A pH responsive nanocomposite for combination sonodynamic-immunotherapy with ferroptosis and calcium ion overload via SLC7A11/ACSL4/LPCAT3 pathway

Xue Bai , Jun Kang , Silong Wei , Yun Wang , Yangsui Liu , Bo Yuan , Qian Lu , Huansong Li , Jun Yan , Xi Yang , Jin Chang

Exploration ›› 2025, Vol. 5 ›› Issue (1) : 20240002

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (1) : 20240002 DOI: 10.1002/EXP.20240002
RESEARCH ARTICLE

A pH responsive nanocomposite for combination sonodynamic-immunotherapy with ferroptosis and calcium ion overload via SLC7A11/ACSL4/LPCAT3 pathway

Author information +
History +
PDF

Abstract

Sonodynamic therapy offers a non-invasive approach to induce the death of tumor cells. By harnessing ultrasound waves in tandem with sonosensitizers, this method produces reactive oxygen species (ROS) that inflict oxidative damage upon tumor cells, subsequently causing their demise. Ferroptosis is a regulatory form of cell death that differs from other forms, characterized by iron accumulation, ROS accumulation, and lipid peroxidation. In the presented research, a nanoparticle formulation, parthenolide/ICGCaCO3@lipid (PTL/ICG-CaCO3@Lip), has been engineered to amplify ferroptosis in tumor cells, positioning it as a potent agent for sonodynamic cancer immunotherapy. This nanoparticle significantly augments ROS levels within tumor cells, inducing oxidative stress that leads to cell death. The therapeutic potential of PTL/ICG-CaCO3@Lip, both in vivo and in vitro, has been convincingly demonstrated. Furthermore, RNA-seq analysis insights revealed that PTL/ICG-CaCO3@Lip facilitates tumor cell ferroptosis by regulating P53 to downregulate SLC7A11 protein expression, thereby inhibiting the glutamate-cystine antiporter system Xc- and stimulating ACSL4/LPCAT3 pathways. This pioneering work uncovers an innovative strategy for combatting tumors, leveraging enhanced oxidative stress to promote cell ferroptosis, and paves the way for groundbreaking cancer immunotherapeutic interventions.

Keywords

ferroptosis / parthenolide / sonodynamic therapy / tumor immunotherapy

Cite this article

Download citation ▾
Xue Bai, Jun Kang, Silong Wei, Yun Wang, Yangsui Liu, Bo Yuan, Qian Lu, Huansong Li, Jun Yan, Xi Yang, Jin Chang. A pH responsive nanocomposite for combination sonodynamic-immunotherapy with ferroptosis and calcium ion overload via SLC7A11/ACSL4/LPCAT3 pathway. Exploration, 2025, 5(1): 20240002 DOI:10.1002/EXP.20240002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, CA-Cancer J. Clin. 2021, 71, 209.

[2]

Y. Kang, S. Li, Int. J. Biol. Macromol. 2023, 230, 123159.

[3]

S. Tan, D. Li, X. Zhu, Biomed. Pharmacother. 2020, 124, 109821.

[4]

H. G. Welch, B. S. Kramer, W. C. Black, New Engl. J. Med. 2019, 381, 1378.

[5]

G. Canavese, A. Ancona, L. Racca, M. Canta, B. Dumontel, F. Barbaresco, T. Limongi, V. Cauda, Chem. Eng. J. 2018, 340, 155.

[6]

L. Wang, Y. Tian, K. Lai, Y. Liu, Y. Liu, J. Mou, S. Yang, H. Wu, ACS Biomater. Sci. Eng. 2023, 9, 797.

[7]

Z. Gong, Z. Dai, Adv. Sci. 2021, 8, 2002178.

[8]

X. Lin, J. Song, X. Chen, H. Yang, Angew. Chem., Int. Ed. 2020, 59, 14212.

[9]

B. M. Sahoo, B. K. Banik, P. Borah, A. Jain, Anti-Cancer Agent Med. Chem. 2022, 22, 215.

[10]

Y. Wang, S. Zhang, J. Wang, Q. Zhou, J. F. Mukerabigwi, W. Ke, N. Lu, Z. Ge, J. Controlled Release 2021, 333, 500.

[11]

G. Zhang, J. He, X. Ye, J. Zhu, X. Hu, M. Shen, Y. Ma, Z. Mao, H. Song, F. Chen, Cell Death. Dis. 2019, 10, 255.

[12]

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, H. Dai, Angew. Chem., Int. Ed. 2012, 51, 9818.

[13]

G. Bartosz, Biochem. Pharmacol. 2009, 77, 1303.

[14]

T. Finkel, N. J. Holbrook, Nature 2000, 408, 239.

[15]

D. Tang, R. Kang, T. V. Berghe, P. Vandenabeele, G. Kroemer, Cell Res. 2019, 29, 347.

[16]

B. R. Stockwell, A. J. Friedmann, H. Bayir, A. I. Bush, M. Conrad, S. J. Dixon, S. Fulda, S. Gascon, S. K. Hatzios, V. E. Kagan, K. Noel, X. Jiang, A. Linkermann, M. E. Murphy, M. Overholtzer, A. Oyagi, G. C. Pagnussat, J. Park, Q. Ran, C. S. Rosenfeld, K. Salnikow, D. Tang, F. M. Torti, S. V. Torti, S. Toyokuni, K. A. Woerpel, D. D. Zhang, Cell 2017, 171, 273.

[17]

J. G. BIERI, Nature 1959, 184, 1148.

[18]

B. Moore, J. L. Hawkes, Biochem. J. 1908, 3, 313.

[19]

M. Gao, J. Yi, J. Zhu, A. M. Minikes, P. Monian, C. B. Thompson, X. Jiang, Mol. Cell 2019, 73, 354.

[20]

C. Li, Y. Zhang, J. Liu, R. Kang, D. J. Klionsky, D. Tang, Autophagy 2021, 17, 948.

[21]

X. Zhang, Y. Guo, X. Liu, S. Wu, Y. Zhu, S. Wang, Q. Duan, K. Xu, Z. Li, X. Zhu, G. Pan, F. Wu, Chem. Eng. J. 2024, 479, 147084.

[22]

Y. Guo, X. Zhang, W. Sun, H. Jia, Y. Zhu, X. Zhang, N. Zhou, F. Wu, Chem. Mater. 2019, 31, 10071.

[23]

K. Vegh, E. Riethmuller, A. Toth, A. Alberti, S. Beni, J. Balla, A. Kery, Biomed. Chromatogr. 2016, 30, 2031.

[24]

D. Tang, X. Chen, R. Kang, G. Kroemer, Cell Res. 2021, 31, 107.

[25]

R. Freund, P. Gobrecht, D. Fischer, H. D. Arndt, Nat. Prod. Rep. 2020, 37, 541.

[26]

K. S. Siveen, S. Uddin, R. M. Mohammad, Mol. Cancer 2017, 16, 13.

[27]

T. G. Araujo, L. Vecchi, P. Lima, E. A. Ferreira, I. M. Campos, D. C. Brandao, G. S. Guimaraes, M. A. Ribeiro, A. Filho, Curr. Med. Chem. 2020, 27, 6628.

[28]

M. Sztiller-Sikorska, M. Czyz, Pharmaceuticals 2020, 13, 194.

[29]

V. Janganati, J. Ponder, M. Balasubramaniam, P. Bhat-Nakshatri, E. E. Bar, H. Nakshatri, C. T. Jordan, P. A. Crooks, Eur. J. Med. Chem. 2018, 157, 562.

[30]

A. D’Anneo, D. Carlisi, M. Lauricella, S. Emanuele, R. Di Fiore, R. Vento, G. Tesoriere, J. Cell. Physiol. 2013, 228, 952.

[31]

K. Lesiak, K. Koprowska, I. Zalesna, D. Nejc, M. Duchler, M. Czyz, Melanoma Res. 2010, 20, 21.

[32]

S. Nasim, P. A. Crooks, Bioorg. Med. Chem. Lett. 2008, 18, 3870.

[33]

W. Gao, L. Li, X. Zhang, L. Luo, Y. He, C. Cong, D. Gao, Nanomedicine 2020, 15, 871.

[34]

P. Mishra, D. C. Chan, J. Cell Biol. 2016, 212, 379.

[35]

Y. Yang, S. Karakhanova, W. Hartwig, J. G. D’Haese, P. P. Philippov, J. Werner, A. V. Bazhin, J. Cell. Physiol. 2016, 231, 2570.

[36]

A. Rossi, P. Pizzo, R. Filadi, BBA-Mol. Cell Res. 2019, 1866, 1068.

[37]

W. -X. Zong, J. D. Rabinowitz, E. White, Mol. Cell 2016, 61, 667.

[38]

F. J. Bock, S. Tait, Nat. Rev. Mol. Cell Biol. 2020, 21, 85.

[39]

P. Dong, J. Hu, S. Yu, Y. Zhou, T. Shi, Y. Zhao, X. Wang, X. Liu, Small Methods 2021, 5, e2100581.

[40]

H. Cheng, R. -R. Zheng, G. -L. Fan, J. -H. Fan, L. -P. Zhao, X. -Y. Jiang, B. Yang, X. -Y. Yu, S. -Y. Li, X. -Z. Zhang, Biomaterials 2019, 188, 1.

[41]

J. Yao, H. Peng, Y. Qiu, S. Li, X. Xu, A. Wu, F. Yang, J. Mater. Chem. B 2022, 10, 1508.

[42]

R. J. Bridges, N. R. Natale, S. A. Patel, Brit. J. Pharmacol. 2012, 165, 20.

[43]

K. Hu, K. Li, J. Lv, J. Feng, J. Chen, H. Wu, F. Cheng, W. Jiang, J. Wang, H. Pei, P. J. Chiao, Z. Cai, Y. Chen, M. Liu, X. Pang, J. Clin. Invest. 2020, 130, 1752.

[44]

J. Liu, X. Xia, P. Huang, Mol. Ther. 2020, 28, 2358.

[45]

W. Chen, L. Jiang, Y. Hu, N. Tang, N. Liang, X. F. Li, Y. W. Chen, H. Qin, L. Wu, Brain Res. 2021, 1752, 147216.

RIGHTS & PERMISSIONS

2024 The Author(s). Exploration published by Henan University and JohnWiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/