou, “Mg-Doped Ta3N5 Nanorods Coated with a Conformal CoOOH Layer for Water Oxidation: Bulk and Surface Dual Modification of Photoanodes,” Journal of Materials Chemistry A 5 (2017): 20439.

[203]

X. Zou, X. Han, C. Wang, Y. Zhao, C. Du, and B. Shan, “Carrier Engineering of Zr-Doped Ta3N5 Film as an Efficient Photoanode for Solar Water Splitting,” Sustainable Energy & Fuels 5 (2021): 2877.

[204]

Y. Xiao, Z. Fan, M. Nakabayashi, et al., “Decoupling Light Absorption and Carrier Transport via Heterogeneous Doping in Ta3N5 Thin Film Photoanode,” Nature Communications 13 (2022): 7769.

[205]

L. Pei, B. Lv, S. Wang, et al., “Oriented Growth of Sc-Doped Ta3N5 Nanorod Photoanode Achieving Low-Onset-Potential for Photoelectrochemical Water Oxidation,” ACS Applied Energy Materials 1 (2018): 4150.

[206]

L. I. Wagner, E. Sirotti, O. Brune, et al., “Defect Engineering of Ta3N5 Photoanodes: Enhancing Charge Transport and Photoconversion Efficiencies via Ti Doping,” Advanced Functional Materials 34 (2024): 2306539.

[207]

Y. Xiao, C. Feng, J. Fu, et al., “Band Structure Engineering and Defect Control of Ta3N5 for Efficient Photoelectrochemical Water Oxidation,” Nature Catalysis 3 (2020): 932.

[208]

Y. Kawase, T. Higashi, K. Obata, et al., “Simple Immersing Method of Nanocoating on Uneven Surfaces Applicable to Highly Durable Ta3N5 Nanorod Photoelectrode for Water Splitting,” Chemistry of Materials 36 (2024): 2390.

[209]

T. Higashi, H. Nishiyama, V. Nandal, et al., “Design of Semitransparent Tantalum Nitride Photoanode for Efficient and Durable Solar Water Splitting,” Energy & Environmental Science 15 (2022): 4761.

[210]

B. Alotaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Letters 13 (2013): 4356.

[211]

S. Chu, S. Vanka, Y. Wang, et al., “Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV,” ACS Energy Letters 3 (2018): 307.

[212]

S. Vanka, B. Zhou, R. A. Awni, et al., “InGaN/Si Double-Junction Photocathode for Unassisted Solar Water Splitting,” ACS Energy Letters 5 (2020): 3741.

[213]

D. Wang, A. Pierre, M. G. Kibria, et al., “Wafer-Level Photocatalytic Water Splitting on GaN Nanowire Arrays Grown by Molecular Beam Epitaxy,” Nano Letters 11 (2011): 2353.

[214]

Z. Li, L. Zhang, Y. Liu, et al., “Surface-Polarity-Induced Spatial Charge Separation Boosts Photocatalytic Overall Water Splitting on GaN Nanorod Arrays,” Angewandte Chemie 132 (2020): 945.

[215]

M. G. Kibria, F. A. Chowdhury, S. Zhao, et al., “Visible Light-Driven Efficient Overall Water Splitting Using p-type Metal-Nitride Nanowire Arrays,” Nature Communications 6 (2015): 6797.

[216]

P. Zhou, I. A. Navid, Y. Ma, et al., “Solar-to-Hydrogen Efficiency of More than 9% in Photocatalytic Water Splitting,” Nature 613 (2023): 66.

[217]

Y. Xiao, S. Vanka, T. A. Pham, et al., “Crystallographic Effects of GaN Nanostructures in Photoelectrochemical Reaction,” Nano Letters 22 (2022): 2236.

[218]

Y. Xiao, X. Kong, S. Vanka, et al., “Oxynitrides Enabled Photoelectrochemical Water Splitting with over 3000 Hrs Stable Operation in Practical Two-Electrode Configuration,” Nature Communications 14 (2023): 2047.

[219]

W. J. Dong, Y. Xiao, K. R. Yang, et al., “Pt Nanoclusters on GaN Nanowires for Solar-Asssisted Seawater Hydrogen Evolution,” Nature Communications 14 (2023): 179.

[220]

B. Zhou, X. Kong, S. Vanka, et al., “Gallium Nitride Nanowire as a Linker of Molybdenum Sulfides and Silicon for Photoelectrocatalytic Water Splitting,” Nature Communications 9 (2018): 3856.

[221]

J. H. Cho, J. Ma, and S. Y. Kim, “Toward High-Efficiency Photovoltaics-Assisted Electrochemical and Photoelectrochemical CO2 Reduction: Strategy and Challenge,” Exploration 3 (2023): 20230001.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

30

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/