Facile construction of dual-response super-resolution probes for tracking organelles dynamics

Daili Liu , Guiqian Fang , Yanfeng Wang , Caicai Meng , Zhidong Liu , Qixin Chen , Xintian Shao

Exploration ›› 2024, Vol. 4 ›› Issue (5) : 20230145

PDF
Exploration ›› 2024, Vol. 4 ›› Issue (5) : 20230145 DOI: 10.1002/EXP.20230145
RESEARCH ARTICLE

Facile construction of dual-response super-resolution probes for tracking organelles dynamics

Author information +
History +
PDF

Abstract

Super-resolution imaging techniques, such as structured illumination microscopy (SIM), have enabled researchers to obtain nanoscale organelle-level outputs in living systems, but they impose additional stringent requirements on fluorescence probes. However, high-performance, custom-designed SIM probes that can explain underlying biological processes remain unavailable. Herein, a customizable engineering toolkit is developed for the facile assembly of SIM probes suitable for subcellular component detection. This toolkit is used to customize a fluorescent molecule, CPC (coumarin–phenylhydrazine–carboxyl), capable of simultaneously monitoring peroxynitrite (ONOO) and polarity distribution in mitochondria and lipid droplets (LDs), respectively, through functional ON-OFFmechanisms. The customized CPC molecule demonstrated excellent imaging capabilities under SIM, enabled the successful localization ofmultiple organelles, and reliably tracked the distribution of different components, thus facilitating the study of the interplay between organelles. Using CPC, the physical transition of intracellular LDs is demonstrated fromheterogeneity to homogeneity. This was specifically observed during ferroptosis where the polarity of the LDs increased and their morphology became more contracted. Furthermore, the loss of LDs functionality could not counteract the accumulation of ONOO within the mitochondria, leading to the decoupling of mitochondrial LDs during ferroptosis. These results confirmed the potential mechanism of LDs dysfunction and decoupling triggered via cumulative mitochondrial oxidative stress during ferroptosis. To summarize, this toolkit will be a powerful tool for examining subtle variations among components during the interplay between different organelles, thus offering novel avenues for understanding and treating related diseases.

Keywords

dual-labeling / ferroptosis / lipid droplets / mitochondria / nanoscopic / toolbox

Cite this article

Download citation ▾
Daili Liu, Guiqian Fang, Yanfeng Wang, Caicai Meng, Zhidong Liu, Qixin Chen, Xintian Shao. Facile construction of dual-response super-resolution probes for tracking organelles dynamics. Exploration, 2024, 4(5): 20230145 DOI:10.1002/EXP.20230145

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) Q. Chen, H. Fang, X. Shao, Z. Tian, S. Geng, Y. Zhang, H. Fan, P. Xiang, J. Zhang, X. Tian, K. Zhang, W. He, Z. Guo, J. Diao, Nat. Commun. 2020, 11, 6290. b)H. Fang, S. Geng, M. Hao, Q. Chen, M. Liu, C. Liu, Z. Tian, C. Wang, T. Takebe, J.-L. Guan, Y. Chen, Z. Guo, W. He, J. Diao, Nat. Commun. 2021, 12, 109. c)L. Y. Liu, H. Fang, Q. Chen, M. H. Chan, M. Ng, K. N. Wang, W. Liu, Z. Tian, J. Diao, Z. W. Mao, V. W. Yam, Angew. Chem., Int. Ed. 2020, 59, 19229.

[2]

a) R. Platzer, B. K. Rossboth, M. C. Schneider, E. Sevcsik, F. Baumgart, H. Stockinger, G. J. Schutz, J. B. Huppa, M. Brameshuber, Nat. Commun. 2020, 11, 4993. b)Z. Ye, H. Yu, W. Yang, Y. Zheng, N. Li, H. Bian, Z. Wang, Q. Liu, Y. Song, M. Zhang, Y. Xiao, J. Am. Chem. Soc. 2019, 141, 6527.

[3]

a) A. M. Clemments, P. Botella, C. C. Landry, J. Am. Chem. Soc. 2017, 139, 3978.b)Z. Thiel, P. Rivera-Fuentes, Angew. Chem., Int. Ed. 2019, 58, 11474.

[4]

a) D. Dang, H. Zhang, Y. Xu, R. Xu, Z. Wang, R. T. K. Kwok, J. W. Y. Lam, L. Zhang, L. Meng, B. Z. Tang, ACS Nano 2019, 13, 11863.b)M. J. Sarmento, M. Oneto, S. Pelicci, L. Pesce, L. Scipioni, M. Faretta, L. Furia, G. I. Dellino, P. G. Pelicci, P. Bianchini, A. Diaspro, L. Lanzano, Nat. Commun. 2018, 9, 3415. c)G. Yang, Z. Liu, R. Zhang, X. Tian, J. Chen, G. Han, B. Liu, X. Han, Y. Fu, Z. Hu, Z. Zhang, Angew. Chem., Int. Ed. 2020, 59, 16154.

[5]

a) R. Zhai, B. Fang, Y. Lai, B. Peng, H. Bai, X. Liu, L. Li, W. Huang, Chem. Soc. Rev. 2023, 52, 942.b)W. Li, G. S. K. Schierle, B. Lei, Y. Liu, C. F. Kaminski, Chem. Rev. 2022, 122, 12495.

[6]

a) Q. Chen, C. Jin, X. Shao, R. Guan, Z. Tian, C. Wang, F. Liu, P. Ling, J. L. Guan, L. Ji, F. Wang, H. Chao, J. Diao, Small 2018, 14, e1802166. b)Q. Chen, X. Shao, M. Hao, H. Fang, R. Guan, Z. Tian, M. Li, C. Wang, L. Ji, H. Chao, J. L. Guan, J. Diao, Biomaterials 2020, 250, 120059.c)Q. Chen, X. Shao, Z. Tian, Y. Chen, P. Mondal, F. Liu, F. Wang, P. Ling, W. He, K. Zhang, Z. Guo, J. Diao, Nano Res. 2019, 12, 1009.d)G. Fang, H. Chen, X. Shao, H. Wang, D. Zhan, R. Wang, P. Meng, H. Fang, F. Liu, P. Ling, Z. Wu, J. Diao, Q. Yao, Q. Chen, Small Methods 2022, 6, e2200321. e)H. Fang, S. Yao, Q. Chen, C. Liu, Y. Cai, S. Geng, Y. Bai, Z. Tian, A. L. Zacharias, T. Takebe, Y. Chen, Z. Guo, W. He, J. Diao, ACS Nano 2019, 13, 14426.f)Y. Liu, C. Zhang, Y. Wei, H. Chen, L. Kong, Q. Chen, Y. Wang, Chem. Eng. J. 2021, 422, 130151.g)K. N. Wang, X. Shao, Z. Tian, L. Y. Liu, C. Zhang, C. P. Tan, J. Zhang, P. Ling, F. Liu, Q. Chen, J. Diao, Z. W. Mao, Adv. Sci. 2021, 8, e2004566.

[7]

a) C. Zhang, H. Shao, J. Zhang, X. Guo, Y. Liu, Z. Song, F. Liu, P. Ling, L. Tang, K. N. Wang, Q. Chen, Theranostics 2021, 11, 7767.b)H. Fang, Y. Chen, S. Geng, S. Yao, Z. Guo, W. He, Anal. Chem. 2022, 94, 17904.

[8]

a) A. Morozumi, M. Kamiya, S. N. Uno, K. Umezawa, R. Kojima, T. Yoshihara, S. Tobita, Y. Urano, J. Am. Chem. Soc. 2020, 142, 9625. b)S. Samanta, Y. He, A. Sharma, J. Kim, W. Pan, Z. Yang, J. Li, W. Yan, L. Liu, J. Qu, J. S. Kim, Chem 2019, 5, 1697.c)S. Adhikari, J. Moscatelli, E. M. Smith, C. Banerjee, E. M. Puchner, Nat. Commun. 2019, 10, 3400. d)J. Chen, C. Wang, W. Liu, Q. Qiao, H. Qi, W. Zhou, N. Xu, J. Li, H. Piao, D. Tan, X. Liu, Z. Xu, Angew. Chem., Int. Ed. 2021, 60, 25104.

[9]

L. Wu, J. Liu, X. Tian, R. R. Groleau, B. Feng, Y. Yang, A. C. Sedgwick, H. H. Han, Y. Wang, H. M. Wang, F. Huang, S. D. Bull, H. Zhang, C. Huang, Y. Zang, J. Li, X. P. He, P. Li, B. Tang, T. D. James, J. L. Sessler, J. Am. Chem. Soc. 2022, 144, 174.

[10]

a) B. R. Stockwell, Cell 2022, 185, 2401.b)Y. Wei, L. Kong, H. Chen, Y. Liu, Y. Xu, H. Wang, G. Fang, X. Shao, F. Liu, Y. Wang, Q. Chen, Chem. Eng. J. 2022, 429, 132134.

[11]

a) L. Yang, H. Wang, X. Yang, Q. Wu, P. An, X. Jin, W. Liu, X. Huang, Y. Li, S. Yan, S. Shen, T. Liang, J. Min, F. Wang, Signal Transduction Targeted Ther. 2020, 5, 138. b)S. Xu, J. Min, F. Wang, Sci. Bull. 2021, 66, 2257.c)J. Li, F. Cao, H. L. Yin, Z. J. Huang, Z. T. Lin, N. Mao, B. Sun, G. Wang, Cell Death Dis. 2020, 11, 88. d)X. Jiang, B. R. Stockwell, M. Conrad, Nat. Rev. Mol. Cell Biol. 2021, 22, 266.e)Z. Gao, S. Zheng, K.-i. Kamei, C. Tian, Acta Mater. Med. 2022, 1, 411.

[12]

a) Y. C. Wong, D. Ysselstein, D. Krainc, Nature 2018, 554, 382.b)W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, E. Betzig, Nat. Methods 2016, 13, 359.c)H. Inuzuka, J. Liu, W. Wei, A.-H. Rezaeian, Acta Mater. Med. 2022, 1, 24.

[13]

A.-H. Rezaeian, W. Wei, H. Inuzuka, Acta Mater. Med. 2022, 1, 42.

[14]

X. Shao, Q. Chen, L. Hu, Z. Tian, L. Liu, F. Liu, F. Wang, P. Ling, Z.-W. Mao, J. Diao, Nano Res. 2020, 13, 2149.

[15]

a) F. Gao, L. Li, J. Fan, J. Cao, Y. Li, L. Chen, X. Peng, Anal. Chem. 2019, 91, 3336.b)Y. Guo, D. Li, S. Zhang, Y. Yang, J. J. Liu, X. Wang, C. Liu, D. E. Milkie, R. P. Moore, U. S. Tulu, D. P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, D. Li, Cell 2018, 175, 1430.c)R. Heintzmann, T. Huser, Chem. Rev. 2017, 117, 13890.d)X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, L. Chen, Nat. Biotechnol. 2018, 36, 451.e)Y. Wu, H. Shroff, Nat. Methods 2018, 15, 1011.

[16]

a) M. Bosch, M. Sanchez-Alvarez, A. Fajardo, R. Kapetanovic, B. Steiner, F. Dutra, L. Moreira, J. A. Lopez, R. Campo, M. Mari, F. Morales-Paytuvi, O. Tort, A. Gubern, R. M. Templin, J. E. B. Curson, N. Martel, C. Catala, F. Lozano, F. Tebar, C. Enrich, J. Vazquez, M. A. Del Pozo, M. J. Sweet, P. T. Bozza, S. P. Gross, R. G. Parton, A. Pol, Science 2020, 370, eaay8085. b)M. Collot, T. K. Fam, P. Ashokkumar, O. Faklaris, T. Galli, L. Danglot, A. S. Klymchenko, J. Am. Chem. Soc. 2018, 140, 5401.c)K. N. Wang, L. Y. Liu, D. Mao, S. Xu, C. P. Tan, Q. Cao, Z. W. Mao, B. Liu, Angew. Chem., Int. Ed. 2021, 60, 15095.d)T. J. Krzystek, R. Banerjee, L. Thurston, J. Huang, K. Swinter, S. N. Rahman, T. L. Falzone, S. Gunawardena, Cell Death Dis. 2021, 12, 796. e)S. Wisnovsky, S. R. Jean, S. O. Kelley, Nat. Chem. Biol. 2016, 12, 567.f)H. Chen, J. Wang, X. Feng, M. Zhu, S. Hoffmann, A. Hsu, K. Qian, D. Huang, F. Zhao, W. Liu, H. Zhang, Z. Cheng, Chem. Sci. 2019, 10, 7946.

[17]

S. Chen, G. Dong, S. Wu, N. Liu, W. Zhang, C. Sheng, Acta Pharm. Sin. B 2019, 9, 144.

[18]

a) Y. Shen, X. Zhang, Y. Zhang, H. Li, L. Dai, X. Peng, Z. Peng, Y. Xie, Anal. Chim. Acta 2018, 1014, 71.b)C. Wang, W. Shu, Q. Chen, C. Yang, S. Su, M. Gao, R. Zhang, J. Jing, X. Zhang, Spectrochim. Acta, Part A 2021, 260, 119990.

[19]

L.-Y. Liu, H. Fang, Q. Chen, M. H. Chan, M. Ng, K.-N. Wang, W. Liu, Z. Tian, J. Diao, Z.-W. Mao, V.-W. Yam, Angew. Chem., Int. Ed. 2020, 59, 19229.

[20]

Y.-H. Pan, X.-X. Chen, L. Dong, N. Shao, L.-Y. Niu, Q.-Z. Yang, Chin. Chem. Lett. 2021, 32, 3895.

[21]

a) B. Zhang, W. M. Bailey, A. L. McVicar, A. N. Stewart, A. K. Veldhorst, J. C. Gensel, Brain Behav. Immun. 2019, 76, 139.b)F. Augsburger, A. Filippova, D. Rasti, T. Seredenina, M. Lam, G. Maghzal, Z. Mahiout, P. Jansen-Durr, U. G. Knaus, J. Doroshow, R. Stocker, K. H. Krause, V. Jaquet, Redox. Biol. 2019, 26, 101272.

[22]

Z. Yang, L. Li, J. Ling, T. Liu, X. Huang, Y. Ying, Y. Zhao, Y. Zhao, K. Lei, L. Chen, Z. Chen, Chem. Sci. 2020, 11, 8506.

[23]

X. Chen, R. Kang, G. Kroemer, D. Tang, Cell Death Differ. 2021, 28, 2843.

[24]

J. P. F Angeli, M. Schneider, B. Proneth, Y. Y. Tyurina, V. A. Tyurin, V. J. Hammond, N. Herbach, M. Aichler, A. Walch, E. Eggenhofer, D. Basavarajappa, O. Radmark, S. Kobayashi, T. Seibt, H. Beck, F. Neff, I. Esposito, R. Wanke, H. Forster, O. Yefremova, M. Heinrichmeyer, G. W. Bornkamm, E. K. Geissler, S. B. Thomas, B. R. Stockwell, V. B. O’Donnell, V. E. Kagan, J. A. Schick, M. Conrad, Nat. Cell. Biol. 2014, 16, 1180.

[25]

a) R. Chen, Z. Li, C. Peng, L. Wen, L. Xiao, Y. Li, Anal. Chem. 2022, 94, 13432.b)G. Liu, H. Zheng, J. Dai, H. Li, R. Zhou, C. Wang, Y. Gao, L. Wang, P. Sun, F. Liu, G. Lu, Sens. Actuators, B 2023, 381, 133438.c)C. Zhang, J. Li, X. Chen, Y. Hu, X. Huang, Dyes Pigm. 2022, 207, 110666.

RIGHTS & PERMISSIONS

2024 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/