Direct synthesis of high quantum yield lead-free CsCu2I3 powder in water and its application in yellow LED

Heng Guo , Linlin Shi , Zengliang Shi , Yue He , Yizhi Zhu

Exploration ›› 2025, Vol. 5 ›› Issue (1) : 20240004

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (1) : 20240004 DOI: 10.1002/EXP.20240004
RESEARCH ARTICLE

Direct synthesis of high quantum yield lead-free CsCu2I3 powder in water and its application in yellow LED

Author information +
History +
PDF

Abstract

Yellow light-emitting diodes (LEDs) with a wavelength of 570–590 nm can reduce the excitability of peripheral nerves and the sensitivity of the skin, stimulate collagen synthesis, and tighten the skin, which plays an important role in skin rejuvenation. In general, commercial LEDs aremade of phosphor excited by ultraviolet chips. It is very important for the development of yellow light emitters with high luminous efficiency, good stability, and environmental protection. For the first time, a simple organic structural unit (2-methylimidazole, 2-MIM) was used to collect a mixture of two metal precursors (CsI and CuI) and successfully synthesized an all-inorganic lead-free yellow light CsCu2I3 powder in water. The prepared CsCu2I3 powder exhibited excellent optical properties and considerable stability. Finally, a phosphor-converted LED (pc-LED) device was fabricated via the CsCu2I3 phosphor coated on a 310 nm ultraviolet chip. The pc-LED device’s electroluminescence spectramay be a good fit for the blood’s absorption regions. Therefore, this work provides a facile method for the synthesis of novel lead-free metal halide CsCu2I3 powder in eco-friendly solvents. In addition, the stable and efficient CsCu2I3 powder shows promising exciting potential applications in photoluminescence and phototherapy fields.

Keywords

2-methylimidazole / CsCu 2I 3 / quantumyield / stability

Cite this article

Download citation ▾
Heng Guo, Linlin Shi, Zengliang Shi, Yue He, Yizhi Zhu. Direct synthesis of high quantum yield lead-free CsCu2I3 powder in water and its application in yellow LED. Exploration, 2025, 5(1): 20240004 DOI:10.1002/EXP.20240004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Pimputkar, J. S. Speck, S. P. Denbaars, S. Nakamura, Nat. Photonics 2009, 3, 180.

[2]

X. Zhao, S. Li, J. Ding, J. Wei, P. Tian, H. Wei, T. Chen, Microb. Biotechnol. 2021, 14, 2090.

[3]

J. G. Khoury, M. P. Goldman, J. Cosmet. Dermatol. 2008, 7, 30.

[4]

M. J. Maisels, J. Perinatol. 2001, 21, S93.

[5]

H. J. Vreman, R. J. Wong, D. K. Stevenson, R. K. Route, S. D. Reader, M. M. Fejer, R. Gale, D. S. Seidman, Pediatr. Res. 1998, 44, 804.

[6]

P.-S. Oh, H.-J. Jeong, J. Photochem. Photobiol. B 2019, 192, 1.

[7]

J. He, R. Wei, S. Ge, W. Wu, J. Guo, J. Tao, R. Wang, C. Wang, C. Pan, InfoMat 2024, 6, e12493.

[8]

E. Mosconi, P. Umari, F. De Angelis, Phys. Chem. Chem. Phys. 2016, 18, 27158.

[9]

L. Shi, K. Chen, A. Zhai, G. Li, M. Fan, Y. Hao, F. Zhu, H. Zhang, Y. Cui, Laser Photonics Rev. 2021, 15, 2000401.

[10]

Y. Zhu, J. Chen, Q. Cui, H. Guo, Z. Li, Z. Shi, C. Xu, Nano Res. 2021, 14, 4288.

[11]

L. Shi, Y. Zhu, G. Li, T. Ji, W. Wang, Y. Zhang, Y. Wu, Y. Hao, K. Wang, J. Yuan, Y. Zou, Sci. Bull. 2023, 68, 928.

[12]

C. Lin, D. Chen, K. Weng, Q. Jiao, J. Ren, S. Dai, J. Phys. Chem. Lett. 2020, 11, 6084.

[13]

D. K. Seo, N. Gupta, M. H. Whangbo, H. Hillebrecht, G. Thiele, Inorg. Chem. 1998, 37, 407.

[14]

Q. Zhang, H. Mushahali, H. Duan, M. Lee, Q. Jing, Optic 2019, 179, 89.

[15]

C. Kang, H. Rao, Y. Fang, J. Zeng, Z. Pan, X. Zhong, Angew. Chem., Int. Ed. 2021, 60, 660.

[16]

G. Longo, S. Mahesh, L. R. V. Buizza, A. D. Wright, A. J. Ramadan, M. Abdi-Jalebi, P. K. Nayak, L. M. Herz, H. J. Snaith, ACS Energy Lett. 2020, 5, 2200.

[17]

F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato, F. Drago, M. Ferretti, V. Pinchetti, M. Fanciulli, S. Brovelli, L. De Trizio, L. Manna, J. Am. Chem. Soc. 2018, 140, 12989.

[18]

F. Wei, Z. Deng, S. Sun, F. Zhang, D. M. Evans, G. Kieslich, S. Tominaka, M. A. Carpenter, J. Zhang, P. D. Bristowe, A. K. Cheetham, Chem. Mater. 2017, 29, 1089.

[19]

B. A. Connor, R. Biega, L. Leppert, H. I. Karunadasa, Chem. Sci. 2020, 11, 7708.

[20]

L. Lian, M. Zheng, W. Zhang, L. Yin, X. Du, P. Zhang, X. Zhang, J. Gao, D. Zhang, L. Gao, G. Niu, H. Song, R. Chen, X. Lan, J. Tang, J. Zhang, Adv. Sci. 2020, 7, 2000195.

[21]

R. Roccanova, A. Yangui, G. Seo, T. D. Creason, Y. Wu, D. Y. Kim, M. Du, B. Saparov, ACS Mater. Lett. 2019, 1, 459.

[22]

X. Huang, Q. Sun, B. Devakumar, Mater. Today Chem. 2020, 17, 100288.

[23]

M. Crespillo, J. Graham, F. Agulló-López, Y. Zhang, W. Weber, Crystals 2019, 9, 95.

[24]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, R. Li, ACS Nano 2018, 12, 5923.

[25]

M. Keshavarz, E. Debroye, M. Ottesen, C. Martin, H. Zhang, E. Fron, R. Küchler, J. A. Steele, M. Bremholm, J. Van de Vondel, H. I. Wang, M. Bonn, M. B. J. Roeffaers, S. Wiedmann, J. Hofkens, Adv. Mater. 2020, 32, 2001878.

[26]

Y. Zhu, Q. Cui, J. Chen, F. Chen, Z. Shi, X. Zhao, C. Xu, ACS Appl. Mater. Interfaces 2021, 13, 6820.

[27]

X. Lao, Z. Yang, Z. Su, Z. Wang, H. Ye, M. Wang, X. Yao, S. Xu, Nanoscale 2018, 10, 9949.

[28]

D. M. Hofmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, K. W. Benz, W. Stadler, Phys. Rev. B 1995, 51, 10619.

[29]

J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. H. Sargent, J. Tang, Nature 2018, 563, 541.

[30]

R. Lin, Q. Guo, Q. Zhu, Y. Zhu, W. Zheng, F. Huang, Adv. Mater. 2019, 31, 1905079.

[31]

P. Cheng, L. Sun, L. Feng, S. Yang, Y. Yang, D. Zheng, Y. Zhao, Y. Sang, R. Zhang, D. Wei, W. Deng, K. Han, Angew. Chem., Int. Ed. 2019, 58, 16087.

[32]

W. Meng, X. Wang, Z. Xiao, J. Wang, D. B. Mitzi, Y. Yan, J. Phys. Chem. Lett. 2017, 8, 2999.

[33]

Y. Zhang, Y. Lv, L.-S. Li, X.-J. Zhao, M.-X. Zhao, H. Shen, Exploration 2022, 2, 20220082.

[34]

Y. Zhu, H. Guo, Q. Cui, J. Chen, Z. Li, J. Lu, T. C. Lu, Z. Peng, C. Xu, C. Pan, Laser Photonics Rev. 2023, 17, 2200497.

[35]

Y. Zhu, L. Shi, H. Guo, J. Chen, J. Lu, W. Wang, Z. Xu, N. Gao, X. Han, Z. Peng, Q. Cui, Adv. Opt. Mater. 2023, 11, 2202428.

[36]

B. Yang, L. Yin, G. Niu, J. H. Yuan, K. H. Xue, Z. Tan, X. S. Miao, M. Niu, X. Du, H. Song, E. Lifshitz, J. Tang, Adv. Mater. 2019, 31, 1904711.

[37]

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, C. Y. Su, Angew. Chem., Int. Ed. 2019, 58, 5277.

[38]

Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 2015, 137, 10276.

[39]

H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao, Y. Liu, W. Yu, H. Zhang, B. Yang, ACS Nano 2017, 11, 2239.

[40]

P. Han, X. Mao, S. Yang, F. Zhang, B. Yang, D. Wei, W. Deng, K. Han, Angew. Chem., Int. Ed. 2019, 58, 17231.

[41]

Z. Tan, M. Hu, G. Niu, Q. Hu, J. Li, M. Leng, L. Gao, J. Tang, Sci. Bull. 2019, 64, 904.

[42]

C. Sun, Y. Yue, W. Zhang, X. Sun, Y. Du, H. Pan, Y. Ma, Y. He, M. Li, Z. Jing, Crystengcomm. 2020, 22, 1480.

[43]

P. Vashishtha, G. V. Nutan, B. E. Griffith, Y. Fang, D. Giovanni, M. Jagadeeswararao, T. C. Sum, N. Mathews, S. G. Mhaisalkar, J. V. Hanna, T. White, Chem. Mater. 2019, 31, 9003.

[44]

Q. Li, Z. Chen, B. Yang, L. Tan, B. Xu, J. Han, Y. Zhao, J. Tang, Z. Quan, J. Am. Chem. Soc. 2019, 142, 1786.

[45]

Y. Li, Z. Shi, L. Wang, Y. Chen, W. Liang, D. Wu, X. Li, Y. Zhang, C. Shan, X. Fang, Mater. Horiz. 2020, 7, 1613.

[46]

Z. Ma, Z. Shi, C. Qin, M. Cui, D. Yang, X. Wang, L. Wang, X. Ji, X. Chen, J. Sun, D. Wu, Y. Zhang, X. J. Li, L. Zhang, C. Shan, ACS Nano 2020, 14, 4475.

[47]

P. Zhu, H. Zhu, G. C. Adhikari, S. Thapa, OSA Continuum 2019, 2, 1880.

[48]

P. Zhu, H. Zhu, G. C. Adhikari, S. Thapa, OSA Continuum 2019, 2, 2413.

RIGHTS & PERMISSIONS

2024 The Author(s). Exploration published by Henan University and JohnWiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/