Integrated Strategies Toward the Capture and Electrochemical Conversion of Low-Concentration Carbon Dioxide

Zhenyi Yang , Xingqiu Li , Xianglong Cui , Zhen Zheng , Penglun Zheng , Yu Zhang

Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240006

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20240006 DOI: 10.1002/EXP.20240006
REVIEW

Integrated Strategies Toward the Capture and Electrochemical Conversion of Low-Concentration Carbon Dioxide

Author information +
History +
PDF

Abstract

Electrochemical reduction of carbon dioxide (CO2) has been considered a promising route to reduce net carbon emissions and thus mitigate global warming issues. In practice, it mainly involves two processes including the CO2 capture and subsequent electrochemical conversion. From the perfective of feasible and economic benefits, it is of practical significance to develop integrated CO2 capture and conversion systems in an efficient way. However, a majority of studies have been currently focusing on the independent process, and the development of integrated strategies is still in the initial stage. This review mainly covers the recent progress on the integrated technologies of CO2 capture and electrochemical conversion, including the integration strategies, mechanisms, and corresponding issues. The advantages and disadvantages of those strategies are particularly discussed, aiming to identify the viable routes for future applications. To conclude, the challenges and prospects in terms of the research direction in this field are provided, with the hope of promoting practical CO2 utilization from the fundamental aspects.

Keywords

carbon capture / CO2 electrolysis / electrocatalyst / integrated strategy / system

Cite this article

Download citation ▾
Zhenyi Yang, Xingqiu Li, Xianglong Cui, Zhen Zheng, Penglun Zheng, Yu Zhang. Integrated Strategies Toward the Capture and Electrochemical Conversion of Low-Concentration Carbon Dioxide. Exploration, 2025, 5(4): e20240006 DOI:10.1002/EXP.20240006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Gao, T. Zhou, Y. Gao, B. Louis, D. O'Hare, and Q. Wang, “Molten Salts-Modified MgO-Based Adsorbents for Intermediate-Temperature CO2 Capture: A Review,” Journal of Energy Chemistry 26 (2017): 830-838.

[2]

J. Alcalde, S. Flude, M. Wilkinson, et al., “Estimating Geological CO2 Storage Security to Deliver on Climate Mitigation,” Nature Communications 9 (2018): 2201.

[3]

L. Zhang, Z.-J. Zhao, T. Wang, and J. Gong, “Nano-Designed Semiconductors for Electro- and Photoelectro-Catalytic Conversion of Carbon Dioxide,” Chemical Society Reviews 47 (2018): 5423-5443.

[4]

H. Zhang, T. Luo, Y. Chen, et al., “Highly Efficient Decomposition of Perfluorocarbons for Over 1000 Hours via Active Site Regeneration,” Angewandte Chemie International Edition 62 (2023): e202305651.

[5]

Y. Chen, W. Qu, T. Luo, et al., “Promoting C-F Bond Activation via Proton Donor for CF 4 Decomposition,” PNAS 120 (2023): e2312480120.

[6]

S. C. Gowd, P. Ganeshan, V. S. Vigneswaran, et al., “Economic Perspectives and Policy Insights on Carbon Capture, Storage, and Utilization for Sustainable Development,” Science of the Total Environment 883 (2023): 163656.

[7]

Y. A. Alli, P. O. Oladoye, O. Ejeromedoghene, et al., “Nanomaterials as Catalysts for CO2 Transformation Into Value-Added Products: A Review,” Science of the Total Environment 868 (2023): 161547.

[8]

Y. Zhang, X.-Y. Zhang, and W. Y. Sun, “In Situ Carbon-Encapsulated Copper-Doped Cerium Oxide Derived From MOFs for Boosting CO2 -to-CH 4 Electro-Conversion,” ACS Catalysis 13 (2023): 1545-1553.

[9]

W. Gao, S. Liang, R. Wang, et al., “Industrial Carbon Dioxide Capture and Utilization: State of the Art and Future Challenges,” Chemical Society Reviews 49 (2020): 8584-8686.

[10]

Z. Wang, Y. Li, X. Zhao, et al., “Localized Alkaline Environment via in Situ Electrostatic Confinement for Enhanced CO2-to-Ethylene Conversion in Neutral Medium,” Journal of the American Chemical Society 145 (2023): 6339-6348.

[11]

J. Wu, Y. Huang, W. Ye, and Y. Li, “CO2 Reduction: From the Electrochemical to Photochemical Approach,” Advancement of Science 4 (2017): 1700194.

[12]

S. M. Kim, P. M. Abdala, M. Broda, D. Hosseini, C. Copéret, and C. Müller, “Integrated CO2 Capture and Conversion as an Efficient Process for Fuels From Greenhouse Gases,” ACS Catalysis 8 (2018): 2815-2823.

[13]

H. Xie, T. Wang, J. Liang, Q. Li, and S. Sun, “Cu-Based Nanocatalysts for Electrochemical Reduction of CO2,” Nano Today 21 (2018): 41-54.

[14]

Y. Hu, F. Chen, P. Ding, et al., “Designing Effective Si/Ag Interface via Controlled Chemical Etching for Photoelectrochemical CO2 Reduction,” Journal of Materials Chemistry A 6 (2018): 21906-21912.

[15]

J. H. Cho, J. Ma, and S. Y. Kim, “Toward High-Efficiency Photovoltaics-Assisted Electrochemical and Photoelectrochemical CO2 Reduction: Strategy and Challenge,” Exploration 3 (2023): 20230001.

[16]

L. Wang, J. Wu, S. Wang, H. Liu, Y. Wang, and D. Wang, “The Reformation of Catalyst: From a Trial-and-Error Synthesis to Rational Design,” Nano Research 17 (2023): 3261-3301.

[17]

B. Chang, H. Pang, F. Raziq, et al., “Electrochemical Reduction of Carbon Dioxide to Multicarbon (C 2+ ) Products: Challenges and Perspectives,” Energy & Environmental Science 16 (2023): 4714-4758.

[18]

Z. Zhang, X. Huang, Z. Chen, et al., “Membrane Electrode Assembly for Electrocatalytic CO2 Reduction: Principle and Application,” Angewandte Chemie International Edition 62 (2023): e202302789.

[19]

S. Lamaison, D. Wakerley, D. Montero, et al., “Zn-Cu Alloy Nanofoams as Efficient Catalysts for the Reduction of CO2 to Syngas Mixtures With a Potential-Independent H 2 /CO Ratio,” Chemsuschem 12 (2019): 511-517.

[20]

G. H. Han, J. Bang, G. Park, et al., “Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction of CO2 to C2+ Products,” Small 19 (2023): 2205765.

[21]

J. Zhang, C. Guo, S. Fang, et al., “Accelerating Electrochemical CO2 Reduction to Multi-Carbon Products via Asymmetric Intermediate Binding at Confined Nanointerfaces,” Nature Communications 14 (2023): 1298.

[22]

K. Fernandez-Caso, G. Diaz-Sainz, M. Alvarez-Guerra, and A. Irabien, “Electroreduction of CO2: Advances in the Continuous Production of Formic Acid and Formate,” ACS Energy Letters 8 (2023): 1992.

[23]

J. Li, H. Zeng, X. Dong, et al., “Selective CO2 Electrolysis to CO Using Isolated Antimony Alloyed Copper,” Nature Communications 14 (2023): 340.

[24]

I. Sullivan, A. Goryachev, I. A. Digdaya, et al., “Coupling Electrochemical CO2 Conversion With CO2 Capture,” Nature Catalysis 4 (2021): 952-958.

[25]

P. Brandl, M. Bui, J. P. Hallett, and N. M. Dowell, “Beyond 90% Capture: Possible, but at What Cost?,” International Journal of Greenhouse Gas Control 105 (2021): 103239.

[26]

S.-Y. Oh, M. Binns, H. Cho, and J.-K. Kim, “Energy Minimization of MEA-Based CO2 Capture Process,” Applied Energy 169 (2016): 353-362.

[27]

Z. Wang, Y. Zhou, P. Qiu, et al., “Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion,” Advanced Materials 35 (2023): e2303052.

[28]

R. E. Siegel, S. Pattanayak, and L. A. Berben, “Reactive Capture of CO2: Opportunities and Challenges,” ACS Catalysis 13 (2023): 766-784.

[29]

Q. Xia, K. Zhang, T. Zheng, L. An, C. Xia, and X. Zhang, “Integration of CO2 Capture and Electrochemical Conversion,” ACS Energy Letters 8 (2023): 2840-2857.

[30]

M. A. Aaron and Y. Y. Jenny, “Maximum and Comparative EfficiencyCalculations for Integrated Capture and Electrochemical Conversion of CO2,” ACS Energy Letters 9 (2024): 768-770.

[31]

Z. Kexin, G. Dongfang, W. Xiaolong, et al., “Sustainable CO2 Management Through Integrated CO2 Capture and Conversion,” Journal of CO2 Utilization 72 (2023): 102493.

[32]

O. Prince, G. Xun, and G. Greeshma, “Tuning Reactive Crystallization Pathways for Integrated CO2 Capture, Conversion, and Storage via Mineralization,” Accounts of Chemical Research 57 (2024): 267-274.

[33]

M. Li, E. Irtem, H. P. Iglesias van Montfort, M. Abdinejad, and T. Burdyny, “Energy Comparison of Sequential and Integrated CO2 Capture and Electrochemical Conversion,” Nature Communications 13 (2022): 5398.

[34]

C. M. Jens, L. Müller, K. Leonhard, and A. Bardow, “To Integrate or Not to Integrate—Techno-Economic and Life Cycle Assessment of CO2 Capture and Conversion to Methyl Formate Using Methanol,” ACS Sustainable Chemistry and Engineering 7 (2019): 12770-12780.

[35]

Y. Deng, J. Li, Y. Miao, and D. Izikowitz, “A Comparative Review of Performance of Nanomaterials for Direct Air Capture,” Energy Reports 7 (2021): 3506-3516.

[36]

L. Jiang, W. Liu, R. Q. Wang, et al., “Sorption Direct Air Capture With CO2 Utilization,” Progress in Energy and Combustion Science 95 (2023): 101069.

[37]

H. Li, M. E. Zick, T. Trisukhon, et al., “Capturing Carbon Dioxide From Air With Charged-Sorbents,” Nature 630 (2024): 654-659.

[38]

N. R. Stuckert and R. T. Yang, “CO2 Capture From the Atmosphere and Simultaneous Concentration Using Zeolites and Amine-Grafted SBA-15,” Environmental Science & Technology 45 (2011): 10257-10264.

[39]

A. Cadiau, Y. Belmabkhout, K. Adil, et al., “Hydrolytically Stable Fluorinated Metal-Organic Frameworks for Energy-Efficient Dehydration,” Science 356 (2017): 731-735.

[40]

M. Ding, R. W. Flaig, H.-L. Jiang, and O. M. Yaghi, “Carbon Capture and Conversion Using Metal-Organic Frameworks and MOF-Based Materials,” Chem. Soc. Rev. 48 (2019): 2783-2828.

[41]

S. Fujikawa, R. Selyanchyn, and T. Kunitake, “A New Strategy for Membrane-Based Direct Air Capture,” Polymer Journal 53 (2020): 111-119.

[42]

R. Nandi, M. K. Jha, S. K. Guchhait, D. Sutradhar, and S. Yadav, “Impact of KOH Activation on Rice Husk Derived Porous Activated Carbon for Carbon Capture at Flue Gas Alike Temperatures With High CO2 /N 2 Selectivity,” ACS Omega 8 (2023): 4802-4812.

[43]

X. Ren, H. Li, J. Chen, et al., “N-doped Porous Carbons With Exceptionally High CO2 Selectivity for CO2 Capture,” Carbon 114 (2017): 473-481.

[44]

A. Kumar, D. G. Madden, M. Lusi, et al., “Direct Air Capture of CO2 by Physisorbent Materials,” Angewandte Chemie, International Edition 54 (2015): 14372-14377.

[45]

D. W. Keith, G. Holmes, D. S. Angelo, and K. Heidel, “A Process for Capturing CO2 From the Atmosphere,” Joule 2 (2018): 1573-1594.

[46]

R. Sharifian, R. M. Wagterveld, I. A. Digdaya, C. Xiang, and D. A. Vermaas, “Electrochemical Carbon Dioxide Capture to Close the Carbon Cycle,” Energy & Environmental Science 14 (2021): 781-814.

[47]

J. D. Watkins, N. S. Siefert, X. Zhou, et al., “Redox-Mediated Separation of Carbon Dioxide From Flue Gas,” Energy & Fuels 29 (2015): 7508-7515.

[48]

H. Seo, M. Rahimi, and T. A. Hatton, “Electrochemical Carbon Dioxide Capture and Release With a Redox-Active Amine,” Journal of the American Chemical Society 144 (2022): 2164-2170.

[49]

Y. Xu, S. Liu, J. P. Edwards, et al., “Regeneration of Direct Air CO2 Capture Liquid via Alternating Electrocatalysis,” Joule 7 (2023): 2107-2117.

[50]

M. Zanatta, “Materials for Direct Air Capture and Integrated CO2 Conversion: Advancement, Challenges, and Prospects,” ACS Materials Au 3 (2023): 576-583.

[51]

F. Marocco Stuardi, F. MacPherson, and J. Leclaire, “Integrated CO2 Capture and Utilization: A Priority Research Direction,” Current Opinion in Green and Sustainable Chemistry 16 (2019): 71-76.

[52]

E. A. Recker, M. Green, M. Soltani, et al., “Direct Air Capture of CO2 via Ionic Liquids Derived From “Waste” Amino Acids,” ACS Sustainable Chemistry and Engineering 10 (2022): 11885-11890.

[53]

H. Xu, R. Jin, and C. P. O'Brien, “Multi-Functional Polymer Membranes Enable Integrated CO2 Capture and Conversion in a Single, Continuous-Flow Membrane Reactor Under Mild Conditions,” ACS Appl Mater Interfaces 15 (2023): 56305-56313.

[54]

N. Isabella, P. Alfonso, C. Giuseppe, et al., “Quaternized Polyepichlorohydrin-Based Membrane as High-Selective CO2 Sorbent for Cost-Effective Carbon Capture,” Journal of CO2 Utilization 63 (2022): 102135.

[55]

S. Fujikawa and R. Selyanchyn, “Direct Air Capture by Membranes,” MRS Bulletin 47 (2022): 416-423.

[56]

P. Landschützer, N. Gruber, and D. C. Bakker, “Decadal Variations and Trends of the Global Ocean Carbon Sink,” Global Biogeochemical Cycles 30 (2016): 1396-1417.

[57]

N. Gruber, D. Clement, B. R. Carter, et al., “The Oceanic Sink for Anthropogenic CO2 From 1994 to 2007,” Science 363 (2019): 1193-1199.

[58]

C. B. Justin, L. Éowyn, W. L. Eric, et al., “Analysis of Bipolar Membranes for Electrochemical CO2 Capture from Air and Oceanwater,” Energy & Environmental Science 16 (2023): 5076.

[59]

O. Mihrimah, S. Amir, K. Nadezda, T. A. Hatton, O. Steve, and S. Edward, “Electrochemical Direct Air Capture and Direct Ocean Capture: The Next Frontier in Carbon Removal,” Chemistry 10 (2024): 3.

[60]

J. C. Bui, É. Lucas, E. W. Lees, et al., “Analysis of Bipolar Membranes for Electrochemical CO2 Capture From Air and Oceanwater,” Energy & Environmental Science 16 (2023): 5076-5095.

[61]

T. N.-D. Cao, S. W. Snyder, Y.-I. Lin, Y. J. Lin, S. Negi, and S.-Y. Pan, “Unraveling the Potential of Electrochemical pH-Swing Processes for Carbon Dioxide Capture and Utilization,” Industrial & Engineering Chemistry Research 62 (2023): 20979-20995.

[62]

A. Prajapati and M. R. Singh, “Preventing Over-Electrodialysis for Efficient CO2 Capture From Seawater,” ACS Sustainable Chem Eng 10 (2022): 12466-12474.

[63]

H. D. Willauer, F. DiMascio, D. R. Hardy, and F. W. Williams, “Development of an Electrolytic Cation Exchange Module for the Simultaneous Extraction of Carbon Dioxide and Hydrogen Gas From Natural Seawater,” Energy & Fuels 31 (2017): 1723-1730.

[64]

I. A. Digdaya, I. Sullivan, M. Lin, et al., “A Direct Coupled Electrochemical System for Capture and Conversion of CO2 From Oceanwater,” Nature Communications 11 (2020): 4412.

[65]

C. Du, J. R. Du, X. Zhao, F. Cheng, M. E. A. Ali, and X. Feng, “Treatment of Brackish Water RO Brine via Bipolar Membrane Electrodialysis,” Industrial & Engineering Chemistry Research 60 (2021): 3115-3129.

[66]

S. Kim, M. P. Nitzsche, S. B. Rufer, J. R. Lake, K. K. Varanasi, and T. A. Hatton, “Asymmetric Chloride-Mediated Electrochemical Process for CO2 Removal From Oceanwater,” Energy & Environmental Science 16 (2023): 2030-2044.

[67]

K. Sayan, R. Motiar, A. Virgil, B. Subhajit, R. Souvik, and R. Erwin, “Integrated Capture and Solar-Driven Utilization of CO2 from Flue Gas and Air,” Joule 7 (2023): 1496.

[68]

S. Xiaoyang, L. Gahyun Annie, L. Shuohan, et al., “Water-Stable MOFs and Hydrophobically Encapsulated MOFs for CO2 Capture from Ambient Air and Wet Flue Gas,” Materials Today 65 (2023): 207.

[69]

A. Barthel, Y. Saih, M. Gimenez, et al., “Highly Integrated CO2 Capture and Conversion: Direct Synthesis of Cyclic Carbonates From Industrial Flue Gas,” Green Chemistry 18 (2016): 3116-3123.

[70]

Y. Li, H. P. Wang, C.-Y. Liao, et al., “Dual Alkali Solvent System for CO2 Capture From Flue Gas,” Environmental Science & Technology 51 (2017): 8824-8831.

[71]

B. Aghel, S. Janati, S. Wongwises, and M. S. Shadloo, “Review on CO2 Capture by Blended Amine Solutions,” International Journal of Greenhouse Gas Control 119 (2022): 103715.

[72]

K. M. G. Langie, K. Tak, C. Kim, et al., “Toward Economical Application of Carbon Capture and Utilization Technology With Near-Zero Carbon Emission,” Nature Communications 13 (2022): 7482.

[73]

S. Zhang, C. Chen, K. Li, H. Yu, and F. Li, “Materials and System Design for Direct Electrochemical CO2 Conversion in Capture Media,” Journal of Materials Chemistry A 9 (2021): 18785-18792.

[74]

S. Zhang, Y. Shen, P. Shao, J. Chen, and L. Wang, “Kinetics, Thermodynamics, and Mechanism of a Novel Biphasic Solvent for CO2 Capture From Flue Gas,” Environmental Science & Technology 52 (2018): 3660-3668.

[75]

X. Li, J. Liu, W. Jiang, et al., “Low Energy-Consuming CO2 Capture by Phase Change Absorbents of Amine/Alcohol/H2O,” Separation and Purification Technology 275 (2021): 119181.

[76]

M. Ishaq, M. A. Gilani, M. R. Bilad, et al., “Exploring the Potential of Highly Selective Alkanolamine Containing Deep Eutectic Solvents Based Supported Liquid Membranes for CO2 Capture,” Journal of Molecular Liquids 340 (2021): 117274.

[77]

A. Mezza, A. Pettigiani, N. B. D. Monti, et al., “An Electrochemical Platform for the Carbon Dioxide Capture and Conversion to Syngas,” Energies 14 (2021): 7869.

[78]

A. Prajapati, R. Sartape, M. T. Galante, et al., “Fully-Integrated Electrochemical System That Captures CO2 From Flue Gas to Produce Value-Added Chemicals at Ambient Conditions,” Energy & Environmental Science 15 (2022): 5105-5117.

[79]

Z. Zhang, E. W. Lees, S. Ren, B. A. W. Mowbray, A. Huang, and C. P. Berlinguette, “Conversion of Reactive Carbon Solutions Into CO at Low Voltage and High Carbon Efficiency,” ACS Central Science 8 (2022): 749-755.

[80]

G. T. Rochelle, “Amine Scrubbing for CO2 Capture,” Science 325 (2009): 1652-1654.

[81]

F. Liu, Y. Shen, L. Shen, et al., “Sustainable Ionic Liquid Organic Solution With Efficient Recyclability and Low Regeneration Energy Consumption for CO2 Capture,” Separation and Purification Technology 275 (2021): 119123.

[82]

C. Sun and P. K. Dutta, “Infrared Spectroscopic Study of Reaction of Carbon Dioxide With Aqueous Monoethanolamine Solutions,” Industrial & Engineering Chemistry Research 55 (2016): 6276-6283.

[83]

L. Chen, F. Li, Y. Zhang, et al., “Electrochemical Reduction of Carbon Dioxide in a Monoethanolamine Capture Medium,” Chemsuschem 10 (2017): 4109-4118.

[84]

M. Abdinejad, Z. Mirza, X.-A. Zhang, and H.-B. Kraatz, “Enhanced Electrocatalytic Activity of Primary Amines for CO2 Reduction Using Copper Electrodes in Aqueous Solution,” ACS Sustainable Chemistry & Engineering 8 (2020): 1715-1720.

[85]

E. Pérez-Gallent, C. Vankani, C. Sánchez-Martínez, A. Anastasopol, and E. Goetheer, “Integrating CO2 Capture With Electrochemical Conversion Using Amine-Based Capture Solvents as Electrolytes,” Industrial & Engineering Chemistry Research 60 (2021): 4269-4278.

[86]

S. E. Jerng and B. M. Gallant, “Electrochemical Reduction of CO2 in the Captured State Using Aqueous or Nonaqueous Amines,” Iscience 25 (2022): 104558.

[87]

A. Khurram, M. He, and B. M. Gallant, “Tailoring the Discharge Reaction in Li-CO2 Batteries Through Incorporation of CO2 Capture Chemistry,” Joule 2 (2018): 2649-2666.

[88]

A. Khurram, L. Yan, Y. Yin, L. Zhao, and B. M. Gallant, “Promoting Amine-Activated Electrochemical CO2 Conversion With Alkali Salts,” Journal of Physical Chemistry C 123 (2019): 18222-18231.

[89]

G. Lee, Y. C. Li, J.-Y. Kim, et al., “Electrochemical Upgrade of CO2 From Amine Capture Solution,” Nature Energy 6 (2020): 46-53.

[90]

O. Gutiérrez-Sánchez, B. Bohlen, N. Daems, M. Bulut, D. Pant, and T. Breugelmans, “A State-of-the-Art Update on Integrated CO2 Capture and Electrochemical Conversion Systems,” ChemElectroChem 9 (2022): e202101540.

[91]

A. J. Welch, E. Dunn, J. S. DuChene, and H. A. Atwater, “Bicarbonate or Carbonate Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion,” ACS Energy Letters 5 (2020): 940-945.

[92]

P. Yue, Z. Kang, Q. Fu, et al., “Life Cycle and Economic Analysis of Chemicals Production via Electrolytic (bi)Carbonate and Gaseous CO2 Conversion,” Applied Energy 304 (2021): 117768.

[93]

R. Kortlever, K. Tan, Y. Kwon, and M. Koper, “Electrochemical Carbon Dioxide and Bicarbonate Reduction on Copper in Weakly Alkaline Media,” Journal of Solid State Electrochemistry 17 (2013): 1843-1849.

[94]

N. Sreekanth and K. L. Phani, “Selective Reduction of CO2 to Formate Through Bicarbonate Reduction on Metal Electrodes: New Insights Gained From SG/TC Mode of SECM,” Chemical Communications 50 (2014): 11143-11146.

[95]

M. Dunwell, Q. Lu, J. M. Heyes, et al., “The Central Role of Bicarbonate in the Electrochemical Reduction of Carbon Dioxide on Gold,” Journal of the American Chemical Society 139 (2017): 3774-3783.

[96]

H. Ooka, M. C. Figueiredo, and M. T. M. Koper, “Competition Between Hydrogen Evolution and Carbon Dioxide Reduction on Copper Electrodes in Mildly Acidic Media,” Langmuir 33 (2017): 9307-9313.

[97]

O. Gutiérrez-Sánchez, N. Daems, W. Offermans, et al., “The Inhibition of the Proton Donor Ability of Bicarbonate Promotes the Electrochemical Conversion of CO2 in Bicarbonate Solutions,” Journal of CO2 Utilization 48 (2021): 101521.

[98]

K. Shen, D. Cheng, E. Reyes-Lopez, J. Jang, P. Sautet, and C. G. Morales-Guio, “On the Origin of Carbon Sources in the Electrochemical Upgrade of CO2 From Carbon Capture Solutions,” Joule 7 (2023): 1260-1276.

[99]

Y. C. Li, G. Lee, T. Yuan, et al., “CO2 Electroreduction From Carbonate Electrolyte,” ACS Energy Letters 4 (2019): 1427-1431.

[100]

T. Li, E. W. Lees, M. Goldman, D. A. Salvatore, D. M. Weekes, and C. P. Berlinguette, “Electrolytic Conversion of Bicarbonate Into CO in a Flow Cell,” Joule 3 (2019): 1487-1497.

[101]

T. Li, E. W. Lees, Z. Zhang, and C. P. Berlinguette, “Conversion of Bicarbonate to Formate in an Electrochemical Flow Reactor,” ACS Energy Lett 5 (2020): 2624-2630.

[102]

D. Salvatore and C. P. Berlinguette, “Voltage Matters When Reducing CO2 in an Electrochemical Flow Cell,” ACS Energy Letters 5 (2020): 215-220.

[103]

G. Gao, C. A. Obasanjo, J. Crane, and C.-T. Dinh, “Comparative Analysis of Electrolyzers for Electrochemical Carbon Dioxide Conversion,” Catalysis Today 423 (2023): 114284.

[104]

S. K. Nabil, S. Roy, W. A. Algozeeb, et al., “Bifunctional Gas Diffusion Electrode Enables in Situ Separation and Conversion of CO2 to Ethylene From Dilute Stream,” Advanced Materials 35 (2023): 2300389.

[105]

O. Gutierrez-Sanchez, B. de Mot, M. Bulut, D. Pant, and T. Breugelmans, “Engineering Aspects for the Design of a Bicarbonate Zero-Gap Flow Electrolyzer for the Conversion of CO2 to Formate,” ACS Appl Mater Interfaces 14 (2022): 30760-30771.

[106]

R. Kas, K. Yang, G. P. Yewale, A. Crow, T. Burdyny, and W. A. Smith, “Modeling the Local Environment Within Porous Electrode During Electrochemical Reduction of Bicarbonate,” Industrial & Engineering Chemistry Research 61 (2022): 10461-10473.

[107]

E. W. Lees, M. Goldman, A. G. Fink, et al., “Electrodes Designed for Converting Bicarbonate Into CO,” ACS Energy Letters 5 (2020): 2165-2173.

[108]

Z. Zhang, E. W. Lees, F. Habibzadeh, et al., “Porous Metal Electrodes Enable Efficient Electrolysis of Carbon Capture Solutions,” Energy & Environmental Science 15 (2022): 705-713.

[109]

E. W. Lees, A. Liu, J. C. Bui, S. Ren, A. Z. Weber, and C. P. Berlinguette, “Electrolytic Methane Production From Reactive Carbon Solutions,” ACS Energy Letters 7 (2022): 1712-1718.

[110]

H. Liu, Y. Chen, J. Lee, S. Gu, and W. Li, “Ammonia-Mediated CO2 Capture and Direct Electroreduction to Formate,” ACS Energy Letters 7 (2022): 4483-4489.

[111]

G. Wen, B. Ren, X. Wang, et al., “Continuous CO2 Electrolysis Using a CO2 Exsolution-Induced Flow Cell,” Nature Energy 7 (2022): 978-988.

[112]

E. W. Lees, J. C. Bui, D. Song, A. Z. Weber, and C. P. Berlinguette, “Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer,” ACS Energy Letters 7 (2022): 834-842.

[113]

Y. C. Xiao, C. M. Gabardo, S. Liu, et al., “Direct Carbonate Electrolysis Into Pure Syngas,” EES Catalysis 1 (2023): 54-61.

[114]

B. Shao, Y. Zhang, Z. Sun, et al., “CO2 Capture and in-situ Conversion: Recent Progresses and Perspectives,” Green Chemical Engineering 3 (2022): 189-198.

[115]

B. B. Narzary, U. Karatayeva, J. Mintah, M. Villeda-Hernandez, and C. F. J. Faul, “Bifunctional Metal-Free Porous Polyimide Networks for CO2 Capture and Conversion,” Materials Chemistry Frontiers 7 (2023): 4473-4481.

[116]

L. Wang, H. Su, G. Tan, et al., “Boosting Efficient and Sustainable Alkaline Water Oxidation on a W-CoOOH-TT Pair-Sites Catalyst Synthesized via Topochemical Transformation,” Advanced Materials 36 (2024): 2302642.

[117]

L. Wang, H. Su, Z. Zhang, et al., “Co−Co Dinuclear Active Sites Dispersed on Zirconium-Doped Heterostructured Co 9 S 8 /Co 3 O 4 for High-Current-Density and Durable Acidic Oxygen Evolution,” Angewandte Chemie International Edition 62 (2023): e202314185.

[118]

Y. Cheng, J. Hou, and P. Kang, “Integrated Capture and Electroreduction of Flue Gas CO2 to Formate Using Amine Functionalized SnO X Nanoparticles,” ACS Energy Letters 6 (2021): 3352-3358.

[119]

Y. Li, E. P. Delmo, G. Hou, et al., “Enhancing Local CO2 Adsorption by L-Histidine Incorporation for Selective Formate Production over the Wide Potential Window,” Angewandte Chemie International Edition 62 (2023): e202313522.

[120]

Y. Cheng, P. Hou, X. Wang, and P. Kang, “CO2 Electrolysis System Under Industrially Relevant Conditions,” Accounts of Chemical Research 55 (2022): 231-240.

[121]

G. Lee, A. S. Rasouli, B.-H. Lee, et al., “CO2 Electroreduction to Multicarbon Products From Carbonate Capture Liquid,” Joule 7 (2023): 1277-1288.

[122]

R. Li, X. Ren, X. Feng, X. Li, C. Hu, and B. Wang, “A Highly Stable Metal- and Nitrogen-Doped Nanocomposite Derived From Zn/Ni-ZIF-8 Capable of CO2 Capture and Separation,” Chemical Communications 50 (2014): 6894.

[123]

C. Yan, H. Li, Y. Ye, et al., “Coordinatively Unsaturated Nickel-Nitrogen Sites Towards Selective and High-Rate CO2 Electroreduction,” Energy & Environmental Science 11 (2018): 1204-1210.

[124]

D. J. Su, S. Q. Xiang, S. T. Gao, et al., “Kinetic Understanding of Catalytic Selectivity and Product Distribution of Electrochemical Carbon Dioxide Reduction Reaction,” JACS Au 3 (2023): 905-918.

[125]

Q. Li, J. Wu, L. Lv, et al., “Efficient CO2 Electroreduction to Multicarbon Products at CuSiO3/CuO Derived Interfaces in Ordered Pores,” Advanced Materials 36 (2023): 2305508.

[126]

Q. Qin, H. Suo, L. Chen, et al., “Emerging Cu-Based Tandem Catalytic Systems for CO2 Electroreduction to Multi-Carbon Products,” Advanced Materials Interfaces 11 (2024): 2301049.

[127]

C. Zhu, Z. Zhang, R. Qiao, et al., “Selective Tandem CO2 -to-C 2+ Alcohol Conversion at a Single-Crystal Au/Cu Bimetallic Interface,” Journal of Physical Chemistry C 127 (2023): 3470-3477.

[128]

C. M. Gabardo, C. P. O'Brien, J. P. Edwards, et al., “Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly,” Joule 3 (2019): 2777-2791.

[129]

W. Li, Z. Yin, Z. Gao, et al., “Bifunctional Ionomers for Efficient Co-electrolysis of CO2 and Pure Water Towards Ethylene Production at Industrial-Scale Current Densities,” Nature Energy 7 (2022): 835-843.

[130]

D. Jie, Y. Hong Bin, M. Xue-Lu, et al., “A Tin-Based Tandem Electrocatalyst for CO2 Reduction to Ethanol with 80% Selectivity,” Nature Energy 8 (2023): 1386.

[131]

Z.-H. Zhao, J.-R. Huang, D.-S. Huang, H.-L. Zhu, P.-Q. Liao, and X.-M. Chen, “Efficient Capture and Electroreduction of Dilute CO2 Into Highly Pure and Concentrated Formic Acid Aqueous Solution,” Journal of the American Chemical Society 146 (2024): 14349-14356.

[132]

J. Lee, H. Liu, and W. Li, “Bicarbonate Electroreduction to Multicarbon Products Enabled by Cu/Ag Bilayer Electrodes and Tailored Microenviroments,” Chemsuschem 15 (2022): e202201329.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/