Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages

Baiyan Sui , Tingting Ding , Xingyi Wan , Yuxiao Chen , Xiaodi Zhang , Yuanbo Cui , Jie Pan , Linlin Li , Xin Liu

Exploration ›› 2024, Vol. 4 ›› Issue (6) : 20230149

PDF
Exploration ›› 2024, Vol. 4 ›› Issue (6) : 20230149 DOI: 10.1002/EXP.20230149
RESEARCH ARTICLE

Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages

Author information +
History +
PDF

Abstract

Immunomodulation has emerged as a promising strategy for promoting bone regeneration. However, designing osteoimmunomodulatory biomaterial that can respond to mechanical stress in the unique microenvironment of alveolar bone under continuous occlusal stress remains a significant challenge. Herein, a wireless piezoelectric stimulation system, namely, piezoelectric hydrogel incorporating BaTiO3 nanoparticles (BTO NPs), is successfully developed to generate piezoelectric potentials for modulating macrophage reprogramming. The piezoelectric stimulation reprograms macrophages towards theM2 phenotype, which subsequently induces osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RNA sequencing analysis reveals that piezoelectricity-modulated macrophage M2 polarization is closely associated with metabolic reprogramming, including increased amino acid biosynthesis and fatty acid oxidation. The composite hydrogel with excellent biocompatibility exhibits immunomodulatory and osteoinductive activities. In a rat model of alveolar bone defects, the piezoelectric hydrogel effectively promotes endogenous bone regeneration at the load-bearing sites. The piezoelectric-driven osteoimmunomodulation proposed in this study not only broadens understanding of the mechanism underlying piezoelectric biomaterials for tissue regeneration but also provides new insights into the design and development of next-generation immunomodulatory biomaterials.

Keywords

bone regeneration / macrophage reprogramming / piezoelectric stimulation

Cite this article

Download citation ▾
Baiyan Sui, Tingting Ding, Xingyi Wan, Yuxiao Chen, Xiaodi Zhang, Yuanbo Cui, Jie Pan, Linlin Li, Xin Liu. Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages. Exploration, 2024, 4(6): 20230149 DOI:10.1002/EXP.20230149

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a)S. Gronthos, The Lancet 2004, 364, 735;b)C. Gjerde, K. Mustafa, S. Hellem, M. Rojewski, H. Gjengedal, M. A. Yassin, X. Feng, S. Skaale, T. Berge, A. Rosen, X. Q. Shi, A. B. Ahmed, B. T. Gjertsen, H. Schrezenmeier, P. Layrolle, Stem Cell Res. Ther. 2018, 9, 213.

[2]

a)W. Zhang, F. Zhao, D. Huang, X. Fu, X. Li, X. Chen, ACS Appl. Mater. Interfaces 2016, 8, 30747;b)H. Liu, M. Lin, X. Liu, Y. Zhang, Y. Luo, Y. Pang, H. Chen, D. Zhu, X. Zhong, S. Ma, Bioact. Mater. 2020, 5, 844;c)Y. Xie, C. Hu, Y. Feng, D. Li, T. Ai, Y. Huang, X. Chen, L. Huang, J. Tan, Regener. Biomater. 2020, 7, 233;d)Q. He, S. Yuan, H. Tang, S. Wang, Z. Mu, D. Li, S. Wang, X. Jing, S. Hu, P. Ji, Adv. Funct. Mater. 2021, 31, 2101611; e)Q. Wang, Y. Feng, M. He, W. Zhao, L. Qiu, C. Zhao, Adv. Funct. Mater. 2021, 31, 2008906; f)M. Li, X. Chu, D. Wang, L. Jian, L. Liu, M. Yao, D. Zhang, Y. Zheng, X. Liu, Y. Zhang, Biomaterials 2022, 282, 121408;g)Y. Wang, J. Wang, R. Gao, X. Liu, Z. Feng, C. Zhang, P. Huang, A. Dong, D. Kong, W. Wang, Biomaterials 2022, 285, 121538.

[3]

S. K. Wculek, G. Dunphy, I. Heras-Murillo, A. Mastrangelo, D. Sancho, Cell Mol. Immunol. 2022, 19, 384.

[4]

W. Lin, Q. Li, D. Zhang, X. Zhang, X. Qi, Q. Wang, Y. Chen, C. Liu, H. Li, S. Zhang, Bone Res. 2021, 9, 17.

[5]

a)M. Levin, Cell 2021, 184, 1971;b)Z. Liu, X. Wan, Z. L. Wang, L. Li, Adv. Mater. 2021, 33, 2007429; c)T. Zheng, Y. Huang, X. Zhang, Q. Cai, X. Deng, X. Yang, J. Mater. Chem. B 2020, 8, 10221.

[6]

a)M. P. Harris, Development 2021, 148, dev180794; b)B. Chalidis, N. Sachinis, A. Assiotis, G. Maccauro, Int. J. Immunopathol. Pharmacol. 2011, 24, 17;c)P. R. Kuzyk, E. H. Schemitsch, Indian J. Orthop. 2009, 43, 127;d)H. Kai, T. Yamauchi, Y. Ogawa, A. Tsubota, T. Magome, T. Miyake, K. Yamasaki, M. Nishizawa, Adv. Healthcare Mater. 2017, 6, 1700465; e)J. I. Hoare, A. M. Rajnicek, C. D. McCaig, R. N. Barker, H. M. Wilson, J. Leukocyte Biol. 2016, 99, 1141.

[7]

W. Guo, X. Zhang, X. Yu, S. Wang, J. Qiu, W. Tang, L. Li, H. Liu, Z. L. Wang, ACS Nano 2016, 10, 5086.

[8]

a)K. Kapat, Q. T. Shubhra, M. Zhou, S. Leeuwenburgh, Adv. Funct. Mater. 2020, 30, 1909045; b)A. Marino, S. Arai, Y. Hou, E. Sinibaldi, M. Pellegrino, Y. T. Chang, B. Mazzolai, V. Mattoli, M. Suzuki, G. Ciofani, ACS Nano 2015, 9, 7678;c)X. Zhang, C. Zhang, Y. Lin, P. Hu, Y. Shen, K. Wang, S. Meng, Y. Chai, X. Dai, X. Liu, ACS Nano 2016, 10, 7279.

[9]

X. Dai, B. C. Heng, Y. Bai, F. You, X. Sun, Y. Li, Z. Tang, M. Xu, X. Zhang, X. Deng, Bioact. Mater. 2021, 6, 2029.

[10]

Y. Kong, F. Liu, B. Ma, J. Duan, W. Yuan, Y. Sang, L. Han, S. Wang, H. Liu, Adv. Sci. 2021, 8, 2100962.

[11]

a)P. Zhu, Y. Chen, J. Shi, Adv. Mater. 2020, 32, e2001976; b)J. Wu, N. Qin, D. Bao, Nano Energy 2018, 45, 44.

[12]

a)J. M. Anderson, A. Rodriguez, D. T. Chang, Semin. Immunol. 2008, 20, 86;b)K. Zheng, W. Niu, B. Lei, A. R. Boccaccini, Acta Biomater. 2021, 133, 168;c)R. Sridharan, A. R. Cameron, D. J. Kelly, C. J. Kearney, F. J. O’Brien, Mater. Today 2015, 18, 313.

[13]

S.-S. Jin, D.-Q. He, D. Luo, Y. Wang, M. Yu, B. Guan, Y. Fu, Z.-X. Li, T. Zhang, Y.-H. Zhou, ACS Nano 2019, 13, 6581.

[14]

F. Y. McWhorter, T. Wang, P. Nguyen, T. Chung, W. F. Liu, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 17253.

[15]

X. Dai, B. C. Heng, Y. Bai, F. You, X. Sun, Y. Li, Z. Tang, M. Xu, X. Zhang, X. Deng, Bioact. Mater. 2021, 6, 2029.

[16]

a)H. Wu, H. Dong, Z. Tang, Y. Chen, Y. Liu, M. Wang, X. Wei, N. Wang, S. Bao, D. Yu, Z. Wu, Z. Yang, X. Li, Z. Guo, L. Shi, Biomaterials 2023, 293, 121990;b)P.-S. Liu, H. Wang, X. Li, T. Chao, T. Teav, S. Christen, G. Di Conza, W.-C. Cheng, C.-H. Chou, M. Vavakova, Nat. Immunol. 2017, 18, 985;c)G. Morris, M. Gevezova, V. Sarafian, M. Maes, Cell Mol. Immunol. 2022, 19, 1079;d)J. N. Curran, D. C. Winter, D. Bouchier-Hayes, Wound Repair Regener. 2006, 14, 376.

[17]

D. Namgaladze, B. Brüne, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2016, 1861, 1796.

[18]

a)B. Kelly, E. L. Pearce, Cell Metab. 2020, 32, 154;b)M. Kieler, M. Hofmann, G. Schabbauer, FEBS J. 2021, 288, 3694.

[19]

a)L. Shen, P. Hu, Y. Zhang, Z. Ji, X. Shan, L. N. Ni, N. Ning, J. Wang, H. Tian, G. Shui, Y. Yuan, G. Li, H. Zheng, X.-P. Yang, D. Huang, X. Feng, M. J. Li, Z. Liu, T. Wang, Q. Yu, Cell Metab. 2021, 33, 971; b)S. Vandekeere, C. Dubois, J. Kalucka, M. R. Sullivan, M. Garcia-Caballero, J. Goveia, R. Y. Chen, F. F. Diehl, L. Bar-Lev, J. Souffreau, A. Pircher, S. Kumar, S. Vinckier, Y. Hirabayashi, S. Furuya, L. Schoonjans, G. Eelen, B. Ghesquiere, E. Keshet, X. R. Li, M. G. Vander Heiden, M. Dewerchin, P. Carmeliet, Cell Metab. 2018, 28, 573;c)J. L. Wilson, T. Nagele, M. Linke, F. Demel, S. D. Fritsch, H. K. Mayr, Z. N. Cai, K. Katholnig, X. L. Sun, L. Fragner, A. Miller, A. Haschemi, A. Popa, A. Bergthaler, M. Hengstschlager, T. Weichhart, W. Weckwerth, Cell Rep. 2020, 30, 1542;d)G. S. Ducker, J. D. Rabinowitz, Cell Metab. 2017, 25, 27.

[20]

a)S.-S. Jin, D.-Q. He, D. Luo, Y. Wang, M. Yu, B. Guan, Y. Fu, Z.-X. Li, T. Zhang, Y.-H. Zhou, C.-Y. Wang, Y. Liu, ACS Nano 2019, 13, 6581;b)O. R. Mahon, D. C. Browe, T. Gonzalez-Fernandez, P. Pitacco, I. T. Whelan, S. Von Euw, C. Hobbs, V. Nicolosi, K. T. Cunningham, K. H. G. Mills, D. J. Kelly, A. Dunne, Biomaterials 2020, 239, 119833.

[21]

a)T. Osathanon, C. M. Giachelli, M. J. Somerman, Biomaterials 2009, 30, 4513;b)S. Vimalraj, Gene 2020, 754, 144855.

[22]

L. A. Shiflett, L. M Tiede-Lewis, Y. X. Xie, Y. B. Lu, E. C. Ray, S. L. Dallas, Front. Cell Dev. Biol. 2019, 7, 718.

[23]

A. B. Ribeiro, F. Brognara, J. F. da Silva, J. A. Castania, P. G. Fernandes, R. C. Tostes, H. C. Salgado, Sci. Rep. 2020, 10, 19258.

[24]

a)A. Tsouknidas, L. Jimenez-Rojo, E. Karatsis, N. Michailidis, T. A. Mitsiadis, Front. Physiol. 2017, 8, 273; b)P. G. Cox, E. J. Rayfield, M. J. Fagan, A. Herrel, T. C. Pataky, N. Jeffery, Plos One 2012, 7, e36299.

[25]

J. Stefanowski, A. Lang, A. Rauch, L. Aulich, M. Kohler, A. F. Fiedler, F. Buttgereit, K. Schmidt-Bleek, G. N. Duda, T. Gaber, R. A. Niesner, A. E. Hauser, Front. Immunol. 2019, 10, 2588.

[26]

a)Y. Cui, J. Briscoe, S. Dunn, Chem. Mater. 2013, 25, 4215;b)H.-W. Lee, S. Moon, C.-H. Choi, D. K. Kim, S. J. Kang, J. Am. Ceram. Soc. 2012, 95, 2429.

[27]

J. Wu, Q. Xu, E. Z. Lin, B. W. Yuan, N. Qin, S. K. Thatikonda, D. H. Bao, ACS Appl. Mater. Interfaces 2018, 10, 17842.

[28]

M. Soleimani, S. Nadri, Nat. Protoc. 2009, 4, 102.

[29]

D. Kim, B. Langmead, S. L. Salzberg, Nat. Methods 2015, 12, 357.

[30]

B. Langmead, S. L. Salzberg, Nat. Methods 2012, 9, 357.

[31]

F. Shang, S. Liu, L. Ming, R. Tian, F. Jin, Y. Ding, Y. Zhang, H. Zhang, Z. Deng, Y. Jin, Theranostics 2017, 7, 4370.

RIGHTS & PERMISSIONS

2024 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/