Oxide semiconductor based deep-subthreshold operated read-out electronics for all-printed smart sensor patches

Jyoti Ranjan Pradhan , Sushree Sangita Priyadarsini , Sanjana R. Nibgoor , Manvendra Singh , Subho Dasgupta

Exploration ›› 2025, Vol. 5 ›› Issue (1) : 20230167

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (1) : 20230167 DOI: 10.1002/EXP.20230167
RESEARCH ARTICLE

Oxide semiconductor based deep-subthreshold operated read-out electronics for all-printed smart sensor patches

Author information +
History +
PDF

Abstract

The ability to fabricate an entire smart sensor patchwith read-out electronics using commercial printing techniques may have a wide range of potential applications. Although solution-processed oxide thin film transistors (TFTs) are capable of providing high mobility electron transport, resulting in large ON-state current and power output, there is hardly any literature report that uses the printed oxide TFTs at the sensor interfaces. Here, printed amorphous indium-gallium-zinc oxide (a-IGZO)-based deep-subthreshold operated TFTs that comprise signal amplifiers and analog-to-digital converters (ADCs) that can successfully digitalize the analog sensor signals up to a frequency range of 1 kHz are reported. In addition, exploiting the high current oxide TFTs, a current drive circuit placed after the ADC unit has been found useful in producing easy-to-detect visual recognition of the sensor signal at a predefined threshold crossover. Notably, the entire smart sensor patch is demonstrated to operate at a low supply voltage of ≤2 V, thereby ensuring that it can be an on-chip energy source compatible and standalone detection unit.

Keywords

analog-to-digital converter / inkjet printing / printed oxide electronics / printed read-out electronics / smart sensor patches / thin film transistors

Cite this article

Download citation ▾
Jyoti Ranjan Pradhan, Sushree Sangita Priyadarsini, Sanjana R. Nibgoor, Manvendra Singh, Subho Dasgupta. Oxide semiconductor based deep-subthreshold operated read-out electronics for all-printed smart sensor patches. Exploration, 2025, 5(1): 20230167 DOI:10.1002/EXP.20230167

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I. A. Howard, T. Abzieher, I. M. Hossain, H. Eggers, F. Schackmar, S. Ternes, B. S. Richards, U. Lemmer, U. W. Paetzold, Adv. Mater. 2019, 31, 1806702.

[2]

C. Chen, J. Chen, H. Han, L. Chao, J. Hu, T. Niu, H. Dong, S. Yang, Y. Xia, Y. Chen, W. Huang, Nature 2022, 612, 266.

[3]

Y. Shao, L. Wei, X. Wu, C. Jiang, Y. Yao, B. Peng, H. Chen, J. Huangfu, Y. Ying, C. J. Zhang, J. Ping, Nat. Commun. 2022, 13, 3223.

[4]

K. Pan, Y. Fan, T. Leng, J. Li, Z. Xin, J. Zhang, L. Hao, J. Gallop, K. S. Novoselov, Z. Hu, Nat. Commun. 2018, 9, 5197.

[5]

L. Portilla, K. Loganathan, H. Faber, A. Eid, J. G. D. Hester, M. M. Tentzeris, M. Fattori, E. Cantatore, C. Jiang, A. Nathan, G. Fiori, T. Ibn-Mohammed, T. D. Anthopoulos, V. Pecunia, Nat. Electron. 2023, 6, 10.

[6]

S. Hong, H. Kang, G. Kim, S. Lee, S. Kim, J. H. Lee, J. Lee, M. Yi, J. Kim, H. Back, J. R. Kim, K. Lee, Nat. Commun. 2016, 7, 10279.

[7]

S. K. Garlapati, M. Divya, B. Breitung, R. Kruk, H. Hahn, S. Dasgupta, Adv. Mater. 2018, 30, 1707600.

[8]

J. Pang, S. Peng, C. Hou, H. Zhao, Y. Fan, C. Ye, N. Zhang, T. Wang, Y. Cao, W. Zhou, D. Sun, K. Wang, M. H. Rümmeli, H. Liu, G. Cuniberti, ACS Sens. 2023, 8, 482.

[9]

B. Wang, X. Wei, H. Zhou, X. Cao, E. Zhang, Z. L. Wang, Z. Wu, Exploration 2023, 4, 20230073.

[10]

Y. Ma, M. Song, L. Li, X. Lao, M. C. Wong, J. Hao, Exploration 2022, 2, 20210216.

[11]

Y. Cao, P. Qu, C. Wang, J. Zhou, M. Li, X. Yu, X. Yu, J. Pang, W. Zhou, H. Liu, G. Cuniberti, Adv. Opt. Mater. 2022, 10, 2200816.

[12]

S. Zhang, J. Pang, Q. Cheng, F. Yang, Y. Chen, Y. Liu, Y. Li, T. Gemming, X. Liu, B. Ibarlucea, J. Yang, H. Liu, W. Zhou, G. Cuniberti, M. H. Rümmeli, InfoMat 2021, 3, 1455.

[13]

J. Guo, J. Gan, H. Ruan, X. Yuan, C. Kong, Y. Liu, M. Su, Y. Liu, W. Liu, B. Zhang, Y. Zhang, G. Cheng, Z. Du, Exploration 2022, 2, 20220065.

[14]

Y. Tian, L. Zhang, C. Zhang, B. Bao, Q. Li, L. Wang, Z. Song, D. Li, Exploration 2023, 4, 20230109.

[15]

Z. Dai, M. Lei, S. Ding, Q. Zhou, B. Ji, M. Wang, B. Zhou, Exploration 2023, 4, 20230046.

[16]

J. Pang, S. Peng, C. Hou, X. Wang, T. Wang, Y. Cao, W. Zhou, D. Sun, K. Wang, M. H. Rümmeli, G. Cuniberti, H. Liu, Nano Res. 2023, 16, 5767.

[17]

Y. Li, S. Huang, S. Peng, H. Jia, J. Pang, B. Ibarlucea, C. Hou, Y. Cao, W. Zhou, H. Liu, G. Cuniberti, Small 2023, 19, 2206126.

[18]

Y. Chen, Z. Gao, F. Zhang, Z. Wen, X. Sun, Exploration 2022, 2, 20210112.

[19]

J. Zhou, J. Zhu, W. He, Y. Cao, J. Pang, J. Ni, J. Zhang, J. Alloys Compd. 2023, 938, 168593.

[20]

Y. Cao, C. Liu, T. Yang, Y. Zhao, Y. Na, C. Jiang, J. Zhou, J. Pang, H. Liu, M. H. Rummeli, W. Zhou, G. Cuniberti, Sol. Energy Mater. Sol. Cells 2022, 246, 111926.

[21]

X. Zhou, G. Li, D. Wu, H. Liang, W. Zhang, L. Zeng, Q. Zhu, P. Lai, Z. Wen, C. Yang, Y. Pan, Exploration 2023, 3, 20220090.

[22]

Y. Zhang, X. Gao, Y. Wu, J. Gui, S. Guo, H. Zheng, Z. L. Wang, Exploration 2021, 1, 90.

[23]

N. Matsuhisa, S. Niu, S. J. K. O’Neill, J. Kang, Y. Ochiai, T. Katsumata, H. C. Wu, M. Ashizawa, G. J. N. Wang, D. Zhong, X. Wang, X. Gong, R. Ning, H. Gong, I. You, Y. Zheng, Z. Zhang, J. B. H. Tok, X. Chen, Z. Bao, Nature 2021, 600, 246.

[24]

N. Sani, M. Robertsson, P. Cooper, X. Wang, M. Svensson, P. A. Ersman, P. Norberg, M. Nilsson, D. Nilsson, X. Liu, H. Hesselbom, L. Akesso, M. Fahlman, X. Crispin, I. Engquist, M. Berggren, G. Gustafsson, Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 11943.

[25]

Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer, A. C. Arias, Adv. Mater. 2020, 32, 1905279.

[26]

V. Subramanian, J. M. J. Fréchet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, S. K. Volkman, Proc. IEEE 2005, 93, 1330.

[27]

T. Sekitani, M. Takamiya, Y. Noguchi, S. Nakano, Y. Kato, T. Sakurai, T. Someya, Nat. Mater. 2007, 6, 413.

[28]

J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho, S. Jung, Nat. Commun. 2019, 10, 54.

[29]

J. Kwon, Y. Takeda, K. Fukuda, K. Cho, S. Tokito, S. Jung, ACS Nano 2016, 10, 10324.

[30]

P. Andersson Ersman, R. Lassnig, J. Strandberg, D. Tu, V. Keshmiri, R. Forchheimer, S. Fabiano, G. Gustafsson, M. Berggren, Nat. Commun. 2019, 10, 5053.

[31]

T. Keragodu, B. Tiwari, P. Bahubalindruni, J. Goes, P. Barquinha, in Proc. of the 2018 IEEE Int. Symp. on Circuits and Systems (ISCAS), IEEE, Florence, Italy 2018, pp. 1-5.

[32]

J. Y. Hwang, M. T. Hong, E. J. Yun, B. S. Bae, J. Inf. Disp. 2016, 17, 79.

[33]

A. Sharma, P. G. Bahubalindruni, M. Bharti, P. Barquinha, IET Circuits, Devices Syst. 2020, 14, 1214.

[34]

A. Correia, R. Martins, E. Fortunato, P. Barquinha, J. Goes, in Proc. of the IEEE Int. Symp. on Circuits and Systems (ISCAS), IEEE, Lisbon, Portugal 2015, pp. 261-264.

[35]

H. Marien, M. Steyaert, E. van Veenendaal, P. Heremans, in 2011 Proc. of the ESSCIRC (ESSCIRC), IEEE, Helsinki, Finland 2009, pp. 411-414.

[36]

H. Marien, M. S. J. Steyaert, E. Van Veenendaal, P. Heremans, IEEE J. Solid-State Circuits 2011, 46, 276.

[37]

Y. Magari, T. Kataoka, W. Yeh, M. Furuta, Nat. Commun. 2022, 13, 1078.

[38]

S. Li, M. Tian, Q. Gao, M. Wang, T. Li, Q. Hu, X. Li, Y. Wu, Nat. Mater. 2019, 18, 1091.

[39]

M. Si, Z. Lin, Z. Chen, X. Sun, H. Wang, P. D. Ye, Nat. Electron. 2022, 5, 164.

[40]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 2004, 432, 488.

[41]

J. W. Borchert, B. Peng, F. Letzkus, J. N. Burghartz, P. K. L. Chan, K. Zojer, S. Ludwigs, H. Klauk, Nat. Commun. 2019, 10, 1119.

[42]

M. R. Niazi, R. Li, E. Qiang Li, A. R. Kirmani, M. Abdelsamie, Q. Wang, W. Pan, M. M. Payne, J. E. Anthony, D. M. Smilgies, S. T. Thoroddsen, E. P. Giannelis, A. Amassian, Nat. Commun. 2015, 6, 8598.

[43]

H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, Nature 2007, 445, 745.

[44]

E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 2012, 24, 2945.

[45]

W. Xu, H. Li, J. Bin Xu, L. Wang, ACS Appl. Mater. Interfaces 2018, 10, 25878.

[46]

J. R. Pradhan, M. Singh, S. Dasgupta, Adv. Electron. Mater. 2022, 8, 2200528.

[47]

M. Divya, J. R. Pradhan, S. S. Priyadarsini, S. Dasgupta, Small 2022, 18, 2202891.

[48]

N. Devabharathi, J. R. Pradhan, S. S. Priyadarsini, T. Brezesinski, S. Dasgupta, Adv. Mater. Interfaces 2022, 9, 2200949.

[49]

S. K. Garlapati, T. T. Baby, S. Dehm, M. Hammad, V. S. K. Chakravadhanula, R. Kruk, H. Hahn, S. Dasgupta, Small 2015, 11, 3591.

[50]

K. Liang, D. Li, H. Ren, M. Zhao, H. Wang, M. Ding, G. Xu, X. Zhao, S. Long, S. Zhu, P. Sheng, W. Li, X. Lin, B. Zhu, Nanomicro Lett. 2021, 13, 164.

[51]

A. Liu, H. Zhu, Y. Y. Noh, ACS Appl. Mater. Interfaces 2019, 11, 33157.

[52]

H. Chang, C. H. Huang, K. Nomura, ACS Appl. Electron. Mater. 2021, 3, 4943.

[53]

A. Liu, H. Zhu, Y. Y. Noh, Adv. Funct. Mater. 2020, 30, 2002625.

[54]

S. Lee, A. Nathan, Science 2016, 354, 302.

[55]

Z. Luo, B. Peng, J. Zeng, Z. Yu, Y. Zhao, J. Xie, R. Lan, Z. Ma, L. Pan, K. Cao, Y. Lu, D. He, H. Ning, W. Meng, Y. Yang, X. Chen, W. Li, J. Wang, D. Pan, X. Tu, W. Huo, X. Huang, D. Shi, L. Li, M. Liu, Y. Shi, X. Feng, P. K. L. Chan, X. Wang, Nat. Commun. 2021, 12, 1928.

[56]

C. Jiang, H. W. Choi, X. Cheng, H. Ma, D. Hasko, A. Nathan, Science 2019, 363, 719.

[57]

N. Cherukupally, M. Divya, S. Dasgupta, Adv. Electron. Mater. 2020, 6, 2000788.

[58]

B. K. Sharma, A. Stoesser, S. K. Mondal, S. K. Garlapati, M. H. Fawey, V. S. K. Chakravadhanula, R. Kruk, H. Hahn, S. Dasgupta, ACS Appl. Mater. Interfaces 2018, 10, 22408.

[59]

S. K. Garlapati, G. C. Marques, J. S. Gebauer, S. Dehm, M. Bruns, M. Winterer, M. B. Tahoori, J. Aghassi-Hagmann, H. Hahn, S. Dasgupta, Nanotechnology 2018, 29, 235205.

[60]

S. Dasgupta, G. Stoesser, N. Schweikert, R. Hahn, S. Dehm, R. Kruk, H. Hahn, Adv. Funct. Mater. 2012, 22, 4909.

[61]

T. T. Baby, M. Rommel, F. von Seggern, P. Friederich, C. Reitz, S. Dehm, C. Kübel, W. Wenzel, H. Hahn, S. Dasgupta, Adv. Mater. 2017, 29, 1603858.

[62]

F. Von Seggern, I. Keskin, E. Koos, R. Kruk, H. Hahn, S. Dasgupta, ACS Appl. Mater. Interfaces 2016, 8, 31757.

[63]

J. Chang, X. Zhang, T. Ge, J. Zhou, Org. Electron. 2014, 15, 701.

[64]

G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. Van Der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. Van Rens, D. M. De Leeuw, Nat. Mater. 2004, 3, 106.

[65]

V. Pecunia, M. Nikolka, A. Sou, I. Nasrallah, A. Y. Amin, I. McCulloch, H. Sirringhaus, Adv. Mater. 2017, 29, 1606938.

[66]

W. A. Gaviria Rojas, M. E. Beck, V. K. Sangwan, S. Guo, M. C. Hersam, Adv. Mater. 2021, 33, 2100994.

[67]

T. Lei, L. L. Shao, Y. Q. Zheng, G. Pitner, G. Fang, C. Zhu, S. Li, R. Beausoleil, H. S. P. Wong, T. C. Huang, K. T. Cheng, Z. Bao, Nat. Commun. 2019, 10, 2161.

[68]

Q. Huang, J. Wang, C. Li, J. Zhu, W. Wang, Y. Huang, Y. Zhang, H. Jiao, S. Zhang, H. Meng, M. Zhang, X. Wang, NPJ Flexible Electron. 2022, 6, 61.

[69]

M. Seifaei, D. Dorigo, D. I. Fleig, M. Kuhl, U. Zschieschang, H. Klauk, Y. Manoli, in Proc. of the 2018 IEEE Asian Solid-State Circuits Conf (A-SSCC). IEEE, Tainan, Taiwan (China) 2018, pp. 119-122.

[70]

K. T. Kim, S. H. Kang, J. Kim, J. S. Heo, Y. H. Kim, S. K. Park, Adv. Electron. Mater. 2020, 6, 1900845.

[71]

D. Kim, Y. Kim, K. Y. Choi, D. Lee, H. Lee, IEEE Trans. Electron Devices 2018, 65, 1796.

RIGHTS & PERMISSIONS

2024 The Author(s). Exploration published by Henan University and JohnWiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/