Catalysts Design and Atomistic Reaction Modulation by Atomic Layer Deposition for Energy Conversion and Storage Applications

Myung-Jin Jung , Alireza Razazzadeh , Hasmat Khan , Se-Hun Kwon

Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240010

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240010 DOI: 10.1002/EXP.20240010
REVIEW

Catalysts Design and Atomistic Reaction Modulation by Atomic Layer Deposition for Energy Conversion and Storage Applications

Author information +
History +
PDF

Abstract

Atomic layer deposition (ALD) technique has emerged as a fascinating tool for the design and synthesis of heterogeneous catalysts with atomic precision for energy conversion, generation, and storage applications. Here, we demonstrate the importance of the ALD for catalyst design by citing recently reported works, in particular, the emphasis has been given to the surface/interface engineering of catalysts for improving their catalytic efficiency in energy applications. To get insight into the reaction mechanism, the ALD-based routes for catalyst synthesis may revolutionize the field of sustainable energy conversion and storage. Moreover, the synthesis of supported nanoparticles with controlled shape and size has attracted great attention in catalysis owing to their unique properties. By taking advantage of the ALD, it is possible to synthesize catalysts at the atomic scale, particularly, site-selective ALD provides tremendous opportunities in catalytic efficiency and selectivity studies. Moreover, this review illustrates diverse heterogeneous catalysts with their limitations for energy-related applications and how the ALD technique can facilitate overcoming them. Finally, we deliberate the advancement in the ALD technique on heterogeneous catalyst design, and interface engineering of catalysts, and outline future perspectives of this technology in catalysis.

Keywords

atomic layer deposition / electrocatalysis / energy conversion and storage / heterogeneous catalysts / photoelectrocatalysis

Cite this article

Download citation ▾
Myung-Jin Jung, Alireza Razazzadeh, Hasmat Khan, Se-Hun Kwon. Catalysts Design and Atomistic Reaction Modulation by Atomic Layer Deposition for Energy Conversion and Storage Applications. Exploration, 2025, 5(4): e20240010 DOI:10.1002/EXP.20240010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Ashraf, N. Ullah, I. Khan, W. Tremel, S. Ahmad, and M. N. Tahir, “Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy,” Chemical Reviews 123 (2023): 4443-4509.

[2]

a) Y. Xia, C. T. Campbell, B. R. Cuenya, and M. Mavrikakis, “Introduction: Advanced Materials and Methods for Catalysis and Electrocatalysis by Transition Metals,” Chemical Reviews 121 (2021): 563-566. b) J. O. Olowoyo, V. S. Gharahshiran, Y. Zeng, Y. Zhao, and Y. Zheng, “Atomic/Molecular Layer Deposition Strategies for Enhanced CO2 Capture, Utilisation and Storage Materials,” Chemical Society Reviews 53 (2024): 5428-5488. c) B. Bawab, S. M. Thalluri, E. Kolíbalová, et al., “Synergistic Effect of Pd Single Atoms and Nanoparticles Deposited on Carbon Supports by ALD Boosts Alkaline Hydrogen Evolution Reaction,” Chemical Engineering Journal 482 (2024): 148959. d) H. Liu, Q. Lu, Y. Gao, et al., “Nitrogen Doped Titania Stabilized Pt/C Catalyst Via Selective Atomic Layer Deposition for Fuel Cell Oxygen Reduction,” Chemical Engineering Journal 463 (2023): 142405.

[3]

Y. Zhao, L. Zhang, J. Liu, et al., “Atomic/Molecular Layer Deposition for Energy Storage and Conversion,” Chemical Society Reviews 50 (2020): 3889-3928.

[4]

B. Lin and M. Y. Raza, “Analysis of Energy Security Indicators and CO2 Emissions. A Case From a Developing Economy,” Energy 200 (2020): 117575.

[5]

N. Norouzi, M. Fani, and Z. K. Ziarani, “The Fall of Oil Age: A Scenario Planning Approach Over the Last Peak Oil of Human History by 2040,” Journal of Petroleum Science & Engineering 188 (2020): 106827.

[6]

F. Zaera, “Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive with Those of Homogeneous Catalysts?,” Chemical Reviews 122 (2022): 8594-8651.

[7]

R. J. White, R. Luque, V. L. Budarin, J. H. Clark, and D. J. Macquarrie, “Supported Metal Nanoparticles on Porous Materials. Methods and Applications,” Chemical Society Reviews 38 (2009): 481-494.

[8]

P. Munnik, P. E. De Jongh, and K. P. De Jong, “Recent Developments in the Synthesis of Supported Catalysts,” Chemical Reviews 115 (2015): 6687-6718.

[9]

G. A. Somorjai and J. Y. Park, “Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and Their Influence on Activity and Selectivity,” Topics in Catalysis 49 (2008): 126-135.

[10]

B. P. Le Monnier, L. Savereide, M. Kılıç, et al., “Atom-by-Atom Synthesis of Multiatom-Supported Catalytic Clusters by Liquid-Phase Atomic Layer Deposition,” ACS Sustainable Chemistry & Engineering 10 (2022): 3455-3465.

[11]

J. Gu, Y. Xu, and J. Lu, “Atom-Precise Low-Nuclearity Cluster Catalysis: Opportunities and Challenges,” ACS Catalysis 13 (2023): 5609-5622.

[12]

L. Sun, V. Reddu, and X. Wang, “Multi-Atom Cluster Catalysts for Efficient Electrocatalysis,” Chemical Society Reviews 51 (2022): 8923-8946.

[13]

S. Nitopi, E. Bertheussen, S. B. Scott, et al., “Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte,” Chemical Reviews 119 (2019): 7610-7672.

[14]

C. J. M. van der Ham, M. T. M. Koper, and D. G. H. Hetterscheid, “Challenges in Reduction of Dinitrogen by Proton and Electron Transfer,” Chemical Society Reviews 43 (2014): 5183-5191.

[15]

W. Guo, K. Zhang, Z. Liang, R. Zou, and Q. Xu, “Electrochemical Nitrogen Fixation and Utilization: Theories, Advanced Catalyst Materials and System Design,” Chemical Society Reviews 48 (2019): 5658-5716.

[16]

J. Jiang, X. Wang, Q. Xu, Z. Mei, L. Duan, and H. Guo, “Understanding Dual-Vacancy Heterojunction for Boosting Photocatalytic CO2 Reduction With Highly Selective Conversion to CH4,” Applied Catalysis B 316 (2022): 121679.

[17]

S. Hu, S. Ge, H. Liu, X. Kang, Q. Yu, and B. Liu, “Low-Dimensional Electrocatalysts for Acidic Oxygen Evolution: Intrinsic Activity, High Current Density Operation, and Long-Term Stability,” Advanced Functional Materials 32 (2022): 2201726.

[18]

Y. Wei, F. You, D. Zhao, J. Wan, L. Gu, and D. Wang, “Heterogeneous Hollow Multi-Shelled Structures With Amorphous-Crystalline Outer-Shells for Sequential Photoreduction of CO2,” Angewandte Chemie International Edition 61 (2022): 202212049.

[19]

Z.-C. Zhang, B. Xu, and X. Wang, “Engineering Nanointerfaces for Nanocatalysis,” Chemical Society Reviews 43 (2014): 7870-7886.

[20]

a) S. M. George, “Atomic Layer Deposition: An Overview,” Chemical Reviews 110 (2010): 111-131. b) W. W. McNeary, W. D. H. Stinson, M. Waqar, et al., “Toward Spatial Control of Reaction Selectivity on Photocatalysts Using Area-Selective Atomic Layer Deposition on the Model Dual Site Electrocatalyst Platform,” ACS Nano 18, no. 51 (2024): 34708-34719, https://doi.org/10.1021/acsnano.4c10387. c) D. V. F. Alvarez, Z. Lin, Z. Shi, et al., “Condensed Layer Deposition of Nanoscopic TiO2 Overlayers on High-Surface-Area Electrocatalysts,” ACS Applied Materials & Interfaces 16 (2024): 25432-25442. d) R. T. M. v. Limpt, M. Lao, M. N. Tsampas, and M. Creatore, “Unraveling the Role of the Stoichiometry of Atomic Layer Deposited Nickel Cobalt Oxides on the Oxygen Evolution Reaction,” Advancement of Science 11 (2024): 2405188. e) S. Ng, M. Sanna, E. Redondo, and M. Pumera, “Engineering 3D-printed Carbon Structures With Atomic Layer Deposition Coatings as Photoelectrocatalysts for Water Splitting,” Journal of Materials Chemistry A 12 (2024): 396-406.

[21]

a) B. J. O'Neill, D. H. K. Jackson, J. Lee, et al., “Catalyst Design With Atomic Layer Deposition,” ACS Catalysis 5 (2015): 1804-1825. b) B. Li, M. Härtel, A. Al-Ashouri, et al., “Atomic-Layer-Deposition-Free Monolithic Perovskite/Silicon Tandem Solar Cell Reaching 29.91% Power Conversion on Industrial PERX/TOPCon-Like Silicon Bottom Cells,” ACS Energy Letters 9 (2024): 4550-4559. c) J. W. Shim, J. Koo, S. J. Yoo, and J. H. Shim, “Exceptionally Stable Polymer Electrolyte Membrane Fuel Cells Enabled by One-Pot Sequential Atomic Layer Deposition of Titania and Platinum,” ACS Sustainable Chemistry & Engineering 12 (2024): 15634-15643. d) D. Gao, B. Li, Q. Liu, et al., “Long-Term Stability in Perovskite Solar Cells Through Atomic Layer Deposition of Tin Oxide,” Science 386 (2024): 187-192. e) C. Li, T. Zhang, Z. Qiu, et al., Carbon Energy 6 (2024): e641.

[22]

a) V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of Inorganic Films Grown by Atomic Layer Deposition: Overview and General Trends,” Journal of Applied Physics 113 (2013): 021201. b) Z. Song, X. Zhou, L. Sun, et al., “Enhancing Electron Interaction Between Pt and Support for Superior Electrochemical Performance Through Atomic Layer Deposition of Tungsten Oxide,” Journal of Colloid & Interface Science 654 (2024): 1272-1280. c) H. Yang, Y. Chen, and Y. Qin, “Application of Atomic Layer Deposition in Fabricating High-Efficiency Electrocatalysts,” Chinese Journal of Catalysis 41 (2020): 227-236.

[23]

a) D. Solanki, C. He, Y. Lim, R. Yanagi, and S. Hu, “Where Atomically Precise Catalysts, Optoelectronic Devices, and Quantum Information Technology Intersect: Atomic Layer Deposition,” Chemistry of Materials 36 (2024): 1013-1025. b) R. Dai, Z. Guan, D. Guo, and B. Xi, “Precise Control of the Catalyst Interface at the Atomic Level,” Materials Chemistry Frontiers 7 (2023): 5826-5835. c) P. O. Oviroh, R. Akbarzadeh, D. Pan, R. A. M. Coetzee, and T.-C. Jen, “New Development of Atomic Layer Deposition: Processes, Methods and Applications,” Science and Technology of Advanced Materials 20 (2019): 465-496. d) A. Karimaghaloo, J. Koo, H.-S. Kang, S. A. Song, J. H. Shim, and M. H. Lee, “Nanoscale Surface and Interface Engineering of Solid Oxide Fuel Cells by Atomic Layer Deposition,” International Journal of Precision Engineering and Manufacturing-Green Technology 6 (2019): 611-628. e) V. Cremers, R. L. Puurunen, and J. Dendooven, “Conformality in Atomic Layer Deposition: Current Status Overview of Analysis and Modelling,” Applied Physics Reviews 6 (2019): 021302.

[24]

H. Zhang and C. L. Marshall, “Atomic Layer Deposition: Catalytic Preparation and Modification Technique for the Next Generation,” Chinese Journal of Catalysis 40 (2019): 1311-1323.

[25]

a) K. Knemeyer, M. P. Hermida, P. Ingale, et al., “Mechanistic Studies of Atomic Layer Deposition on Oxidation Catalysts—AlOX and POX Deposition,” Physical Chemistry Chemical Physics 22 (2020): 17999-18006. b) M. Li, S. Saedy, S. Fu, T. Stellema, R. Kortlever, and J. R. van Ommen, “Enhancing the Durability of Pt Nanoparticles for Water Electrolysis Using Ultrathin SiO2 Layers,” Catalysis Science & Technology 14 (2024): 1328-1335. c) J. A. Oke and T.‑C. Jen, “Atomic Layer Deposition Thin Film Techniques and Its Bibliometric Perspective,” International Journal of Advanced Manufacturing Technology 126 (2023): 4811-4826. d) B. H. Lee, V. R. Anderson, and S. M. George, “Growth and Properties of Hafnicone and HfO2/Hafnicone Nanolaminate and Alloy Films Using Molecular Layer Deposition Techniques,” ACS Applied Materials & Interfaces 6 (2014): 16880-16887. e) X. Liang, D. M. King, P. Li, S. M. George, and A. W. Weimer, “Nanocoating Hybrid Polymer Films on Large Quantities of Cohesive Nanoparticles by Molecular Layer Deposition,” AIChE Journal 55 (2009): 1030-1040. f) A. I. Abdulagatov, K. E. Terauds, J. J. Travis, A. S. Cavanagh, R. Raj, and S. M. George, “Pyrolysis of Titanicone Molecular Layer Deposition Films as Precursors for Conducting TiO2/Carbon Composite Films,” Journal of Physical Chemistry C 117 (2013): 17442-17452.

[26]

a) R. W. Johnson, A. Hultqvist, and S. F. Bent, “A Brief Review of Atomic Layer Deposition: From Fundamentals to Applications,” Materials Today 17 (2014): 236-246. b) B. Yu, J. Zhang, Y. Yang, D. Yu, Y. Mai, and X. Chen Energy Materials 4 (2024): 400045. c) P. Poodt, D. C. Cameron, E. Dickey, et al., “Spatial Atomic Layer Deposition: A Route towards Further Industrialization of Atomic Layer Deposition,” Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films 30 (2012): 010802. d) B. P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, “High-Speed Spatial Atomic-Layer Deposition of Aluminum Oxide Layers for Solar Cell Passivation,” Advanced Materials 22 (2010): 3564-3567. e) D. H. Kim, S. E. Atanasov, P. Lemaire, K. Lee, and G. N. Parsons, “Platinum-Free Cathode for Dye-Sensitized Solar Cells Using Poly(3,4-Ethylenedioxythiophene) (PEDOT) Formed Via Oxidative Molecular Layer Deposition,” ACS Applied Materials & Interfaces 7 (2015): 3866-3872. f) M.-W. Liao, T.-K. Chin, X.-F. Luo, Y.-C. Chuang, and T.-P. Perng, “Formation Characteristics of Pt-Ni Alloy Nanoparticles Fabricated by Nanolamination of Atomic Layer Deposition in Hydrogen,” Small 20 (2024): 2404943.

[27]

a) J. Soethoudt, F. Grillo, E. A. Marques, et al., “Diffusion-Mediated Growth and Size-Dependent Nanoparticle Reactivity During Ruthenium Atomic Layer Deposition on Dielectric Substrates,” Advanced Materials Interfaces 5 (2018): 1800870. b) J. Kwon, S. Ko, H. Kim, H. J. Park, C. W. Lee, and J. Yeo, “Recent Advances in Vacuum- and Laser-Based Fabrication Processes for Solar Water-Splitting Cells,” Materials Chemistry Frontiers 8 (2024): 2322-2340.

[28]

W.-J. Lee, S. Bera, P. K. Song, et al., “Optimization of Bending Durability of Ti-ZnO Thin Films on Flexible Glass Substrates With Highly Enhanced Optoelectronic Characteristics by Atomic Layer Deposition,” Japanese Journal of Applied Physics 58 (2019): 075501.

[29]

W.-J. Lee, Z. Wan, C.-M. Kim, et al., “Atomic Layer Deposition of Pt Thin Films Using Dimethyl (N,N-Dimethyl-3-Butene-1-Amine-N) Platinum and O2 Reactant,” Chemistry of Materials 31 (2019): 5056-5064.

[30]

C. de Paula, N. E. Richey, L. Zeng, and S. F. Bent, “Mechanistic Study of Nucleation Enhancement in Atomic Layer Deposition by Pretreatment With Small Organometallic Molecules,” Chemistry of Materials 32 (2019): 315-325.

[31]

a) B. C. Mallick, C.-T. Hsieh, K.-M. Yin, Y. A. Gomi, and K.-T. Huang, “Review—On Atomic Layer Deposition: Current Progress and Future Challenges,” ECS Journal of Solid State Science and Technology 8 (2019): N55-N78. b) J. W. Han, H. S. Jin, Y. J. Kim, et al., “Advanced Atomic Layer Deposition (ALD): Controlling the Reaction Kinetics and Nucleation of Metal Thin Films Using Electric-Potential-Assisted ALD,” Journal of Materials Chemistry C 11 (2023): 3743-3750. c) N. Mallik, J. Hajhemati, M. Fr´egnaux, et al., “Interface Defect Formation for Atomic Layer Deposition of SnO2 on Metal Halide Perovskites,” Nano Energy 126 (2024): 109582. d) T. J. Kunene, L. K. Tartibu, K. Ukoba, and T.-C. Jen, “Review of Atomic Layer Deposition Process, Application and Modeling Tools,” Materials Today: Proceedings 62 (2022): S95-S101.

[32]

M. Shahmohammadi, R. Mukherjee, C. Sukotjo, U. M. Diwekar, and C. G. Takoudis, “Recent Advances in Theoretical Development of Thermal Atomic Layer Deposition: A Review,” Nanomater 12 (2022): 831.

[33]

Y. Hu, J. Lu, and H. Feng, “Surface Modification and Functionalization of Powder Materials by Atomic Layer Deposition: A Review,” RSC Advances 11 (2021): 11918-11942.

[34]

S. Chung, M. Choun, B. Jeong, J. K. Lee, and J. Lee, “Atomic Layer Deposition of Ultrathin Layered TiO2 on Pt/C Cathode Catalyst for Extended Durability in Polymer Electrolyte Fuel Cells,” Journal of Energy Chemistry 25 (2016): 258-264.

[35]

J. Lim, J. W. Shim, D. J. Kim, J. S. Park, J. Koo, and J. H. Shim, “Improvement of Fuel Cell Catalyst Performance Through Zirconia Protective Layer Coating by Atomic Layer Deposition,” Journal of Power Sources 498 (2021): 229923.

[36]

M. Kim, J. Y. Hwang, D.-e. Kim, T. Song, K. H. Lee, and H.-H. Park, “Crystalline ZrO2 Films With Reduced Oxygen Vacancy and Surface Roughness for Corrosion Protection by Atomic Layer Deposition,” Ceramics International 49 (2023): 24065-24072.

[37]

R. Chen, K. Qu, J. Li, et al., “Ultrathin Zirconia Passivation and Stabilization of Aluminum Nanoparticles for Energetic Nanomaterials Via Atomic Layer Deposition,” ACS Applied Nano Materials 1 (2018): 5500-5507.

[38]

K. Cao, J. Cai, X. Liu, and R. Chen, “Review Article: Catalysts Design and Synthesis Via Selective Atomic Layer Deposition,” Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films 36 (2018): 010801.

[39]

W.-J. Lee, S. Bera, C. M. Kim, et al., “Synthesis of Highly Dispersed Pt Nanoparticles Into Carbon Supports by Fluidized Bed Reactor Atomic Layer Deposition to Boost PEMFC Performance,” NPG Asia Materials 12 (2020): 40.

[40]

a) Y. Abghoui and E. Skúlason, “Hydrogen Evolution Reaction Catalyzed by Transition-Metal Nitrides,” Journal of Physical Chemistry C 121 (2017): 24036-24045. b) R. Ramesh, D. K. Ni, T. H. Kim, T. Cheon, J. Oh, and S.-H. Kim, “Atomic-Layer-Deposited MoNX Thin Films on Three-Dimensional Ni Foam as Efficient Catalysts for the Electrochemical Hydrogen Evolution Reaction,” ACS Applied Materials & Interfaces 11 (2019): 17321-17328.

[41]

S. Hermans, G. A. Somorjai, and B. Zhou, Nanotechnology in Catalysis (Kluwer Academic/Plenum Publishers, 2004).

[42]

Z. Gao and Y. Qin, “Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition,” Accounts of Chemical Research 50 (2017): 2309-2316.

[43]

V. De Coster, H. Poelman, J. Dendooven, C. Detavernier, and V. V. Galvita, “Designing Nanoparticles and Nanoalloys for Gas-Phase Catalysis With Controlled Surface Reactivity Using Colloidal Synthesis and Atomic Layer Deposition,” Molecules (Basel, Switzerland) 25 (2020): 3735.

[44]

a) X. Liu, Q. Zhu, Y. Lang, et al., “Oxide-Nanotrap-Anchored Platinum Nanoparticles With High Activity and Sintering Resistance by Area-Selective Atomic Layer Deposition,” Angewandte Chemie 129 (2017): 1648-1652. b) J. Yang, K. Cao, M. Gong, B. Shan, and R. Chen, “Atomically Decorating of MnOx on Palladium Nanoparticles towards Selective Oxidation of Benzyl Alcohol With High Yield,” Journal of Catalysis 386 (2020): 60-67.

[45]

B. Zhang and Y. Qin, “Interface Tailoring of Heterogeneous Catalysts by Atomic Layer Deposition,” ACS Catalysis 8 (2018): 10064-10076.

[46]

J. J. Bravo-Suárez, R. V. Chaudhari, and B. Subramaniam, ACS Symposium Series (American Chemical Society, 2013).

[47]

E. Roduner, “Selected Fundamentals of Catalysis and Electrocatalysis in Energy Conversion Reactions—A Tutorial,” Catalysis Today 309 (2018): 263-270.

[48]

M. Zeng and Y. Li, “Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction,” Journal of Materials Chemistry 3 (2015): 14942-14962.

[49]

H. Ooka, J. Huang, and K. S. Exner, “The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions,” Frontiers in Energy Research 9 (2021): 654460.

[50]

Z. Cui, W. Jiao, Z. Y. Huang, et al., “Design and Synthesis of Noble Metal-Based Alloy Electrocatalysts and Their Application in Hydrogen Evolution Reaction,” Small 19 (2023): 2301465.

[51]

C. Li, L. Zhang, Y. Zhang, et al., “PtRu Alloy Nanoparticles Embedded on C2N Nanosheets for Efficient Hydrogen Evolution Reaction in both Acidic and Alkaline Solutions,” Chemical Engineering Journal 428 (2022): 131085.

[52]

Y. Li, G. Huang, Y. Jiang, et al., “Theoretical Insights Into Facet-Dependent Activity and Selectivity of Cu Catalysts in Electrochemical Furfural Reduction,” Journal of Physical Chemistry C 127, no. 45 (2023): 21989-21998.

[53]

Z. Peng, J. Liu, B. Hu, et al., “Surface Engineering on Nickel-Ruthenium Nanoalloys Attached Defective Carbon Sites as Superior Bifunctional Electrocatalysts for Overall Water Splitting,” ACS Applied Materials & Interfaces 12 (2020): 13842-13850.

[54]

W.-J. Lee, S. Bera, H.-J. Woo, et al., “Atomic Layer Deposition Enabled PtNi Alloy Catalysts for Accelerated Fuel-Cell Oxygen Reduction Activity and Stability,” Chemical Engineering Journal 442 (2022): 136123.

[55]

J. Zhang, T. Wang, P. Liu, et al., “Efficient Hydrogen Production on MoNi4 Electrocatalysts With Fast Water Dissociation Kinetics,” Nature Communication 8 (2017): 15437.

[56]

S. Ghosh, D. Haycock, N. Mehra, et al., “Climbing the Hydrogen Evolution Volcano With a NiTi Shape Memory Alloy,” Journal of Physical Chemistry Letters 15 (2024): 933-940.

[57]

W. Zhang, J. Li, and Z. Wei, “How Size and Strain Effect Synergistically Improve Electrocatalytic Activity: A Systematic Investigation Based on PtCoCu Alloy Nanocrystals,” Small 19 (2023): e2300112.

[58]

N. Zhou, R. Zhang, R. Wang, and Y. Li, “Preparation of PtNiCo Alloy/Nitrogen-Doped Porous Carbon Composites and Their Electrocatalytic Properties,” Journal of Chemical Engineering 474 (2023): 146010.

[59]

H. Yoon, H. J. Song, B. Ju, K. Jang, and D.-W. Kim, “Gas-Phase Synthesis of PtMo Alloy Electrocatalysts With Enhanced Activity and Durability for Oxygen Reduction Reaction,” ACS Sustainable Chemistry & Engineering 10 (2022): 15319-15327.

[60]

Y. Wu, L. Chen, S. Geng, et al., “PtFe Nanoalloys Supported on Fe-Based Cubic Framework as Efficient Oxygen Reduction Electrocatalysts for Proton Exchange Membrane Fuel Cells,” Advanced Functional Materials 34 (2023): 2307297.

[61]

S. Manzoor, T. Munawar, S. Gouadria, et al., “Nanopetals Shaped CuNi Alloy With Defects Abundant Active Surface for Efficient Electrocatalytic Oxygen Evolution Reaction and High Performance Supercapacitor Applications,” Journal of Energy Storage 55 (2022): 105488.

[62]

T. Yan, S. Chen, W. Sun, et al., “IrO2 Nanoparticle-Decorated Ir-Doped W18 O49 Nanowires With High Mass Specific OER Activity for Proton Exchange Membrane Electrolysis,” ACS Applied Materials & Interfaces 15 (2023): 6912-6920.

[63]

F. F. Alharbi, M. S. Waheed, S. Aman, N. Ahmad, H. M. T. Farid, and T. A. Mohaymen Taha, “Facile Development of Mn Doped NiO Nanoarrays Supported on a Reduced Graphene Oxide Nanocomposite as a Supercapacitor,” Energy Fuel 37 (2023): 12225-12234.

[64]

V. Kakani, S. Ramesh, H. M. Yadav, et al., “Hydrothermal Synthesis of CuO@MnO2 on Nitrogen-Doped Multiwalled Carbon Nanotube Composite Electrodes for Supercapacitor Applications,” Scientific Reports 12 (2022): 12951.

[65]

X. Zhang and S. P. Jiang, “Layered G-C3N4/TiO2 Nanocomposites for Efficient Photocatalytic Water Splitting and CO2 Reduction: A Review,” Materials Today Energy 23 (2022): 100904.

[66]

X. Chen, B. Sun, J. Chu, et al., “Oxygen Vacancy-Induced Construction of CoO/H-TiO2 Z-Scheme Heterostructures for Enhanced Photocatalytic Hydrogen Evolution,” ACS Applied Materials & Interfaces 14 (2022): 28945-28955.

[67]

Q. Ma, F. Cui, J. Zhang, X. Qi, and T. Cui, “Surface Engineering of Co3O4 Nanoribbons Forming Abundant Oxygen-Vacancy for Advanced Supercapacitor,” Applied Surface Science 578 (2022): 152001.

[68]

D. Liu, Y. Liu, X. Liu, C. Xu, J. Zhu, and H. Chen, “Growth of Uniform CuCo2O4 Porous Nanosheets and Nanowires for High-Performance Hybrid Supercapacitors,” Journal of Energy Storage 52 (2022): 105048.

[69]

N. Huang, Y. Sun, S. Liu, et al., “Microwave-Assisted Rational Designed CNT-Mn3O4/CoWO4 Hybrid Nanocomposites for High Performance Battery-Supercapacitor Hybrid Device,” Small 19 (2023): e2300696.

[70]

X. Wang, Z. Li, L. Liu, et al., “(Co,Mn)3O4-Doped Carbon Nanotube Composite as a Bifunctional Electrocatalyst for Aluminum-Air Batteries,” New Journal of Chemistry 48 (2024): 2269-2277.

[71]

J. Sivaraj, B. Dasari, and K. Ramesha, “Cobalt Vanadate (Co3V2O8) Hollow Microspheres as a Polysulfide Adsorption and Conversion Catalyst for Li-S Batteries,” Energy Fuel 37 (2023): 9672-9680.

[72]

A. C. Pradhan, S. Nayak, D. K. Padhi, K. Parida, and G. R. Rao, “Nanoarchitect and Defective Mesoporous RGO Nanoparticle-Integrated Ce/Ti Nanorod for Proficient Photocatalytic H2 Generation in Visible Light,” ACS Applied Materials & Interfaces 2, no. 4 (2024): 839-848.

[73]

Q. Huang, S. Zhuang, Y. Zheng, X. Peng, Z. Ye, and D. Li, “Boron-Incorporated IrO2-Ta2O5 Coating as an Efficient Electrocatalyst for Acidic Oxygen Evolution Reaction,” Journal of Chemical Engineering 491 (2024): 152040.

[74]

F. Liao, K. Yin, Y. Ji, et al., “Iridium Oxide Nanoribbons With Metastable Monoclinic Phase for Highly Efficient Electrocatalytic Oxygen Evolution,” Nature Communications 14 (2023): 1248.

[75]

W. Han, Y. Qian, F. Zhang, Y. He, P. Li, and X. Zhang, “Ultrasmall IrO2 Nanoparticles Anchored on Hollow Co-Mo Multi-Oxide Heterostructure Nanocages for Efficient Oxygen Evolution in Acid,” Journal of Chemical Engineering 473 (2023): 145353.

[76]

Y. Zeng, L. Yan, S. Tian, and X. Sun, “Loading IrOX Clusters on MnO2 Boosts Acidic Water Oxidation via Metal-Support Interaction,” ACS Applied Materials & Interfaces 15 (2023): 47103-47112.

[77]

K. Qin, H. Yu, W. Zhu, et al., “1D Monoclinic IrxRu1−xO2 Solid Solution With Ru-Enhanced Electrocatalytic Activity for Acidic Oxygen Evolution Reaction,” Advanced Functional Materials (2024): 2402226, https://doi.org/10.1002/adfm.202402226.

[78]

Y. Zhang, J. Dong, T. Sun, X. Zhang, J. Chen, and L. Xu, “Mo-Doped Mesoporous RuO2 Spheres as High-Performance Acidic Oxygen Evolution Reaction Electrocatalyst,” Small 20 (2024): e2305889.

[79]

H. Song, X. Yong, G. I. N. Waterhouse, et al., “RuO2 -CeO2 Lattice Matching Strategy Enables Robust Water Oxidation Electrocatalysis in Acidic Media Via Two Distinct Oxygen Evolution Mechanisms,” ACS Catalysis 14 (2024): 3298-3307.

[80]

X. Chen, J. Song, Y. Xing, et al., “Nickel-Decorated RuO2 Nanocrystals With Rich Oxygen Vacancies for High-Efficiency Overall Water Splitting,” Journal of Colloid & Interface Science 630 (2023): 940-950.

[81]

G. Liu, Y. Cheng, M. Qiu, et al., “Facilitating Interface Charge Transfer via Constructing NiO/NiCo2O4 Heterostructure for Oxygen Evolution Reaction Under Alkaline Conditions,” Journal of Colloid & Interface Science 643 (2023): 214-222.

[82]

S. Xu, P. Zhang, R. Zhao, et al., “Engineered Oxidation States in NiCo2O4@CeO2 Nanourchin Architectures With Abundant Oxygen Vacancies for Enhanced Oxygen Evolution Reaction Performance,” Journal of Chemical Engineering 482 (2024): 148787.

[83]

Y. Y. Sun, X. Y. Zhang, J. Tang, et al., “Amorphous Oxysulfide Reconstructed From Spinel NiCo2S4 for Efficient Water Oxidation,” Small 19 (2023): e2207965.

[84]

Y. Wang, T. Gao, R. Li, et al., “Layered Deposited MoS2 Nanosheets on Acorn Leaf Like CdS as an Efficient Anti-Photocorrosion Photocatalyst for Hydrogen Production,” Fuel 368 (2024): 131621.

[85]

L. Sun, X. Bao, Y. Li, et al., “CoS2 and FeS2 Nanoparticles Embedded in Carbon Polyhedrons for Lithium-Sulfur Batteries,” ACS Applied Nano Materials 6 (2023): 11095-11103.

[86]

S. Yu, J. Xu, C. Xiang, et al., “Bifunctional Metal-Organic Framework-Derived Nitrogen-Doped Porous Multishell CuCoS@NiCoS Nanospheres for Supercapacitors and Hydrogen Evolution Reactions,” Journal of Energy Storage 55 (2022): 105541.

[87]

T. L. L. Doan, D. C. Nguyen, R. Amaral, N. Y. Dzade, C. S. Kim, and C. H. Park, “Rationally Designed NiS2-MnS/MoS2 Hybridized 3D Hollow N-Gr Microsphere Framework-Modified Celgard Separator for Highly Efficient Li-S Batteries,” Applied Catalysis B: Environment 319 (2022): 121934.

[88]

H. Wang, M. Liang, H. Ma, et al., “Enhanced Cycling Performance of Surface-Amorphized Co3S4 as Robust Cathode for Supercapacitors,” Journal of Energy Storage 58 (2023): 106322.

[89]

M. Raza, N. Iqbal, T. Noor, et al., “Zeolitic Imidazolate Framework (ZIF) Derived MoS2/Co3S4/NPC as the Supercapacitor Electrode Material,” Materials Research Bulletin 176 (2024): 112830.

[90]

A. Mehtab, S. A. Ali, P. P. Ingole, Y. Mao, S. M. Alshehri, and T. Ahmad, “MoS2 Nanoflower-Deposited g-C3N4 Nanosheet 2D/2D Heterojunction for Efficient Photo/Electrocatalytic Hydrogen Evolution,” ACS Applied Energy Materials 6 (2023): 12003-12012.

[91]

S. Golda A, A. P. Varghese, N. Rabiee, B. Neppolian, and S. K. Lakhera, “Synergistic Hydrogen Generation Through a 2D-2D NiCuInS2:In2S3/G-C3N4 Dual S-Scheme Heterojunction Nanosheets,” Carbon 215 (2023): 118441.

[92]

H. Chen, Y. Li, H. Huang, Q. Kang, and T. Ma, “Petal-Like FeXSY/WS2 Heterojunction Nanosheets as an Electrocatalyst for Highly Effective Hydrogen Evolution Reaction,” Energy Fuel 36 (2022): 4888-4897.

[93]

W. Li, Z. Sun, R. Ge, et al., “Nanoarchitectonics of La-Doped Ni3S2/MoS2 Hetetostructural Electrocatalysts for Water Electrolysis,” Small Structures 4 (2023): 2300175.

[94]

Z. Jin, H. Pang, K. Li, et al., “In-Situ Growth of Cu2S-MoS2 Bimetallic Electrocatalyst on Carbon Cloth for Hydrogen Evolution Reaction,” ChemNanoMat 10, no. 1 (2023): 2300175.

[95]

S. Wang, H. Pan, Y. Wang, H. Tang, and H. Zhang, “Moderately Reconstructed Ternary Metal Nitride Nanoparticles for Highly Efficient and Robust Freshwater and Seawater Oxidation Under Industrial Current Density,” Small Structures 5 (2024): 2400031.

[96]

X. Shen, H. Li, T. Ma, et al., “Construction of Heterojunction-Rich Metal Nitrides Porous Nanosheets Electrocatalyst for Alkaline Water/Seawater Splitting at Large Current Density,” Small 20 (2024): e2310535.

[97]

H. Hu, Z. Zhang, Y. Zhang, et al., “An Ultra-Low Pt Metal Nitride Electrocatalyst for Sustainable Seawater Hydrogen Production,” Energy & Environmental Science 16 (2023): 4584-4593.

[98]

S. Y. Yun, S. Lee, X. Jin, A. Soon, and S. J. Hwang, “Ammonolysis-Driven Exsolution of Ru Nanoparticle Embedded in Conductive Metal Nitride Matrix to Boost Electrocatalyst Activity,” Advancement of Science 11, no. 24 (2024): e2309819.

[99]

T. Kavinkumar, H. Yang, A. T. Sivagurunathan, H. Jeong, J. W. Han, and D. H. Kim, “Regulating Electronic Structure of Iron Nitride by Tungsten Nitride Nanosheets for Accelerated Overall Water Splitting,” Small 19 (2023): e2300963.

[100]

W. Tahir, S. Ullah, I. Ullah, et al., “Metallic WN Plasmonic Fabricated g-C3N4 Significantly Steered Photocatalytic Hydrogen Evolution Under Visible and Near-Infrared Light,” Catalysis Science & Technology 12 (2022): 7369-7378.

[101]

J. Du, Y. Shen, F. Yang, et al., “In-Situ Topology Synthesis of Defective MoN Nanosheets/g-C3N4 2D/2D Heterojunction Photocatalyst for Efficient H2 Production,” Applied Surface Science 608 (2023): 155199.

[102]

X. Wang, X. Zhang, Y. Xu, et al., “Heterojunction Mo-Based Binary and Ternary Nitride Catalysts With Pt-Like Activity for the Hydrogen Evolution Reaction,” Journal of Chemical Engineering 470 (2023): 144370.

[103]

M. Cheng, Z. Xing, R. Yan, et al., “Oxygen-Modulated Metal Nitride Clusters With Moderate Binding Ability to Insoluble Li2Sx for Reversible Polysulfide Electrocatalysis,” InfoMat 5 (2022): e12387.

[104]

L. Ma, Y. Wang, Z. Wang, et al., “Wide-Temperature Operation of Lithium-Sulfur Batteries Enabled by Multi-Branched Vanadium Nitride Electrocatalyst,” ACS Nano 17 (2023): 11527-11536.

[105]

B. Ranjan and D. Kaur, “Pseudocapacitance Powered Nickel Molybdenum Nitride Nanocomposite Reactively Cosputtered on Stainless-Steel Mesh Toward Advanced Flexible Supercapacitors,” ACS Applied Energy Materials 7 (2024): 4513-4522.

[106]

J. Guo, H. Zhao, Z. Yang, et al., “Hierarchical Porous 3D Ni3N-CoN/NC Heterojunction Nanosheets With Nitrogen Vacancies for High-Performance Flexible Supercapacitor,” Nano Energy 116 (2023): 108763.

[107]

L. Yadav and S. Pakhira, “Platinum-Adsorbed Defective 2D Monolayer Boron Nitride: A Promising Electrocatalyst for O2 Reduction Reaction,” Journal of Materials Chemistry C 11 (2023): 15215-15224.

[108]

H. Lin, Y. Chen, J. Huo, and L. Du, “Controllable Porous Nanogrids of Chromium Nitride With Strong Metal-Support Interactions for Achieving Stable Oxygen Reduction Reaction,” ACS Sustainable Chemistry & Engineering 12 (2024): 1265-1274.

[109]

A. Salah, H. D. Ren, N. Al-Ansi, et al., “Dispersing Small Ru Nanoparticles Into Boron Nitride Remodified by Reduced Graphene Oxide for High-Efficient Electrocatalytic Hydrogen Evolution Reaction,” Journal of Colloid & Interface Science 644 (2023): 378-387.

[110]

C. Zhong, J. Zhang, L. Zhang, et al., “Composition-Tunable Co3−xFexMo3N Electrocatalysts for the Oxygen Evolution Reaction,” ACS Energy Letters 8, no. 3 (2023): 1455-1462.

[111]

J. Zhao, H. Guo, Y. Li, et al., “Anchoring Ru Nanoclusters to Defect-Rich Polymeric Carbon Nitride as a Bifunctional Electrocatalyst for Highly Efficient Overall Water Splitting,” Journal of Materials Chemistry A 11 (2023): 18375-18384.

[112]

C. Yang, Z. Zhao, and Q. Liu, “Regulating Effect on Photocatalytic Water Splitting Performance of g-C3N4 Via Confinement of Single Atom Pt Based on Energy Band Engineering: A First Principles Investigation,” Applied Surface Science 577 (2022): 151916.

[113]

Z. Su, J. Zhang, Z. Tan, et al., “Facilitated Photocatalytic H2 Production on Cu-Coordinated Mesoporous g-C3N4 Nanotubes,” Green Chemistry 25 (2023): 2577-2586.

[114]

H. Han, J. Im, M. Lee, and D. Choo, “N-Bridged Ni and Mn Single-Atom Pair Sites: A Highly Efficient Electrocatalyst for CO2 Conversion to CO,” Applied Catalysis B: Environment 320 (2023): 121953.

[115]

Y. Zhang, C. Kang, W. Zhao, et al., “d-p Hybridization-Induced “Trapping-Coupling-Conversion” Enables High-Efficiency Nb Single-Atom Catalysis for Li-S Batteries,” Journal of the American Chemical Society 145 (2023): 1728-1739.

[116]

X. Liu, Q. He, J. Liu, et al., “Dual Single-Atom Moieties Anchored on N-Doped Multilayer Graphene as a Catalytic Host for Lithium-Sulfur Batteries,” ACS Applied Materials & Interfaces 15, no. 7 (2023): 9439-9446.

[117]

H. Tian, A. Song, P. Zhang, et al., “High Durability of Fe-N-C Single-Atom Catalysts With Carbon Vacancies Toward the Oxygen Reduction Reaction in Alkaline Media,” Advanced Materials 35 (2023): e2210714.

[118]

W. Li, J. Wang, C. Jia, J. Chen, Z. Wen, and A. Huang, “Covalent Organic Framework-Derived Fluorine, Nitrogen Dual-Doped Carbon as Metal-Free Bifunctional Oxygen Electrocatalysts,” Journal of Colloid & Interface Science 650 (2023): 275-283.

[119]

M. Devi, S. Yesmin, B. Das, S. S. Dhar, and R. Dasgupta, “Efficient Oxygen Doping of Graphitic Carbon Nitride by Green Microwave Irradiation for High-Performance Supercapacitor Electrode Material,” Energy Fuel 37 (2023): 3247-3255.

[120]

R. Wang, H. Wang, Y. Zhou, et al., “Green Synthesis of N-Doped Porous Carbon/Carbon Dot Composites as Metal-Free Catalytic Electrode Materials for Iodide-Mediated Quasi-Solid Flexible Supercapacitors,” Inorganic Chemistry Frontiers 9 (2022): 2530-2540.

[121]

X. Sun, Z. Chen, Y. Shen, et al., “Efficient Photothermal-Assisted Photocatalytic H2 Production Using Carbon Dots-Infused g-C3N4 Nanoreactors Synthesized Via One-Step Template-Free Thermal Polymerization,” Journal of Chemical Engineering 488 (2024): 151041.

[122]

H. Wang, Y. Li, M. Wang, et al., “Precursor-Mediated In Situ Growth of Hierarchical N-Doped Graphene Nanofibers Confining Nickel Single Atoms for CO2 Electroreduction,” Proceedings of the National Academy of Sciences of the United States of America 120 (2023): e2219043120.

[123]

Z. Ou, Z. An, Z. Ma, et al., “3D Porous Graphene-Like Carbons Encaged Single-Atom-Based Pt for Ultralow Loading and High-Performance Fuel Cells,” ACS Catalysis 13 (2023): 1856-1865.

[124]

X. Cheng, Y. Wang, Y. Lu, et al., “Single-Atom Alloy With Pt-Co Dual Sites as an Efficient Electrocatalyst for Oxygen Reduction Reaction,” Applied Catalysis B: Environment 306 (2022): 121112.

[125]

A. Vazhayil, L. Vazhayal, S. Ashok C, J. Thomas, and N. Thomas, “NiCo2O4/MXene Hybrid as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reaction,” Chemcatchem 16 (2024): e202301250.

[126]

J. Liu, H. Zhou, J. Fan, and Q. Xiang, “In Situ Oxidation of Ultrathin Ti3C2Tx MXene Modified With Crystalline g-C3N4 Nanosheets for Photocatalytic H2 Evolution,” International Journal of Hydrogen Energy 47 (2022): 4546-4555.

[127]

L. Chong, H. Zhou, J. Kubal, et al., “Highly Durable Fuel Cell Electrocatalyst With Low-loading Pt-Co Nanoparticles Dispersed Over Single-atom Pt-Co-N-graphene Nanofiber,” Chem Catalysis 3 (2023): 100541.

[128]

H. Peng, T. Yang, H. Lin, et al., “Ru/In Dual-Single Atoms Modulated Charge Separation for Significantly Accelerated Photocatalytic H2 Evolution in Pure Water,” Advanced Energy Materials 12 (2022): 2201688.

[129]

Z. Zhang, T. Liang, C. Jin, et al., “Synergistically Coupling CoS/FeS2 Heterojunction Nanosheets on a MXene Via a Dual Molten Salt Etching Strategy for Efficient Oxygen Evolution Reaction,” Journal of Materials Chemistry A 12 (2024): 14517-14526.

[130]

R. Sadhukhan, A. Kumar, P. K. Prasanna, et al., “Ultra-Low-Loaded Platinum Bonded Hexagonal Boron Nitride as Stable Electrocatalyst for Hydrogen Generation,” ACS Applied Materials & Interfaces 16 (2024): 8627-8636.

[131]

R. Zhang, J. Dong, W. Zhang, et al., “Synergistically Coupling of 3D FeNi-LDH Arrays With Ti3C2Tx-MXene Nanosheets Toward Superior Symmetric Supercapacitor,” Nano Energy 91 (2022): 106633.

[132]

L. Yuanzheng, Y. Zhicheng, M. Lianghao, L. Buyin, and L. Shufa, “A Freestanding Nitrogen-Doped MXene/Graphene Cathode for High-Performance Li-S Batteries,” Nanoscale Advances 4 (2022): 2189-2198.

[133]

Q. Liang, S. Wang, X. Lu, et al., “High-Entropy MXene as Bifunctional Mediator Toward Advanced Li-S Full Batteries,” ACS Nano 18 (2024): 2395-2404.

[134]

X. Zhao, W. P. Li, Y. Cao, et al., “Dual-Atom Co/Ni Electrocatalyst Anchored at the Surface-Modified Ti3C2TX MXene Enables Efficient Hydrogen and Oxygen Evolution Reactions,” ACS Nano 18 (2024): 4256-4268.

[135]

M. Guo, Y. Liu, F. Zhang, et al., “Inactive Al3+-Doped La(CoCrFeMnNiAlx)1/(5+x)O3 High-entropy Perovskite Oxides as High Performance Supercapacitor Electrodes,” Journal of Advanced Ceramics 11 (2022): 742-752.

[136]

X. Zhao, H. Cheng, X. Chen, et al., “Multiple Metal-Nitrogen Bonds Synergistically Boosting the Activity and Durability of High-Entropy Alloy Electrocatalysts,” Journal of the American Chemical Society 146 (2024): 3010-3020.

[137]

X. Miao, Z. Peng, L. Shi, and S. Zhou, “Insulating High-Entropy Ruthenium Oxide as a Highly Efficient Oxygen-Evolving Electrocatalyst in Acid,” ACS Catalysis 13 (2023): 3983-3991.

[138]

S. Li, L. Tong, Z. Peng, B. Zhang, and X. Fu, “A Novel High-Entropy Sulfide (ZnCoMnFeAlMg)9S8 as a Low Potential and Long Life Electrocatalyst for Overall Water Splitting in Experiments and DFT Analysis,” Green Chemistry 26 (2024): 384-392.

[139]

D. Chen, J. Zhu, Z. Pu, and S. Mu, “Anion Modulation of Pt-Group Metals and Electrocatalysis Applications,” Chemistry (Weinheim An Der Bergstrasse, Germany) 27 (2021): 12257-12265.

[140]

M. Lao, P. Li, Y. Jiang, H. Pan, S. X. Dou, and W. Sun, “From Fundamentals and Theories to Heterostructured Electrocatalyst Design: An In-Depth Understanding of Alkaline Hydrogen Evolution Reaction,” Nano Energy 98 (2022): 10723.

[141]

C. Z. Loyola, S. Ureta-Zañartu, J. H. Zagal, and F. Tasca, “Activity Volcano Plots for the Oxygen Reduction Reaction Using FeN4 Complexes: From Reported Experimental Data to the Electrochemical Meaning,” Current Opinion in Electrochemistry 32 (2022): 100923.

[142]

a) H. Cruz-Martínez, H. Rojas-Chávez, P. T. Matadamas-Ortiz, et al., “Current Progress of Pt-Based ORR Electrocatalysts for PEMFCs: An Integrated View Combining Theory and Experiment,” Materials Today Physics 19 (2021): 100406. b) J. Peng, J. K. Damewood, J. Karaguesian, R. Gómez-Bombarelli, and Y. Shao-Horn, “Navigating Multimetallic Catalyst Space With Bayesian Optimization,” Joule 5 (2021): 3069-3083.

[143]

Q. Zhang, M. Yue, P. Chen, et al., “Accelerating Photocatalytic Hydrogen Production by Anchoring Pt Single Atoms on Few-Layer g-C3N4 Nanosheets With Pt-N Coordination,” Journal of Materials Chemistry C 12 (2024): 3437-3445.

[144]

S. Kogularasu, Y. Y. Lee, B. Sriram, et al., “Unlocking Catalytic Potential: Exploring the Impact of Thermal Treatment on Enhanced Electrocatalysis of Nanomaterials,” Angewandte Chemie, International Edition in English 63 (2024): e202311806.

[145]

Q. Sun, X.-H. Li, K.-X. Wang, T.-N. Ye, and J.-S. Chen, “Inorganic Non-Carbon Supported Pt Catalysts and Synergetic Effects for Oxygen Reduction Reaction,” Energy & Environmental Science 16 (2023): 1838-1847.

[146]

H. Huang, X. Guo, C. Zhang, et al., “Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells,” ACS Nano 18 (2024): 10341-10352.

[147]

B. R. Anne, J. Kundu, M. K. Kabiraz, J. Kim, D. Cho, and S. I. Choi, “A Review on MXene as Promising Support Materials for Oxygen Evolution Reaction Catalysts,” Advanced Functional Materials 33 (2023): 2306100.

[148]

E. Boateng, A. R. Thiruppathi, C.-K. Hung, D. Chow, D. Sridhar, and A. Chen, “Functionalization of Graphene-Based Nanomaterials for Energy and Hydrogen Storage,” Electrochimica Acta 452 (2023): 142340.

[149]

S. Zhang, P. Yue, Y. Zhou, et al., “Ni Single Atoms Embedded in Graphene Nanoribbon Sieves for High-Performance CO2 Reduction to CO,” Small 19 (2023): e2303016.

[150]

Y. Zhang, Q. Zhao, B. Danil, W. Xiao, and X. Yang, “Oxygen-Vacancy-Induced Formation of Pt-Based Intermetallics on MXene With Strong Metal-Support Interactions for Efficient Oxygen Reduction Reaction,” Advanced Materials 36 (2024): e2400198.

[151]

S. J. Ha, J. Hwang, M. J. Kwak, J. C. Yoon, and J. H. Jang, “Graphene-Encapsulated Bifunctional Catalysts With High Activity and Durability for Zn-Air Battery,” Small 19 (2023): e2300551.

[152]

a) A. Amiri and R. Shahbazian-Yassar, “Recent Progress of High-Entropy Materials for Energy Storage and Conversion,” Journal of Materials Chemistry 9 (2021): 782-823. b) Z. Hu, K. Chen, Y. Zhu, B. Liu, and J. Shen, “Synergistic Effects of PtRhNiFeCu High Entropy Alloy Nanocatalyst for Hydrogen Evolution and Oxygen Reduction Reactions,” Small 20 (2024): 2309819.

[153]

R. S. Desai, V. S. Jadhav, P. S. Patil, and D. S. Dalavi, “Recent Advances in Hydrothermally and Solvothermally Grown Co3O4 Nanostructures for Electrochemical Energy Storage (EES) Applications: A Brief Review,” Materials Advances 5 (2024): 920-960.

[154]

Y. Wu, L. Zheng, Y. Fu, et al., “Solvothermal Preparation of Oxygen-Vacancy-Rich Nano-ZnO for Electrocatalytic CO2 Reduction in a Flow Cell,” ACS Applied Energy Materials 2 (2024): 1306-1314.

[155]

B. Xu, M. Duan, K. Shen, et al., “Hydrothermal Hydrolyzation-Driven Topological Transformation of Ni-Co Bimetallic Compounds With Hollow Nanoflower Structure for Optimizing Hydrogen Evolution Catalysis,” ACS Applied Materials & Interfaces 16 (2024): 16399-16407.

[156]

S. Aharon, S. G. Patra, D. Meyerstein, et al., “Heterogeneous Electrocatalytic Oxygen Evolution Reaction by a Sol-Gel Electrode With Entrapped Na3[Ru2(μ-CO3)4]: The Effect of NaHCO3,” Chemphyschem 24 (2023): e202300517.

[157]

M. Chen, N. Kitiphatpiboon, C. Feng, A. Abudula, Y. Ma, and G. Guan, “Recent Progress in Transition-Metal-Oxide-Based Electrocatalysts for the Oxygen Evolution Reaction in Natural Seawater Splitting: A Critical Review,” eScience 3 (2023): 100111.

[158]

D. Kubba, I. Ahmed, A. Roy, et al., “LaFe1−xCoxO3 Perovskite Nanoparticles Supported on Ni(OH)2 as Electrocatalyst for the Oxygen Evolution Reaction,” ACS Applied Nano Materials 7 (2024): 1536-1547.

[159]

N. Lotfi and G. Barati Darb, “A Review on Electrodeposited Metallic Ni-Based Alloy Nanostructure for Electrochemical Hydrogen Evolution Reaction,” International Journal of Hydrogen Energy 70 (2024): 301-320.

[160]

M. Ramaprakash, N. B. G, B. Neppolian, and A. Sengeni, “An Advanced Ru-Based Alkaline HER Electrocatalyst Benefiting From Volmer-Step Promoting 5D and 3D Co-Catalysts,” Dalton Transactions 53 (2024): 7596-7604.

[161]

Y. Peng, J. Hu, Y. Huan, and Y. Zhang, “Chemical Vapor Deposition Growth of Graphene and Other Nanomaterials With 3D Architectures Towards Electrocatalysis and Secondary Battery-Related Applications,” Nanoscale 16 (2024): 7734-7751.

[162]

D. Zhao, G.-Q. Yu, J. Xu, et al., “Preparing Iron Oxide Clusters Surface Modified Co3O4 Nanoboxes by Chemical Vapor Deposition as an Efficient Electrocatalyst for Oxygen Evolution Reaction,” Energy Storage Materials 66 (2024): 103236.

[163]

M. A. Ehsan, A. Khan, M. Ali, M. A. Gondal, and A. S. Hakeem, “Facile Deposition of a Spherical Ruthenium-Cobalt Alloy on Nickel Foam as a High-Performance Electrocatalyst for Alkaline Hydrogen Production,” ACS Applied Energy Materials 7 (2024): 4030-4039.

[164]

J. Kwon, S. Ko, H. Kim, H. J. Park, C. Lee, and J. Yeo, “Recent Advances in Vacuum- and Laser-Based Fabrication Processes for Solar Water-Splitting Cells,” Materials Chemistry Frontiers 8 (2024): 2322-2340.

[165]

N. Al-Aisaee, M. Alhabradi, X. Yang, M. Alruwaili, S. Rasul, and A. A. Tahir, “Fabrication of WO3/Fe2O3 Heterostructure Photoanode by PVD for Photoelectrochemical Applications,” Solar Energy Materials 263 (2023): 112561.

[166]

M. Suominen, M. Mäntymäki, M. Mattinen, J. Sainio, M. Putkonen, and T. Kallio, “Electrochemical Reduction of Carbon Dioxide to Formate in a Flow Cell on CuSx Grown by Atomic Layer Deposition,” Materials Today Sustainability 24 (2023): 100575.

[167]

Z. Zhou, L. Xu, Y. Ding, et al., “Atomic Layer Deposition Meets Metal-Organic Frameworks,” Progress in Materials Science 138 (2023): 101159.

[168]

X. Xiao, L. Yang, W. Sun, et al., “Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater,” Small 18 (2022): 2105830.

[169]

C. Hu, L. Zhang, and J. Gong, “Recent Progress Made in the Mechanism Comprehension and Design of Electrocatalysts for Alkaline Water Splitting,” Energy & Environmental Science 12 (2019): 2620-2645.

[170]

Y. Wang, Y. Jiang, Y. Zhao, et al., “Design Strategies of Perovskite Nanofibers Electrocatalysts for Water Splitting: A Mini Review,” Journal of Chemical Engineering 451 (2023): 138710.

[171]

S. Sanati, A. Morsali, and H. García, “First-Row Transition Metal-Based Materials Derived From Bimetallic Metal-Organic Frameworks as Highly Efficient Electrocatalysts for Electrochemical Water Splitting,” Energy & Environmental Science 15 (2022): 3119-3151.

[172]

Y. Zhao, D. P. Adiyeri Saseendran, C. Huang, et al., “Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design,” Chemical Reviews 123 (2023): 6257-6358.

[173]

L. Gao, X. Cui, C. D. Sewell, J. Li, and Z. Lin, “Recent Advances in Activating Surface Reconstruction for the High-Efficiency Oxygen Evolution Reaction,” Chemical Society Reviews 50 (2021): 8428-8469.

[174]

J. Ying, Y. Xiao, J. Chen, et al., “Fractal Design of Hierarchical PtPd With Enhanced Exposed Surface Atoms for Highly Catalytic Activity and Stability,” Nano Letters 23 (2023): 7371-7378.

[175]

R. Wu, Y. Li, W. Gong, and P. K. Shen, “One-Pot Synthesis of Pt-Pd Bimetallic Nanodendrites With Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction,” ACS Sustainable Chemistry & Engineering 7 (2019): 8419-8425.

[176]

J. Lu, L. Luo, S. Yin, S. W. Hasan, and P. Tsiakaras, “Oxygen Reduction Reaction Over PtFeM (M = Mo, V, W) Alloy Electrocatalysts: Role of the Compressive Strain Effect on Pt,” ACS Sustainable Chemistry & Engineering 7 (2019): 16209-16217.

[177]

Y. Duan, Z. Y. Yu, L. Yang, et al., “Bimetallic Nickel-Molybdenum/Tungsten Nanoalloys for High-Efficiency Hydrogen Oxidation Catalysis in Alkaline Electrolytes,” Nature Communications 11 (2020): 4789.

[178]

H. Zhao, L. Zhu, J. Yin, et al., “Stabilizing Lattice Oxygen Through Mn Doping in NiCo2O4−δ Spinel Electrocatalysts for Efficient and Durable Acid Oxygen Evolution,” Angewandte Chemie, International Edition in English 63 (2024): e202402171.

[179]

a) H. H. Wong, M. Sun, T. Wu, et al., “Neighboring Effect in Single-Atom Catalysts for the Electrochemical Carbon Dioxide Reduction Reaction,” eScience 4 (2023): 100140. b) Y. Chen, J. Chen, J. Zhang, et al., “Assist More Pt-O Bonds of Pt/MoO3-CNT as a Highly Efficient and Stable Electrocatalyst for Methanol Oxidation and Oxygen Reduction Reaction,” Journal of Alloys and Compounds 873 (2021): 159827. c) X. Zhu, Z. Zhao, J. Tang, et al., “Assist More Pt-O Bonds of Pt/MoO3-CNT as a Highly Efficient and Stable Electrocatalyst for Methanol Oxidation and Oxygen Reduction Reaction,” Fundamental Research (2023), https://doi.org/10.1016/j.fmre.2023.07.006.

[180]

Y. Zhang, L. Guo, L. Tao, Y. Lu, and S. Wang, “Defect-Based Single-Atom Electrocatalysts,” Small Methods 3 (2019): 1800406.

[181]

Z. Kang, X. Wang, D. Wang, et al., “Carbon-based Single-Atom Catalysts: Impacts of Atomic Coordination on the Oxygen Reduction Reaction,” Nanoscale 15 (2023): 9605-9634.

[182]

T. Li, S. Ren, C. Zhang, et al., “Cobalt Single Atom Anchored on N-Doped Carbon Nanoboxes as Typical Single-Atom Catalysts (SACs) for Boosting the Overall Water Splitting,” Journal of Chemical Engineering 458 (2023): 141435.

[183]

a) J. Zhang, Y. Yuan, L. Gao, G. Zeng, M. Li, and H. Huang, “Stabilizing Pt-Based Electrocatalysts for Oxygen Reduction Reaction: Fundamental Understanding and Design Strategies,” Advanced Materials 33 (2021): e2006494. b) J. Yang, W. Li, D. Wang, and Y. Li, “Electronic Metal-Support Interaction of Single-Atom Catalysts and Applications in Electrocatalysis,” Advanced Materials 32 (2020): 2003300.

[184]

L. Yan, P. Li, Q. Zhu, et al., “Atomically Precise Electrocatalysts for Oxygen Reduction Reaction,” Chemistry 9 (2023): 280-296.

[185]

A. Barhoum, H. H. El-Maghrabi, I. Iatsunskyi, et al., “Atomic Layer Deposition of Pd Nanoparticles on Self-Supported Carbon-Ni/NiO-Pd Nanofiber Electrodes for Electrochemical Hydrogen and Oxygen Evolution Reactions,” Journal of Colloid & Interface Science 569 (2020): 286-296.

[186]

X. Yang, X. Sun, L.-Y. Gan, et al., “A CoOX/FeOX Heterojunction on Carbon Nanotubes Prepared by Plasma-Enhanced Atomic Layer Deposition for the Highly Efficient Electrocatalysis of Oxygen Evolution Reactions,” Journal of Materials Chemistry A 8 (2020): 15140-15148.

[187]

G. Yang, H. Xiang, M. Rauf, et al., “Plasma Enhanced Atomic-Layer-Deposited Nickel Oxide on Co3O4 Arrays as Highly Active Electrocatalyst for Oxygen Evolution Reaction,” Journal of Power Sources 481 (2021): 228925.

[188]

D. Guo, Z. Zeng, Z. Wan, Y. Li, B. Xi, and C. Wang, “A CoN-Based OER Electrocatalyst Capable in Neutral Medium: Atomic Layer Deposition as Rational Strategy for Fabrication,” Advanced Functional Materials 31 (2021): 2101324.

[189]

R. Zhang, G. van Straaten, V. di Palma, et al., “Electrochemical Activation of Atomic Layer-Deposited Cobalt Phosphate Electrocatalysts for Water Oxidation,” ACS Catalysis 11 (2021): 2774-2781.

[190]

S. Haghverdi Khamene, C. van Helvoirt, M. N. Tsampas, and M. Creatore, “Electrochemical Activation of Atomic-Layer-Deposited Nickel Oxide for Water Oxidation,” Journal of Physical Chemistry Part C: Nanomaterials Interfaces 127 (2023): 22570-22580.

[191]

V. Urbanová, J. Plutnar, and M. Pumera, “Atomic Layer Deposition of Electrocatalytic Layer of MoS2 Onto Metal-based 3D-printed Electrode Toward Tailoring Hydrogen Evolution Efficiency,” Applied Materials Today 24 (2021): 101131.

[192]

D. Yuan, Z. Hu, Z. Chen, et al., “Atomic-Level Tailoring of the Electronic Metal-Support Interaction between Pt-Co3O4 Interfaces for High Hydrogen Evolution Performance,” Journal of Physical Chemistry Letters 15 (2024): 3486-3492.

[193]

Y. Chen, Y. Wang, L. Zheng, et al., “Platinum Nanoclusters by Atomic Layer Deposition on Three-dimensional TiO2 Nanotube Array for Efficient Hydrogen Evolution,” Materials Today Energy 27 (2022): 101042.

[194]

B. He, G. Pan, Y. Deng, et al., “Hierarchical Iron-Phosphide@NiCo2O4 Nanoneedle Arrays for High Performance Water Splitting,” Applied Surface Science 569 (2021): 151016.

[195]

B. Bawab, S. M. Thalluri, E. Kolíbalová, et al., “Synergistic Effect of Pd Single Atoms and Nanoparticles Deposited on Carbon Supports by ALD Boosts Alkaline Hydrogen Evolution Reaction,” Journal of Chemical Engineering 482 (2024): 148959.

[196]

a) M. Li, S. Fu, S. Saedy, et al., “Nanostructuring Pt-Pd Bimetallic Electrocatalysts for CO2 Reduction Using Atmospheric Pressure Atomic Layer Deposition,” Chemcatchem 14 (2022): e202200949. b) L. Zhou, D. Guo, L. Wu, et al., “A Restricted Dynamic Surface Self-Reconstruction Toward High-Performance of Direct Seawater Oxidation,” Nature Communications 15 (2024): 2481. c) M. Yusufoglu, S. Tafazoli, H. Jahangiri, M. B. Yağcı, T. Balkan, and S. Kaya, “ALD-Engineered CuXO Overlayers Transform ZnO Nanorods for Selective Production of CO in Electrochemical CO2 Reduction,” ACS Applied Materials & Interfaces 16 (2024): 7288-7298.

[197]

Y. Zou, L. Jing, J. Zhang, et al., “ALD-Made Noble Metal High Entropy Alloy Nanofilm With Sub-Surface Amorphization for Enhanced Hydrogen Evolution,” Journal of Materials Chemistry A 12 (2024): 5668-5676.

[198]

R. V. Krol and M. Grätzel, Photoelectrochemical Hydrogen Production in Electronic Materials: Science & Technology (Springer, 2012).

[199]

Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, and Y. Li, “Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting,” Advanced Energy Materials 7 (2017): 1700555.

[200]

Y. Qi, Q. Xu, Y. Wang, B. Yan, Y. Ren, and Z. Chen, “CO2-Induced Phase Engineering: Protocol for Enhanced Photoelectrocatalytic Performance of 2D MoS2 Nanosheets,” ACS Nano 10 (2016): 2903-2909.

[201]

M. Kim, J.-S. Bae, M.-J. Jung, et al., “Atomic Layer Deposition of Defective Amorphous TiOX Thin Films With Improved Photoelectrochemical Performance,” ACS Applied Materials & Interfaces 15 (2023): 45732-45744.

[202]

H. Hajibabaei, O. Zi, and T. W. Hamann, “Tantalum Nitride Films Integrated With Transparent Conductive Oxide Substrates Via Atomic Layer Deposition for Photoelectrochemical Water Splitting,” Chemical Science 7 (2016): 6760-6766.

[203]

T. A. Ho, C. Bae, J. Joe, et al., “Heterojunction Photoanode of Atomic-Layer-Deposited MoS2 on Single-Crystalline CdS Nanorod Arrays,” ACS Applied Materials & Interfaces 11 (2019): 37586-37594.

[204]

B. Lamm, L. Zhou, P. Rao, and M. Stefik, “Atomic Layer Deposition of Space-Efficient SnO2 Underlayers for BiVO4 Host-Guest Architectures for Photoassisted Water Splitting,” Chemsuschem 12 (2019): 1916-1925.

[205]

B. Alfakes, C. Garlisi, J. Villegas, et al., “Enhanced Photoelectrochemical Performance of Atomic Layer Deposited Hf-Doped ZnO,” Surface & Coatings Technology 385 (2020): 125352.

[206]

C. C. Wang, C. Y. Chou, S. R. Yi, and H. D. Chen, “Deposition of Heterojunction of ZnO on Hydrogenated TiO2 Nanotube Arrays by Atomic Layer Deposition for Enhanced Photoelectrochemical Water Splitting,” International Journal of Hydrogen Energy 44 (2019): 28685-28694.

[207]

J. Gemmer, Y. Hinrichsen, A. Abel, and J. Bachmann, “Systematic Catalytic Current Enhancement for the Oxidation of Water at Nanostructured Iron(III) Oxide Electrodes,” Journal of Catalysis 290 (2012): 220-224.

[208]

W. Hu, T. T. Hien, D. Kim, and H. S. Chang, “Enhancement in Photoelectrochemical Performance of Optimized Amorphous SnS2 Thin Film Fabricated Through Atomic Layer Deposition,” Nanomaterials 9 (2019): 1083.

[209]

A. R. Bielinski, S. Lee, J. J. Brancho, et al., “Atomic Layer Deposition of Bismuth Vanadate Core-Shell Nanowire Photoanodes,” Chemistry of Materials 31 (2019): 3221-3227.

[210]

C. Y. Su, L. C. Wang, W. S. Liu, C. C. Wang, and T. P. Perng, “Photocatalysis and Hydrogen Evolution of Al- and Zn-Doped TiO2 Nanotubes Fabricated by Atomic Layer Deposition,” ACS Applied Materials & Interfaces 10 (2018): 33287-33295.

[211]

M. P. Browne, J. Plutnar, A. M. Pourrahimi, Z. Sofer, and M. Pumera, “Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode Into a Desired Catalyst: Case Study in Photoelectrochemisty,” Advanced Energy Materials 9 (2019): 1900994.

[212]

J. Long, M. Fu, C. Li, C. Sun, D. He, and Y. Wang, “High-Quality ZnO Inverse Opals and Related Heterostructures as Photocatalysts Produced by Atomic Layer Deposition,” Applied Surface Science 454 (2018): 112-120.

[213]

S. Bera, S. A. Lee, W.-J. Lee, et al., “Atomic Layer Deposition Seeded Growth of Rutile SnO2 Nanowires on Versatile Conducting Substrates,” ACS Applied Materials & Interfaces 12 (2020): 48486-48494.

[214]

S. Bera, S. A. Lee, W.-J. Lee, et al., “Hierarchical Nanoporous BiVO4 Photoanodes With High Charge Separation and Transport Efficiency for Water Oxidation,” ACS Applied Materials & Interfaces 13 (2021): 14291-14301.

[215]

O. Zandi, J. A. Beardslee, and T. Hamann, “Substrate Dependent Water Splitting with Ultrathin α-Fe2O3 Electrodes,” Journal of Physical Chemistry C 118, no. 30 (2014): 16494-16503.

[216]

Z. Luo, T. Wang, J. Zhang, C. Li, H. Li, and J. Gong, “Dendritic Hematite Nanoarray Photoanode Modified With a Conformal Titanium Dioxide Interlayer for Effective Charge Collection,” Angewandte Chemie, International Edition 56 (2017): 12878-12882.

[217]

T. Hisatomi, H. Dotan, M. Stefik, et al., “Enhancement in the Performance of Ultrathin Hematite Photoanode for Water Splitting by an Oxide Underlayer,” Advanced Materials 24 (2012): 2699-2702.

[218]

L. Steier, J. Luo, M. Schreier, M. T. Mayer, T. Sajavaara, and M. Grätzel, “Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting,” ACS Nano 9 (2015): 11775-11783.

[219]

J. M. Rafı, M. Zabala, O. Beldarrain, and F. Campabadal, “Deposition Temperature and Thermal Annealing Effects on the Electrical Characteristics of Atomic Layer Deposited Al2O3 Films on Silicon,” Journal of the Electrochemical Society 158 (2011): G108-G113.

[220]

P. Y. Tang, H. B. Xie, C. Ros, et al., “Enhanced Photoelectrochemical Water Splitting of Hematite Multilayer Nanowire Photoanodes by Tuning the Surface State Via Bottom-Up Interfacial Engineering,” Energy & Environmental Science 2017, no. 10 (2017): 2124-2136.

[221]

F. L. Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, “Passivating Surface States on Water Splitting Hematite Photoanodes With Alumina Overlayers,” Chemical Science 2 (2011): 737-743.

[222]

W. Kim, T. Tachikawa, D. Monllor-Satoca, H. Kim, T. Majima, and W. Choi, “Promoting Water Photooxidation on Transparent WO3 Thin Films Using an Alumina Overlayer,” Energy & Environmental Science 6 (2013): 3732-3739.

[223]

J. Gao, X. Sun, Y. Wang, et al., “Ultrathin Al2O3 Passivation Layer-Wrapped Ag@TiO2 Nanorods by Atomic Layer Deposition for Enhanced Photoelectrochemical Performance,” Applied Surface Science 499 (2020): 143971.

[224]

M. Zeng, X. Peng, J. Liao, et al., “Enhanced Photoelectrochemical Performance of Quantum Dot-sensitized TiO2 Nanotube Arrays With Al2O3 Overcoating by Atomic Layer Deposition,” Physical Chemistry Chemical Physics 18 (2016): 17404-17411.

[225]

Z. Ma, K. Song, L. Wang, et al., “WO3/BiVO4 Type-II Heterojunction Arrays Decorated With Oxygen-Deficient ZnO Passivation Layer: A Highly Efficient and Stable Photoanode,” ACS Applied Materials & Interfaces 11 (2019): 889-898.

[226]

G. Yun, G. Y. Song, B. E. Ahn, et al., “Beneficial Surface Passivation of Hydrothermally Grown TiO2 Nanowires for Solar Water Oxidation,” Applied Surface Science 366 (2016): 561-567.

[227]

M. J. Choi, J. Y. Jung, M. J. Park, J. W. Song, J. H. Lee, and J. H. Bang, “Long-Term Durable Silicon Photocathode Protected by a Thin Al2O3/SiOx Layer for Photoelectrochemical Hydrogen Evolution,” Journal of Materials Chemistry A 2 (2014): 2928-2933.

[228]

M. W. Kim, H. Yoon, T. Y. Ohm, et al., “Nanotextured Cupric Oxide Nanofibers Coated With Atomic Layer Deposited ZnO-TiO2 as Highly Efficient Photocathodes,” Applied Catalysis B 201 (2017): 479-487.

[229]

T. R. Hellstern, D. W. Palm, J. Carter, et al., “Molybdenum Disulfide Catalytic Coatings Via Atomic Layer Deposition for Solar Hydrogen Production From Copper Gallium Diselenide Photocathodes,” ACS Applied Energy Materials 2 (2019): 1060-1069.

[230]

X. Zhou, R. Liu, K. Sun, et al., “Interface Engineering of the Photoelectrochemical Performance of Ni-Oxide-Coated n-Si Photoanodes by Atomic-Layer Deposition of Ultrathin Films of Cobalt Oxide,” Energy & Environmental Science 8 (2015): 2644-2652.

[231]

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly Active Oxide Photocathode for Photoelectrochemical Water Reduction,” Nature Materials 10 (2011): 456-461.

[232]

M. Kulmas, L. Paterson, K. Höflich, et al., “Composite Nanostructures of TiO2 and ZnO for Water Splitting Application: Atomic Layer Deposition Growth and Density Functional Theory Investigation,” Advanced Functional Materials 26 (2016): 4882-4889.

[233]

R. Fan, W. Dong, L. Fang, et al., “Stable and Efficient Multi-Crystalline n+p Silicon Photocathode for H2 Production With Pyramid-Like Surface Nanostructure and Thin Al2O3 Protective Layer,” Applied Physics Letters 106 (2015): 013902.

[234]

M. J. Park, J. Y. Jung, S. M. Shin, et al., “Photoelectrochemical Oxygen Evolution Improved by a Thin Al2O3 Interlayer in a NiOx/n-Si Photoanode,” Thin Solid Films 599 (2016): 54-58.

[235]

H. Khan, M.-J. Kim, J.-H. Baek, et al., “Sustained Water Oxidation With Surface- and Interface-Engineered WO3/BiVO4 Heterojunction Photoanodes,” ACS Applied Energy Materials 5 (2022): 15788-15797.

[236]

M. Beetz, S. Häringer, P. Elsässer, et al., “Ultra-Thin Protective Coatings for Sustained Photoelectrochemical Water Oxidation With Mo:BiVO4,” Advanced Functional Materials 31 (2021): 2011210.

[237]

Z. Xing, F. Ren, H. Wu, et al., “Enhanced PEC Performance of Nanoporous Si Photoelectrodes by Covering HfO2 and TiO2 Passivation Layers,” Scientific Reports 7 (2017): 43901.

[238]

Q. Cai, W. Hong, C. Jian, J. Li, and W. Liu, “Insulator Layer Engineering Toward Stable Si Photoanode for Efficient Water Oxidation,” ACS Catalysis 8 (2018): 9238-9245.

[239]

N. C. Strwitz, D. J. Comstock, R. L. Grimm, A. C. NicholsNieler, J. Elam, and N. S. Lewis, “Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated With Thin Films of Manganese Oxide Grown by Atomic Layer Deposition,” Journal of Physical Chemistry C 117 (2013): 4931-4936.

[240]

C. Ros, T. Andreu, J. David, J. Arbiol, and J. R. Morante, “Degradation and Regeneration Mechanisms of NiO Protective Layers Deposited by ALD on Photoanodes,” Journal of Materials Chemistry A 7 (2019): 21892-21900.

[241]

C. Li, T. Wang, Z. Luo, D. Zhang, and J. Gong, “Transparent ALD-grown Ta2O5 Protective Layer for Highly Stable ZnO Photoelectrode in Solar Water Splitting,” Chemical Communications 51 (2015): 7290-7293.

[242]

M. Zeng, X. Zeng, X. Peng, et al., “Improving Photoelectrochemical Performance on Quantum Dots co-Sensitized TiO2 Nanotube Arrays Using ZnO Energy Barrier by Atomic Layer Deposition,” Applied Surface Science 388 (2016): 352-358.

[243]

J. Choi, J. T. Song, H. S. Jang, et al., “Interfacial Band-Edge Engineered TiO2 Protection Layer on Cu2O Photocathodes for Efficient Water Reduction Reaction,” Electronic Materials Letters 13 (2017): 57-63.

[244]

I. S. Kim, M. J. Pellin, and A. B. F. Martinson, “Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO2 for Solar-Driven Hydrogen Evolution,” ACS Energy Letters 4 (2019): 293-299.

[245]

A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley, and M. Grätzel, “Ultrathin Films on Copper(I) Oxide Water Splitting Photocathodes: A Study on Performance and Stability,” Energy & Environmental Science 5 (2012): 8673-8681.

[246]

E. Verlage, S. Hu, R. Liu, et al., “A Monolithically Integrated, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting System Based on Active, Stable Earth-Abundant Electrocatalysts in Conjunction With Tandem III-V Light Absorbers Protected by Amorphous TiO2 Films,” Energy & Environmental Science 8 (2015): 3166-3172.

[247]

L. Rovelli, S. D. Tilley, and K. Sivula, “Optimization and Stabilization of Electrodeposited Cu2ZnSnS4 Photocathodes for Solar Water Reduction,” ACS Applied Materials & Interfaces 5 (2013): 8018-8024.

[248]

M. F. Lichterman, A. I. Carim, M. T. McDowell, et al., “Stabilization of N-Cadmium Telluride Photoanodes for Water Oxidation to O2 (g) in Aqueous Alkaline Electrolytes Using Amorphous TiO2 Films Formed by Atomic-Layer Deposition,” Energy & Environmental Science 7 (2014): 3334-3339.

[249]

C. Li, T. Hisatomi, O. Watanabe, et al., “Positive Onset Potential and Stability of Cu2O-Based Photocathodes in Water Splitting by Atomic Layer Deposition of a Ga2O3 Buffer Layer,” Energy & Environmental Science 8 (2015): 1493-1500.

[250]

S. Cao, Z. Kang, Y. Yu, et al., “Tailored TiO2 Protection Layer Enabled Efficient and Stable Microdome Structured p-GaAs Photoelectrochemical Cathodes,” Advanced Energy Materials 10, no. 9 (2020): 1902985.

[251]

M. R. Shaner, S. Hu, K. Sun, and N. S. Lewis, “Stabilization of Si Microwire Arrays for Solar-Driven H2O Oxidation to O2 (g) in 1.0 M KOH(aq) Using Conformal Coatings of Amorphous TiO2,” Energy & Environmental Science 8 (2015): 203-207.

[252]

W. Septina, R. R. Prabhakar, R. Wick, T. Moehl, and S. D. Tilley, “Stabilized Solar Hydrogen Production With CuO/CdS Heterojunction Thin Film Photocathodes,” Chemistry of Materials 29 (2017): 1735-1743.

[253]

F. Wang, W. Septina, A. Chemseddine, et al., “Gradient Self-Doped CuBi2O4 With Highly Improved Charge Separation Efficiency,” Journal of the American Chemical Society 139 (2017): 15094-15103.

[254]

Z. Chen, G. Zhang, J. Prakash, Y. Zheng, and S. Sun, “Rational Design of Novel Catalysts With Atomic Layer Deposition for the Reduction of Carbon Dioxide,” Advanced Energy Materials 9 (2019): 1900889.

[255]

M. Liu, L. Zheng, X. Bao, et al., “Substrate-Dependent ALD of Cux on TiO2 and Its Performance in Photocatalytic CO2 Reduction,” Chemical Engineering Journal 405 (2021): 126654.

[256]

F. Gao, J. Jiang, L. Du, X. Liu, and Y. Ding, “Stable and Highly Efficient Cu/TiO2 Nanocomposite Photocatalyst Prepared Through Atomic Layer Deposition,” Applied Catalysis A 568 (2018): 168-175.

[257]

M. Salmistraro, A. Schwartzberg, W. Bao, et al., “Triggering and Monitoring Plasmon-Enhanced Reactions by Optical Nanoantennas Coupled to Photocatalytic Beads,” Small 9 (2013): 3301-3306.

[258]

H. Shen, S. T. Omelchenko, D. A. Jacobs, et al., “In Situ Recombination Junction Between p-Si and TiO2 Enables High-Efficiency Monolithic Perovskite/Si Tandem Cells,” Science Advances 4 (2018): 9711.

[259]

P. S. C. Schulze, A. J. Bett, M. Bivour, et al., “25.1% High-Efficiency Monolithic Perovskite Silicon Tandem Solar Cell With a High Bandgap Perovskite Absorber,” Solar RRL 4 (2020): 2000152.

[260]

R. S. Bonilla, B. Hoex, P. Hamer, and P. R. Wilshaw, “Dielectric Surface Passivation for Silicon Solar Cells: A Review,” Physica Status Solidi (A) Applications and Material Science 214 (2017): 1700293.

[261]

Y. Wan, S. K. Karuturi, C. Samundsett, et al., “Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction,” ACS Energy Letters 3 (2018): 125-131.

[262]

X. Yang, K. Weber, Z. Hameiri, and S. De Wolf, “Industrially Feasible, Dopant-Free, Carrier-Selective Contacts for High-Efficiency Silicon Solar Cells,” Progress in Photovoltaics: Research and Applications 25 (2017): 896-904.

[263]

M. T. Greiner and Z.-H. Lu, “Thin-Film Metal Oxides in Organic Semiconductor Devices: Their Electronic Structures, Work Functions and Interfaces,” NPG Asia Materials 5 (2013): e55.

[264]

F. Menchini, M. L. Grilli, T. Dikonimos, et al., “Application of NiOX Thin Films as p-Type Emitter Layer in Heterojunction Solar Cells,” Physica Status Solidi C Current Topics in Solid State Physics 13 (2016): 1006-1009.

[265]

K. Qiu, Q. Xie, D. Qiu, et al., “Power-Loss Analysis of a Dopant-Free ZnS/p-Si Heterojunction Solar Cell With WO3 as Hole-Selective Contact,” Solar Energy 165 (2018): 35-42.

[266]

J. Yu, Y. Fu, L. Zhu, et al., “Heterojunction Solar Cells With Asymmetrically Carrier-Selective Contact Structure of Molybdenum-Oxide/Silicon/Magnesium-Oxide,” Solar Energy 159 (2018): 704-710.

[267]

a) H.-S. Kim, A. Hagfeldt, and N.-G. Park, “Morphological and Compositional Progress in Halide Perovskite Solar Cells,” Chemical Communications 55 (2019): 1192-1200. b) F. Sahli, J. Werner, B. A. Kamino, et al., “Fully Textured Monolithic Perovskite/Silicon Tandem Solar Cells With 25.2% Power Conversion Efficiency,” Nature Materials 17 (2018): 820-826.

[268]

M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, “Solar Cell Efficiency Tables (Version 57),” Progress in Photovoltaics 29 (2021): 3-15.

[269]

a) L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, “Nanoporous TiO2/Cu1.8S Heterojunctions for Solar Energy Conversion,” Materials Science and Engineering: C 19 (2002): 311-314. b) D.-H. Kim, S.-J. Lee, M. S. Park, et al., “Highly Reproducible Planar Sb2S3-Sensitized Solar Cells Based on Atomic Layer Deposition,” Nanoscale 6 (2014): 14549-14554. c) S. C. Riha, A. A. Koegel, J. D. Emery, M. J. Pellin, and A. B. F. Martinson, “Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics,” ACS Applied Materials & Interfaces 9 (2017): 4667-4673. d) E. Thimsen, S. C. Riha, S. V. Baryshev, A. B. F. Martinson, J. W. Elam, and M. J. Pellin, “Atomic Layer Deposition of the Quaternary Chalcogenide Cu2ZnSnS4,” Chemistry of Materials 24 (2012): 3188-3196.

[270]

A. Basile, L. Di Paola, F. Hai, and V. Piemonte, Membrane Reactors for Energy Applications Basic Chemical Production (Elsevier, 2015).

[271]

J. Benz, B. Ortiz, W. Roth, D. Sauer, and A. Steinhüser, “Fuel Cells in Photovoltaic Hybrid Systems for Stand-Alone Power Supplies,” paper presented at the 2nd European PV-Hybrid Mini-Grid Conference, Kassel, September 25-26, 2003, 1-6.

[272]

M. K. Debe, “Electrocatalyst Approaches and Challenges for Automotive Fuel Cells,” Nature 486 (2012): 43-51.

[273]

S. Mekhilef, R. Saidur, and A. Safari, “Comparative Study of Different Fuel Cell Technologies,” Renewable & Sustainable Energy Reviews 16 (2012): 981-989.

[274]

A. B. Stambouli and E. Traversa, “Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy,” Renewable & Sustainable Energy Reviews 6 (2002): 433-455.

[275]

W.-J. Lee, S. Bera, H. J. Woo, et al., “In Situ Engineering of a Metal Oxide Protective Layer Into Pt/Carbon Fuel-Cell Catalysts by Atomic Layer Deposition,” Chemistry of Materials 34 (2022): 5949-5957.

[276]

Y. K. Li, H. J. Choi, H. K. Kim, et al., “Nanoporous Silver Cathodes Surface-Treated by Atomic Layer Deposition of Y:ZrO2 for High-Performance Low-Temperature Solid Oxide Fuel Cells,” Journal of Power Sources 295 (2015): 175-181.

[277]

J. W. Shin, S. Oh, S. Lee, et al., “Ultrathin Atomic Layer-Deposited CeO2 Overlayer for High-Performance Fuel Cell Electrodes,” ACS Applied Materials & Interfaces 11 (2019): 46651-46658.

[278]

R. Küngas, S. Y. Anthony, J. Levine, J. M. Vohs, and R. J. Gorte, “An Investigation of Oxygen Reduction Kinetics in LSF Electrodes,” Journal of the Electrochemical Society 160 (2012): F205-F210.

[279]

I. Chang, D. Kim, Y. Lee, S.-H. Hong, and S. W. Cha, “Effect of Ultra-Thin SnO2 Coating on Pt Catalyst for Energy Applications,” International Journal of Precision Engineering and Manufacturing 17 (2016): 691-697.

[280]

Y. Chen, K. Gerdes, S. A. Paredes Navia, L. Liang, A. Hinerman, and X. Song, “Conformal Electrocatalytic Surface Nanoionics for Accelerating High-Temperature Electrochemical Reactions in Solid Oxide Fuel Cells,” Nano Letters 19 (2019): 8767-8773.

[281]

E. Dogdibegovic, R. Wang, G. Y. Lau, A. Karimaghaloo, M. H. Lee, and M. C. Tucker, “Progress in Durability of Metal-Supported Solid Oxide Fuel Cells With Infiltrated Electrodes,” Journal of Power Sources 437 (2019): 226935.

[282]

H. Zhang and C. Cheng, “ALD of Pt Nanotube Arrays Supported on a Carbon Fiber Cloth as a High-Performance Electrocatalyst for Methanol Oxidation,” Journal of Materials Chemistry A 4 (2016): 15961-15968.

[283]

H. J. Jeong, J. W. Kim, D. Y. Jang, and J. H. Shim, “Atomic Layer Deposition of Ruthenium Surface-coating on Porous Platinum Catalysts for High-Performance Direct Ethanol Solid Oxide Fuel Cells,” Journal of Power Sources 291 (2015): 239-245.

[284]

D. Y. Jang, J. Koo, H. R. Choi, et al., “Coke-Free Oxidation of Methanol in Solid Oxide Fuel Cells With Heterogeneous Nickel-Palladium Catalysts Prepared by Atomic Layer Deposition,” ACS Sustainable Chemistry & Engineering 8 (2020): 10529-10537.

[285]

X. Cui, A. D. Zdunek, G. Jursich, and C. G. Takoudis, “Nanostructured Ni-YSZ by Atomic Layer Deposition,” ECS Journal of Solid State Science and Technology 4 (2015): P429-P434.

[286]

S. Ji and W. Tanveer, “Thickness Determination of Porous Pt Cathode Thin Film Capped by Atomic Layer-Deposited Alumina for Low-Temperature Solid Oxide Fuel Cells,” Applied Surface Science 514 (2020): 145931.

[287]

M. Götz and H. Wendt, “Binary and Ternary Anode Catalyst Formulations Including the Elements W, Sn and Mo for PEMFCs Operated on Methanol or Reformate Gas,” Electrochimica Acta 43 (1998): 3637-3644.

[288]

H. Jeong, J. W. Kim, J. Park, et al., “Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells,” ACS Applied Materials & Interfaces 8 (2016): 30090-30096.

[289]

a) T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, “Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies,” Journal of Materials Chemistry A 7 (2019): 2942-2964. b) C.-F. Li, R. Muruganantham, W.-C. Hsu, et al., “Atomic Layer Deposition of ZnO on Li1.3Al0.3Ti1.7(PO4)3 Enables Its Application in all Solid-State Lithium Batteries,” Journal of the Taiwan Institute of Chemical Engineers 144 (2023): 104681. c) J. Liu, H. Zhu, and M. H. A. Shiraz, “Toward 3D Solid-State Batteries Via Atomic Layer Deposition Approach,” Frontiers in Energy Research 6 (2018): 10.

[290]

a) L. Yu, X. Zhou, L. Lu, X. Wu, and F. Wang, “Recent Developments of Nanomaterials and Nanostructures for High-Rate Lithium Ion Batteries,” Chemsuschem 13 (2020): 5361-5380. b) S. Karimzadeh, B. Safaei, C. Yuan, and T.‑C. Jen, “Emerging Atomic Layer Deposition for the Development of High-Performance Lithium-Ion Batteries,” Electrochemical Energy Reviews 6 (2023): 24-45.

[291]

J. Y. Huang, L. Zhong, C. M. Wang, et al., “In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode,” Science 330 (2010): 1515-1520.

[292]

Z.-S. Wu, W. Ren, L. Wen, et al., “Graphene Anchored With Co3O4 Nanoparticles as Anode of Lithium Ion Batteries With Enhanced Reversible Capacity and Cyclic Performance,” ACS Nano 4 (2010): 3187-3194.

[293]

Y. Kim, S. Muhammad, H. Kim, et al., “Probing the Additional Capacity and Reaction Mechanism of the RuO2 Anode in Lithium Rechargeable Batteries,” Chemsuschem 8 (2015): 2378-2385.

[294]

M. Y. Maximov, P. Novikov, D. Nazarov, et al., “Characterization and Electrochemical Performance at High Discharge Rates of Tin Dioxide Thin Films Synthesized by Atomic Layer Deposition,” Journal of Electronic Materials 46 (2017): 6571-6577.

[295]

S. Xu, C. M. Hessel, H. Ren, et al., “α-Fe2O3 Multi-Shelled Hollow Microspheres for Lithium Ion Battery Anodes With Superior Capacity and Charge Retention,” Energy & Environmental Science 7 (2014): 632-637.

[296]

A. Brennhagen, K. B. Kvamme, K. S. Sverdlilje, and O. Nilsen, “High Power Iron Phosphate Cathodes by Atomic Layer Deposition,” Solid State Ionics 353 (2020): 115377.

[297]

M. Xie, X. Sun, H. Sun, et al., “Stabilizing an Amorphous V2O5/Carbon Nanotube Paper Electrode With Conformal TiO2 Coating by Atomic Layer Deposition for Lithium Ion Batteries,” Journal of Materials Chemistry A 4 (2016): 537-544.

[298]

M. Donders, W. Arnoldbik, H. Knoops, W. M. M. Kessels, and P. Notten, “Atomic Layer Deposition of LiCoO2 Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries,” Journal of the Electrochemical Society 160 (2013): A3066-A3071.

[299]

V. Miikkulainen, A. Ruud, E. Østreng, et al., “Atomic Layer Deposition of Spinel Lithium Manganese Oxide by Film-Body-Controlled Lithium Incorporation for Thin-Film Lithium-Ion Batteries,” Journal of Physical Chemistry C 118 (2014): 1258-1268.

[300]

J. Liu, B. Xiao, M. N. Banis, R. Li, T.-K. Sham, and X. J. E. A. Sun, “Atomic Layer Deposition of Amorphous Iron Phosphates on Carbon Nanotubes as Cathode Materials for Lithium-Ion Batteries,” Electrochimica Acta 162 (2015): 275-281.

[301]

J. Liu, M. N. Banis, Q. Sun, et al., “Rational Design of Atomic-Layer-Deposited LiFePO4 as a High-Performance Cathode for Lithium-Ion Batteries,” Advanced Materials 26 (2014): 6472-6477.

[302]

Q. Zhao, S. Stalin, C.-Z. Zhao, and L. Archer, “Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries,” Nature Reviews Materials 5 (2020): 229-252.

[303]

J. Liu, H. Zhu, and M. Shiraz, “Toward 3D Solid-State Batteries Via Atomic Layer Deposition Approach,” Frontiers in Energy Research 6 (2018): 10.

[304]

B. Zhu, N. Liu, M. McDowell, Y. Jin, Y. Cui, and J. Zhu, “Interfacial Stabilizing Effect of ZnO on Si Anodes for Lithium Ion Battery,” Nano Energy 13 (2015): 620-625.

[305]

A. C. Kozen, C.-F. Lin, A. J. Pearse, et al., “Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition,” ACS Nano 9 (2015): 5884-5892.

[306]

Y. Zhao, L. V. Goncharova, A. Lushington, et al., “Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition,” Advanced Materials 29 (2017): 1606663.

[307]

Y. Gao, Z. Shang, X. He, T. White, J. Park, and X. Liang, “Cooperating Effects of Conformal Iron Oxide (FeOx) ALD Coating and Post-annealing on Li-Rich Layered Cathode Materials,” Electrochimica Acta 318 (2019): 513-522.

[308]

Y. Chen, S. Lu, J. Zhou, et al., “3D Graphene Framework Supported Li2S Coated With Ultra-thin Al2O3 Films: Binder-Free Cathodes for High-Performance Lithium Sulfur Batteries,” Journal of Materials Chemistry A 5 (2017): 102-110.

[309]

Y. Liu, Q. Sun, Y. Zhao, et al., “Stabilizing the Interface of NASICON Solid Electrolyte Against Li Metal With Atomic Layer Deposition,” ACS Applied Materials & Interfaces 10 (2018): 31240-31248.

[310]

X. Han, Y. Gong, K. K. Fu, et al., “Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries,” Nature Materials 16 (2017): 572-579.

[311]

C. Wang, Y. Gong, B. Liu, et al., “Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes,” Nano Letters 17 (2017): 565-571.

[312]

X. Shen, C. Li, C. Shi, et al., “Core-Shell Structured Ceramic Nonwoven Separators by Atomic Layer Deposition for Safe Lithium-Ion Batteries,” Applied Surface Science 441 (2018): 165-172.

[313]

J. W. Lee, A. M. Soomro, M. Waqas, M. A. Khalid, and K. Choi, “A Highly Efficient Surface Modified Separator Fabricated With Atmospheric Atomic Layer Deposition for High Temperature Lithium Ion Batteries,” International Journal of Energy Research 44 (2020): 7035-7045.

[314]

S. Sharma and P. Ch, “Supercapacitor and Electrochemical Techniques: A Brief Review,” Results in Chemistry 5 (2023): 100885.

[315]

S. Bose, T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim, and J. H. Lee, “Carbon-Based Nanostructured Materials and Their Composites as Supercapacitor Electrodes,” Journal of Materials Chemistry 22 (2012): 767-784.

[316]

C. Guan, J. Liu, Y. Wang, et al., “Iron Oxide-Decorated Carbon for Supercapacitor Anodes With Ultrahigh Energy Density and Outstanding Cycling Stability,” ACS Nano 9 (2015): 5198-5207.

[317]

K. Hong, M. Cho, and S. O. Kim, “Atomic Layer Deposition Encapsulated Activated Carbon Electrodes for High Voltage Stable Supercapacitors,” ACS Applied Materials & Interfaces 7 (2015): 1899-1905.

[318]

T. Kavinkumar, S. Seenivasan, H. H. Lee, H. Jung, J. W. Han, and D.-H. Kim, “Interface-Modulated Uniform Outer Nanolayer: A Category of Electrodes of Nanolayer-Encapsulated Core-Shell Configuration for Supercapacitors,” Nano Energy 81 (2020): 105667.

[319]

P. Yang, D. Chao, C. Zhu, et al., “Ultrafast-Charging Supercapacitors Based on Corn-Like Titanium Nitride Nanostructures,” Advancement of Science 3 (2016): 1500299.

[320]

R. Wang, C. Xia, N. Wei, and H. N. Alshareef, “NiCo2O4@TiN Core-Shell Electrodes Through Conformal Atomic Layer Deposition for All-Solid-State Supercapacitors,” Electrochimica Acta 196 (2016): 611-620.

[321]

D. K. Ni, S. Sahoo, S. Sinha, et al., “Highly Uniform Atomic Layer-Deposited MoS2@3D-Ni-Foam: A Novel Approach to Prepare an Electrode for Supercapacitors,” ACS Applied Materials & Interfaces 9 (2017): 40252-40264.

[322]

Y.-Q. Cao, X. Qian, W. Zhang, et al., “ZnO/ZnS Core-Shell Nanowires Arrays on Ni Foam Prepared by Atomic Layer Deposition for High Performance Supercapacitors,” Journal of the Electrochemical Society 164 (2017): A3493-A3498.

[323]

M. Z. Ansari, I. Hussain, D. Mohapatra, et al., “Atomic Layer Deposition—A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors,” Advancement of Science 11 (2024): 2303055.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

39

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/