Tau-targeting nanoparticles for treatment of Alzheimer's disease

Shreya Pawar , Mohd Ahmar Rauf , Hosam Abdelhady , Arun K. Iyer

Exploration ›› 2025, Vol. 5 ›› Issue (2) : 20230137

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (2) : 20230137 DOI: 10.1002/EXP.20230137
REVIEW

Tau-targeting nanoparticles for treatment of Alzheimer's disease

Author information +
History +
PDF

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the loss of neural connections and decreased brain tissue volume. Initially affecting the hippocampus and entorhinal complex, which are responsible for memory, the disease later impacts the cerebral cortex, controlling language, logic, and social conduct. While the exact cause is unknown, genetic mutations and environmental factors are implicated. Diagnosis involves computed tomography (CT) scans, Magnetic resonance imaging (MRIs), Positron emission tomography (PET) scans, and lumbar punctures to detect brain abnormalities, protein deposits, and cerebrospinal fluid biomarkers. AD features beta-amyloid plaques and neurofibrillary tau tangles that disrupt neuronal function, chronic inflammation, blood-brain barrier impairment, brain atrophy, and neuronal death. There is no cure; current treatments manage symptoms and slow cognitive decline. Research into genetic, cellular, and molecular pathways aims to develop targeted therapies. Tau tangle accumulation is closely linked to AD, making it crucial to explore therapies that restore normal tau pathways and prevent tau accumulation. Nanoparticulate drug delivery technologies offer promise in this area. This review discusses the potential of nanotechnology-based therapies to target AD-related tau accumulation and restore normal tau protein mechanics, which could preserve neuronal transmission, synaptic integrity, and brain tissue volume.

Keywords

Alzheimer's disease (AD) / amyloid / drug delivery / nanoparticles / tau

Cite this article

Download citation ▾
Shreya Pawar, Mohd Ahmar Rauf, Hosam Abdelhady, Arun K. Iyer. Tau-targeting nanoparticles for treatment of Alzheimer's disease. Exploration, 2025, 5(2): 20230137 DOI:10.1002/EXP.20230137

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alzheimer's Disease Fact Sheet, https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet (accessed: April 2023).

[2]

Z. Breijyeh, R. Karaman, Molecules 2020, 25, 5789.

[3]

M. B. Abubakar, K. O. Sanusi, A. Ugusman, W. Mohamed, H. Kamal, N. H. Ibrahim, C. S. Khoo, J. Kumar, Front. Aging Neurosci. 2022, 14, 742408.

[4]

B. DuBoff, M. Feany, J. Götz, Trends Neurosci. 2013, 36, 325.

[5]

B. DuBoff, J. Götz, M. B. Feany, Neuron 2012, 75, 618.

[6]

Biomarkers for Dementia Detection and Research, https://www.nia.nih.gov/health/biomarkers-dementia-detection-and-research (accessed: January 2022).

[7]

J. Weller, A. Budson, F1000Research 2018, 7,

[8]

C. A. Razzino, V. Serafín, M. Gamella, M. Pedrero, A. Montero-Calle, R. Barderas, M. Calero, A. O. Lobo, P. Yáñez-Sedeño, S. Campuzano, J. M. Pingarrón, Biosens. Bioelectron. 2020, 163, 112238.

[9]

S. Karastogiann, Biomed. J. Sci. Tech. Res. 2020, 32, 25123.

[10]

C. I. P. Chaparro, B. T. Simões, J. P. Borges, M. A. R. B. Castanho, P. I. P. Soares, V. Neves, Pharmaceutics 2023, 15, 2316.

[11]

L. Chen, J. Lin, J. Yi, Q. Weng, Y. Zhou, Z. Han, C. Li, J. Chen, Q. Zhang, Anal. Bioanal. Chem. 2019, 411, 5277.

[12]

M. Abbas, Polymers 2021, 13, 1051.

[13]

S. Al Abdullah, L. Najm, L. Ladouceur, F. Ebrahimi, A. Shakeri, N. Al-Jabouri, T. F. Didar, K. Dellinger, Adv. Funct. Mater. 2023, 33, 2302673.

[14]

T. T. Vu Nu, N. H. T. Tran, E. Nam, T. T. Nguyen, W. J. Yoon, S. Cho, J. Kim, K. A. Chang, H. Ju, RSC Adv. 2018, 8, 7855.

[15]

E. Taylor, All You Need to Know About Brain Scans and Dementia, https://www.alzheimersresearchuk.org/blog/all-you-need-to-know-about-brain-scans-and-dementia/ (accessed: June 2022).

[16]

What Happens to the Brain in Alzheimer's Disease?, https://www.nia.nih.gov/health/what-happens-brain-alzheimers-disease (accessed: January 2024).

[17]

G. L. Wenk, J. Clin. Psychol. 2003, 64, 7.

[18]

T. R. Mhyre, R. Nw, J. T. Boyd, G. Hall, C. Room, 2012, 65, 389.

[19]

M. A. Erickson, W. A. Banks, J. Cereb. Blood Flow Metab. 2013, 33, 1500.

[20]

A. D. Loof, L. Schoofs, OBM Neurobiol. 2019, 3, 1.

[21]

K. G. Yiannopoulou, S. G. Papageorgiou, Ther. Adv. Neurol. Disord. 2013, 6, 19.

[22]

How Is Alzheimer's Disease Treated?, https://www.nia.nih.gov/health/how-alzheimers-disease-treated (accessed: August 2023).

[23]

L. N. Chan, M. Wacholtz, R. I. Sha'afi, Mol. Membr. Biol. 1978, 1, 159.

[24]

Y. Feng, Y. Xia, G. Yu, X. Shu, H. Ge, K. Zeng, J. Wang, X. Wang, J. Neurochem. 2013, 126, 234.

[25]

J. Pleen, R. Townley, J. Neurol. 2022, 269, 1038.

[26]

C. K. Kim, Y. R. Lee, L. Ong, M. Gold, A. Kalali, J. Sarkar, J. Alzheimer's Dis. 2022, 87, 83.

[27]

A. C. LeBoeuf, S. F. Levy, M. Gaylord, A. Bhattacharya, A. K. Singh, M. A. Jordan, L. Wilson, S. C. Feinstein, J. Biol. Chem. 2008, 283, 36406.

[28]

P. Barbier, O. Zejneli, M. Martinho, A. Lasorsa, V. Belle, C. Smet-Nocca, P. O. Tsvetkov, F. Devred, I. Landrieu, Front. Aging Neurosci. 2019, 11, 204.

[29]

A. Mandal, What are Tau Proteins?, https://www.news-medical.net/life-sciences/What-are-Tau-Proteins.aspx (accessed: September 2023).

[30]

M. B. Maina, Y. K. Al-Hilaly, L. C. Serpell, Biomolecules 2016, 6, 9.

[31]

T. Carroll, S. Guha, K. Nehrke, G. V. W. Johnson, Biology 2021, 10, 1047.

[32]

H. Trzeciakiewicz, J. H. Tseng, C. M. Wander, V. Madden, A. Tripathy, C. X. Yuan, T. J. Cohen, Sci. Rep. 2017, 7, 44102.

[33]

S. Barghorn, Q. Zheng-Fischhofer, M. Ackmann, J. Biernat, M. Von Bergen, E. M. Mandelkow, E. Mandelkow, Biochemistry 2000, 39, 11714.

[34]

M. Hasegawa, M. J. Smith, M. Goedert, FEBS Lett. 1998, 437, 207.

[35]

M. Goedert, M. G. Spillantini, Science. 2006, 314, 777.

[36]

M. B. Maina, Y. K. Al-Hilaly, L. C. Serpell, Biomolecules 2016, 6, 9.

[37]

M. Deture, L. W. Ko, S. Yen, P. Nacharaju, C. Easson, J. Lewis, M. Van Slegtenhorst, M. Hutton, S. H. Yen, Brain Res. 2000, 853, 5.

[38]

M. Hasegawa, M. J. Smith, M. Iijima, T. Tabira, M. Goedert, FEBS Lett. 1999, 443, 93.

[39]

P. Nacharaju, J. Lewis, C. Easson, S. Yen, J. Hackett, M. Hutton, S. H. Yen, FEBS Lett. 1999, 447, 195.

[40]

M. Arrasate, M. Pérez, R. Armas-Portela, J. Ávila, FEBS Lett. 1999, 446, 199.

[41]

C. Rizzini, M. Goedert, J. R. Hodges, M. J. Smith, R. Jakes, R. Hills, J. H. Xuereb, R. A. Crowther, M. G. Spillantini, J. Neuropathol. Exp. Neurol. 2000, 59, 990.

[42]

S. H. Yen, M. Hutton, M. DeTure, L. W. Ko, P. Nacharaju, Brain Pathol. 1999, 9, 695.

[43]

T. C. Gamblin, M. E. King, H. Dawson, M. P. Vitek, J. Kuret, R. W. Berry, L. I. Binder, Biochemistry 2000, 39, 6136.

[44]

B. Eftekharzadeh, J. G. Daigle, L. E. Kapinos, A. Coyne, J. Schiantarelli, Y. Carlomagno, C. Cook, S. J. Miller, S. Dujardin, A. S. Amaral, J. C. Grima, R. E. Bennett, K. Tepper, M. DeTure, C. R. Vanderburgh, B. T. Corjuc, S. L. DeVos, J. A. Gonzalez, J. Chew, S. Vidensky, F. H. Gage, J. Mertens, J. Troncoso, E. Mandelkow, X. Salvatella, R. Y. H. Lim, L. Petrucelli, S. Wegmann, J. D. Rothstein, B. T. Hyman, Neuron 2018, 99, 925.

[45]

F. Paonessa, L. D. Evans, R. Solanki, D. Larrieu, S. Wray, J. Hardy, S. P. Jackson, F. J. Livesey, Cell Rep. 2019, 26, 582.

[46]

A. D. C. Alonso, T. Zaidi, I. Grundke-Iqbal, K. Iqbal, Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 5562.

[47]

I. Khlistunova, J. Biernat, Y. Wang, M. Pickhardt, M. Von Bergen, Z. Gazova, E. Mandelkow, E. M. Mandelkow, J. Biol. Chem. 2006, 281, 1205.

[48]

S. C. Feinstein, L. Wilson, Biochim. Biophys. Acta—Mol. Basis Dis. 2005, 1739, 268.

[49]

J. M. Bunker, K. Kamath, L. Wilson, M. A. Jordan, S. C. Feinstein, J. Biol. Chem. 2006, 281, 11856.

[50]

S. F. Levy, A. C. LeBoeuf, M. R. Massie, M. A. Jordan, L. Wilson, S. C. Feinstein, J. Biol. Chem. 2005, 280, 13520.

[51]

D. Panda, J. C. Samuel, M. Massie, S. C. Feinstein, L. Wilson, Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9548.

[52]

W. Noble, V. Olm, K. Takata, E. Casey, O. Mary, J. Meyerson, K. Gaynor, J. LaFrancois, L. Wang, T. Kondo, P. Davies, M. Burns, Veeranna, R. Nixon, D. Dickson, Y. Matsuoka, M. Ahlijanian, L. F. Lau, K. Duff, Neuron 2003, 38, 555.

[53]

M. A. Jordan, L. Wilson, in The Role of Microtubules in Cell Biology, Neurobiology, and Oncology, (Ed: T. Fojo), Humana Press, Totowa, USA 2008, Ch. 3, pp. 387.

[54]

Y. Xia, S. Prokop, B. I. Giasson, Mol. Neurodegener. 2021, 16, 37.

[55]

A. Gonçalves, D. Braguer, K. Kamath, L. Martello, C. Briand, S. Horwitz, L. Wilson, M. A. Jordan, Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 11737.

[56]

A. M. C. Yvon, P. Wadsworth, M. A. Jordan, Mol. Biol. Cell 1999, 10, 947.

[57]

W. Noble, D. P. Hanger, C. C. J. Miller, S. Lovestone, Front. Neurol. 2013, 4, 83.

[58]

J. Neddens, M. Temmel, S. Flunkert, B. Kerschbaumer, C. Hoeller, T. Loeffler, V. Niederkofler, G. Daum, J. Attems, B. Hutter-Paier, Acta Neuropathol. Commun. 2018, 6, 52.

[59]

J. Luna-Muñoz, F. García-Sierra, V. Falcón, I. Menéndez, L. Chávez-Macías, R. Mena, J. Alzheimer's Dis. 2005, 8, 29.

[60]

D. P. Hanger, K. Hughes, J. R. Woodgett, J. P. Brion, B. H. Anderton, Neurosci. Lett. 1992, 147, 58.

[61]

S. Lovestone, C. L. Hartley, J. Pearce, B. H. Anderton, Neuroscience 1996, 73, 1145.

[62]

S. Lovestone, C. H. Reynolds, D. Latimer, D. R. Davis, B. H. Anderton, J. M. Gallo, D. Hanger, S. Mulot, B. Marquardt, S. Stabel, J. R. Woodgett, C. C. J. Miller, Curr. Biol. 1994, 4, 1077.

[63]

A. Mudher, D. Shepherd, T. A. Newman, P. Mildren, J. P. Jukes, A. Squire, A. Mears, S. Berg, D. MacKay, A. A. Asuni, R. Bhat, S. Lovestone, Mol. Psychiatry 2004, 9, 522.

[64]

P. Allisy-Roberts, J. Williams, in Farr's Physics for Medical Imaging 2nd ed., Elsevier, Amsterdam, Netherlands 2008, Ch.2.

[65]

L. M. Ittner, Y. D. Ke, F. Delerue, M. Bi, A. Gladbach, J. van Eersel, H. Wölfing, B. C. Chieng, M. J. Christie, I. A. Napier, A. Eckert, M. Staufenbiel, E. Hardeman, J. Götz, Cell 2010, 142, 387.

[66]

M. L. Billingsley, R. L. Kincaid, Biochem. J. 1997, 323, 577.

[67]

E. D. Roberson, B. Halabisky, J. W. Yoo, J. Yao, J. Chin, F. Yan, T. Wu, P. Hamto, N. Devidze, G. Q. Yu, J. J. Palop, J. L. Noebels, L. Mucke, J. Neurosci. 2011, 31, 700.

[68]

T. M. E. Scales, P. Derkinderen, K. Y. Leung, H. L. Byers, M. A. Ward, C. Price, I. N. Bird, T. Perera, S. Kellie, R. Williamson, B. H. Anderton, C. H. Reynolds, Mol. Neurodegener. 2011, 6, 12.

[69]

A. Usardi, A. M. Pooler, A. Seereeram, C. H. Reynolds, P. Derkinderen, B. Anderton, D. P. Hanger, W. Noble, R. Williamson, FEBS J. 2011, 278, 2927.

[70]

R. Williamson, A. Usardi, D. P. Hanger, B. H. Anderton, FASEB J. 2008, 22, 1552.

[71]

G. Amadoro, V. Corsetti, M. T. Ciotti, F. Florenzano, S. Capsoni, G. Amato, P. Calissano, Neurobiol. Aging 2011, 32, 969.

[72]

T. Li, C. Hawkes, H. Y. Qureshi, S. Kar, H. K. Paudel, Biochemistry 2006, 45, 3134.

[73]

X. Liao, Y. Zhang, Y. Wang, J. Wang, Sci. China, Ser. C Life Sci. 2004, 47, 251.

[74]

S. Lee, J. W. Wang, W. Yu, B. Lu, Nat. Commun. 2012, 3, 1312.

[75]

G. Lee, R. Thangavel, V. M. Sharma, J. M. Litersky, K. Bhaskar, S. M. Fang, L. H. Do, A. Andreadis, G. Van Hoesen, H. Ksiezak-Reding, J. Neurosci. 2004, 24, 2304.

[76]

G. I. Cancino, K. Perez de Arce, P. U. Castro, E. M. Toledo, R. von Bernhardi, A. R. Alvarez, Neurobiol. Aging 2011, 32, 1249.

[77]

P. Derkinderen, T. M. E. Scales, D. P. Hanger, K. Y. Leung, H. L. Byers, M. A. Ward, C. Lenz, C. Price, I. N. Bird, T. Perera, S. Kellie, R. Williamson, W. Noble, R. A. Van Etten, K. Leroy, J. P. Brion, C. H. Reynolds, B. H. Anderton, J. Neurosci. 2005, 25, 6584.

[78]

T. Lebouvier, T. M. E. Scales, D. P. Hanger, R. L. Geahlen, B. Lardeux, C. H. Reynolds, B. H. Anderton, P. Derkinderen, Biochim. Biophys. Acta—Mol. Cell Res. 2008, 1783, 188.

[79]

F. Liu, I. Grundke-Iqbal, K. Iqbal, C. X. Gong, Eur. J. Neurosci. 2005, 22, 1942.

[80]

K. Santacruz, J. Lewis, T. Spires, J. Paulson, L. Kotilinek, M. Ingelsson, A. Guimaraes, M. DeTure, M. Ramsden, E. McCowan, C. Forster, M. Yue, J. Orne, C. Janus, A. Mariash, M. Kuskowski, B. Hyman, M. Hutton, K. H. Ashe, Science. 2005, 309, 476.

[81]

Z. Berger, H. Roder, A. Hanna, A. Carlson, V. Rangachari, M. Yue, Z. Wszolek, K. Ashe, J. Knight, D. Dickson, C. Andorfer, T. L. Rosenberry, J. Lewis, M. Hutton, C. Janus, J. Neurosci. 2007, 27, 3650.

[82]

A. B. Rocher, J. L. Crimins, J. M. Amatrudo, M. S. Kinson, M. A. Todd-Brown, J. Lewis, J. I. Luebke, Exp. Neurol. 2010, 223, 385.

[83]

D. N. Drechsel, A. A. Hyman, M. H. Cobb, M. W. Kirschner, Mol. Biol. Cell 1992, 3, 1141.

[84]

M. Manczak, P. H. Reddy, Hum. Mol. Genet. 2012, 21, 2538.

[85]

A. Ebneth, R. Godemann, K. Stamer, S. Illenberger, B. Trinczek, E. M. Mandelkow, E. Mandelkow, J. Cell Biol. 1998, 143, 777.

[86]

A. Schneider, J. Biernat, M. Von Bergen, E. Mandelkow, E. M. Mandelkow, Biochemistry 1999, 38, 3549.

[87]

J. H. Cho, G. V. W. Johnson, J. Biol. Chem. 2003, 278, 187.

[88]

J. R. Sundaram, C. P. Poore, N. H. Bin Sulaimee, T. Pareek, A. B. M. A. Asad, R. Rajkumar, W. F. Cheong, M. R. Wenk, G. S. Dawe, K. H. Chuang, H. C. Pant, S. Kesavapany, J. Neurosci. 2013, 33, 334.

[89]

S. Le Corre, H. W. Klafki, N. Plesnila, G. Hübinger, A. Obermeier, H. Sahagún, B. Monse, P. Seneci, J. Lewis, J. Eriksen, C. Zehr, M. Yue, E. McGowan, D. W. Dickson, M. Hutton, H. M. Roder, Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 9673.

[90]

S. Sarkar, J. Genet. 2018, 97, 783.

[91]

T. J. Cohen, J. L. Guo, D. E. Hurtado, L. K. Kwong, I. P. Mills, J. Q. Trojanowski, V. M. Y. Lee, Nat. Commun. 2011, 2, 252.

[92]

B. Lucke-Wold, K. Seidel, R. Udo, B. Omalu, M. Ornstein, R. Nolan, C. Rosen, J. Ross, J. Neurol. Neurosurg. 2017, 4, 140.

[93]

S. W. Min, X. Chen, T. E. Tracy, Y. Li, Y. Zhou, C. Wang, K. Shirakawa, S. S. Minami, E. Defensor, S. A. Mok, P. D. Sohn, B. Schilling, X. Cong, L. Ellerby, B. W. Gibson, J. Johnson, N. Krogan, M. Shamloo, J. Gestwicki, E. Masliah, E. Verdin, L. Gan, Nat. Med. 2015, 21, 1154.

[94]

T. E. Tracy, P. D. Sohn, S. S. Minami, C. Wang, S. W. Min, Y. Li, Y. Zhou, D. Le, I. Lo, R. Ponnusamy, X. Cong, B. Schilling, L. M. Ellerby, R. L. Huganir, L. Gan, Neuron 2016, 90, 245.

[95]

S. W. Min, S. H. Cho, Y. Zhou, S. Schroeder, V. Haroutunian, W. W. Seeley, E. J. Huang, Y. Shen, E. Masliah, C. Mukherjee, D. Meyers, P. A. Cole, M. Ott, L. Gan, Neuron 2010, 67, 953.

[96]

D. Luque-Contreras, K. Carvajal, D. Toral-Rios, D. Franco-Bocanegra, V. Campos-Peña, Oxid. Med. Cell. Longevity 2014, 2014, 497802.

[97]

E. Martínez, A. Navarro, C. Ordóñez, E. Del Valle, J. Tolivia, J. Alzheimer's Dis. 2013, 36, 129.

[98]

J. Yao, R. W. Irwin, L. Zhao, J. Nilsen, R. T. Hamilton, R. D. Brinton, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 14670.

[99]

S. Mondragón-Rodríguez, G. Perry, X. Zhu, P. I. Moreira, M. C. Acevedo-Aquino, S. Williams, Oxid. Med. Cell. Longevity 2013, 2013, 940603.

[100]

Z. Liu, T. Li, P. Li, N. Wei, Z. Zhao, H. Liang, X. Ji, W. Chen, M. Xue, J. Wei, Oxid. Med. Cell. Longevity 2015, 2015, 352723.

[101]

J. Yao, H. Du, S. Yan, F. Fang, C. Wang, L. F. Lue, L. Guo, D. Chen, D. M. Stern, F. J. Gunn Moore, J. X. Chen, O. Arancio, S. S. Du Yan, J. Neurosci. 2011, 31, 2313.

[102]

A. Pensalfini, M. Zampagni, G. Liguri, M. Becatti, E. Evangelisti, C. Fiorillo, S. Bagnoli, E. Cellini, B. Nacmias, S. Sorbi, C. Cecchi, Neurobiol. Aging 2011, 32, 210.

[103]

T. S. Ling, S. Chandrasegaran, L. Z. Xuan, T. L. Suan, E. Elaine, D. V. Nathan, Y. H. Chai, B. Gunasekaran, S. Salvamani, Biomed Res. Int. 2021, 2021, 5550938.

[104]

G. Karthivashan, P. Ganesan, S. Y. Park, J. S. Kim, D. K. Choi, Drug Delivery 2018, 25, 307.

[105]

V. Kasina, R. J. Mownn, R. Bahal, G. C. Sartor, Neuropsychopharmacology 2022, 47, 1431.

[106]

B. Begines, T. Ortiz, M. Pérez-Aranda, G. Martínez, M. Merinero, F. Argüelles-Arias, A. Alcudia, Nanomaterials 2020, 10, 1403.

[107]

L. Zhang, S. Yang, L. R. Wong, H. Xie, P. C. L. Ho, Mol. Pharm. 2020, 17, 4256.

[108]

G. Djiokeng Paka, S. Doggui, A. Zaghmi, R. Safar, L. Dao, A. Reisch, A. Klymchenko, V. G. Roullin, O. Joubert, C. Ramassamy, Mol. Pharm. 2016, 13, 391.

[109]

Y. Gao, Y. Zhou, R. Chandrawati, ACS Appl. Nano Mater. 2020, 3, 1.

[110]

N. Huang, S. Lu, X. G. Liu, J. Zhu, Y. J. Wang, R. T. Liu, Oncotarget 2017, 8, 81001.

[111]

M. A. Vakilinezhad, A. Amini, H. A. Javar, B. F. Baha'addini Beigi Zarandi, H. Montaseri, R. Dinarvand, DARU, J. Pharm. Sci. 2018, 26, 165.

[112]

C. Gao, X. Chu, W. Gong, J. Zheng, X. Xie, Y. Wang, M. Yang, Z. Li, C. Gao, Y. Yang, J. Nanobiotechnol. 2020, 18, 71.

[113]

S. D. Hettiarachchi, Y. Zhou, E. Seven, M. K. Lakshmana, A. K. Kaushik, H. S. Chand, R. M. Leblanc, J. Controlled Release 2019, 314, 125.

[114]

C. Ross, M. Taylor, N. Fullwood, D. Allsop, Int. J. Nanomed. 2018, 13, 8507.

[115]

G. T. Noble, J. F. Stefanick, J. D. Ashley, T. Kiziltepe, B. Bilgicer, Trends Biotechnol. 2014, 32, 32.

[116]

J. W. Mandell, G. A. Banker, J. Neurosci. 1996, 16, 5727.

[117]

Q. Song, M. Huang, L. Yao, X. Wang, X. Gu, J. Chen, J. Chen, J. Huang, Q. Hu, T. Kang, Z. Rong, H. Qi, G. Zheng, H. Chen, X. Gao, ACS Nano 2014, 8, 2345.

[118]

Y. Hu, X. Hu, Y. Lu, S. Shi, D. Yang, T. Yao, ACS Chem. Neurosci. 2020, 11, 3623.

[119]

A. Neely, C. Perry, B. Varisli, A. K. Singh, T. Arbneshi, D. Senapati, J. R. Kalluri, P. C. Ray, ACS Nano 2009, 3, 2834.

[120]

X. Zhang, S. Liu, X. Song, H. Wang, J. Wang, Y. Wang, J. Huang, J. Yu, ACS Sens. 2019, 4, 2140.

[121]

S. K. Vimal, H. Zuo, Z. Wang, H. Wang, Z. Long, S. Bhattacharyya, Small 2020, 16, 1906861.

[122]

B. Ghalandari, K. Asadollahi, A. Shakerizadeh, A. Komeili, G. Riazi, S. K. Kamrava, N. Attaran, J. Photochem. Photobiol. B Biol. 2019, 192, 131.

[123]

S. K. Sonawane, A. Ahmad, S. Chinnathambi, ACS Omega 2019, 4, 12833.

[124]

Y. J. Tan, D. Sui, W. H. Wang, M. H. Kuo, G. E. Reid, M. L. Bruening, Anal. Chem. 2013, 85, 5699.

[125]

R. Aebersold, M. Mann, Nature 2003, 422, 198.

[126]

M. Hong, D. C. R. Chen, P. S. Klein, V. M. Y. Lee, J. Biol. Chem. 1997, 272, 25326.

[127]

P. M. Fischer, M. P. Mazanetz, Nat. Rev. Drug Discov. 2007, 6, 464.

[128]

M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, Nano Today 2007, 2, 22.

[129]

T. Demeritte, B. P. V. Nellore, R. Kanchanapally, S. S. Sinha, A. Pramanik, S. R. Chavva, P. C. Ray, ACS Appl. Mater. Interfaces 2015, 7, 13693.

[130]

J. Zhao, F. Yin, L. Ji, C. Wang, C. Shi, X. Liu, H. Yang, X. Wang, L. Kong, ACS Appl. Mater. Interfaces 2020, 12, 44447.

[131]

Y. Li, E. Lim, T. Fields, H. Wu, Y. Xu, Y. A. Wang, H. Mao, ACS Biomater. Sci. Eng. 2019, 5, 3595.

[132]

M. Vallet-Regí, M. Colilla, I. Izquierdo-Barba, M. Manzano, Molecules 2018, 23, 47.

[133]

Q. Chen, Y. Du, K. Zhang, Z. Liang, J. Li, H. Yu, R. Ren, J. Feng, Z. Jin, F. Li, J. Sun, M. Zhou, Q. He, X. Sun, H. Zhang, M. Tian, D. Ling, ACS Nano 2018, 12, 1321.

[134]

H. Sun, Y. Zhong, X. Zhu, H. Liao, J. Lee, Y. Chen, L. Ma, J. Ren, M. Zhao, M. Tu, F. Li, H. Zhang, M. Tian, D. Ling, ACS Nano 2021, 15, 5263.

[135]

Z. Y. Qiao, W. J. Lai, Y. X. Lin, D. Li, X. H. Nan, Y. Wang, H. Wang, Q. J. Fang, Bioconjug. Chem. 2017, 28, 1709.

[136]

Q. Zhao, Y. Lin, N. Han, X. Li, H. Geng, X. Wang, Y. Cui, S. Wang, Drug Delivery 2017, 24, 94.

[137]

M. Xu, H. Zhou, Y. Liu, J. Sun, W. Xie, P. Zhao, J. Liu, ACS Appl. Mater. Interfaces 2018, 10, 32965.

RIGHTS & PERMISSIONS

2024 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/