Detection of biological loads in sewage using the automated robot-driven photoelectrochemical biosensing platform

Yiming Zhang , Zhi Chen , Songrui Wei , Yujun Zhang , Hai Fu , Han Zhang , Defa Li , Zhongjian Xie

Exploration ›› 2024, Vol. 4 ›› Issue (5) : 20230128

PDF
Exploration ›› 2024, Vol. 4 ›› Issue (5) : 20230128 DOI: 10.1002/EXP.20230128
RESEARCH ARTICLE

Detection of biological loads in sewage using the automated robot-driven photoelectrochemical biosensing platform

Author information +
History +
PDF

Abstract

Real-time polymerase chain reaction (RT-PCR) remains the most prevalent molecular detection technology for sewage analysis but is plagued with numerous disadvantages, such as time consumption, high manpower requirements, and susceptibility to false negatives. In this study, an automated robot-driven photoelectrochemical (PEC) biosensing platform is constructed, that utilizes the CRISPR/Cas12a system to achieve fast, ultra-sensitive, high specificity detection of biological loads in sewage. The Shennong-1 robot integrates several functional modules, involving sewage sampling and pretreatment to streamline the sewage monitoring. A screen-printed electrode is employed with a vertical graphene-based working electrode and enhanced with surface-deposited Au nanoparticles (NPs). CdTe/ZnS quantum dots (QDs) are further fabricated through the double-stranded DNA (dsDNA) anchored on Au NPs. Using the cDNA template of Omicron BA.5 spike gene as a model, the PEC biosensor demonstrates excellent analytical performance, with a lower detection limit of 2.93 × 102 zm and an outstanding selectivity at the level of single-basemutation recognition. Furthermore, the rapid, accurate detection of BA.5 in sewage demonstrates the feasibility of the PEC platform for sewage monitoring. In conclusion, this platform allows early detection and tracking of infectious disease outbreaks, providing timely data support for public health institutions to take appropriate prevention and control measures.

Keywords

CRISPR/Cas12a system / nucleic acid detection / photoelectrochemical biosensor / robot automation / sewage monitoring

Cite this article

Download citation ▾
Yiming Zhang, Zhi Chen, Songrui Wei, Yujun Zhang, Hai Fu, Han Zhang, Defa Li, Zhongjian Xie. Detection of biological loads in sewage using the automated robot-driven photoelectrochemical biosensing platform. Exploration, 2024, 4(5): 20230128 DOI:10.1002/EXP.20230128

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I. Bar-Or, K. Yaniv, M. Shagan, E. Ozer, M. Weil, V. Indenbaum, M. Elul, O. Erster, E. Mendelson, B. Mannasse, Front. Public Health 2022, 9, 561710.

[2]

S. Sun, J. Han, Environ. Chem. Lett. 2020, 19, 787.

[3]

G. Medema, L. Heijnen, G. Elsinga, R. Italiaander, A. Brouwer, Environ. Sci. Tech. Let. 2020, 7, 511.

[4]

M. May, Nat. Med. 2021, 27, 358.

[5]

N. Sims, B. Kasprzyk-Hordern, Environ. Int. 2020, 139, 105689.

[6]

A. Karkman, T. T. Do, F. Walsh, M. P. J. Virta, Trends Microbiol. 2018, 26, 220.

[7]

D. A. Larsen, K. R. Wigginton, Nat. Biotechnol. 2020, 38, 1151.

[8]

A. Zahedi, P. Monis, D. Deere, U. Ryan, Parasitol. Res. 2021, 120, 4167.

[9]

P. M. Choi, B. J. Tscharke, E. Donner, J. W. O’Brien, S. C. Grant, S. L. Kaserzon, R. Mackie, E. O’Malley, N. D. Crosbie, K. V. Thomas, J. F. Mueller, TrAC, Trends Anal. Chem. 2018, 105, 453.

[10]

L. Wu, D. Ning, B. Zhang, Y. Li, P. Zhang, X. Shan, Q. Zhang, M. R. Brown, Z. Li, J. D. van Nostrand, F. Ling, N. Xiao, Y. Zhang, J. Vierheilig, G. F. Wells, Y. Yang, Y. Deng, Q. Tu, A. Wang, T. Zhang, Z. He, J. Keller, P. H. Nielsen, P. J. J. Alvarez, C. S. Criddle, M. Wagner, J. M. Tiedje, Q. He, T. P. Curtis, D. A. Stahl, et al., Nat. Microbiol. 2019, 4, 1183.

[11]

Q. Hui, Y. Pan, Z. Yang, Case Stud. Chem. Environ. Eng. 2020, 2, 100064.

[12]

X. Xie, Z. Zhong, W. Zhao, C. Zheng, F. Wang, J. Liu, Radiology 2020, 296, 41.

[13]

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A Kullak-Ublick, J. Wang, ACS Nano 2020, 14, 5268.

[14]

Y. Li, S. Li, J. Wang, G. Liu, Trends Biotechnol. 2019, 37, 730.

[15]

R. Aman, A. Mahas, M. Mahfouz, ACS Synth. Biol. 2020, 9, 1226.

[16]

J. S. Chen, E. Ma, L. B. Harrington, M. Da Costa, X. Tian, J. M. Palefsky, J. A. Doudna, Science 2018, 360, 436.

[17]

M. Patchsung, K. Jantarug, A. Pattama, K. Aphicho, S. Suraritdechachai, P. Meesawat, K. Sappakhaw, N. Leelahakorn, T. Ruenkam, T. Wongsatit, N. Athipanyasilp, B. Eiamthong, B. Lakkanasirorat, T. Phoodokmai, N. Niljianskul, D. Pakotiprapha, S. Chanarat, A. Homchan, R. Tinikul, P. Kamutira, K. Phiwkaow, S. Soithongcharoen, C. Kantiwiriyawanitch, V. Pongsupasa, D. Trisrivirat, J. Jaroensuk, T. Wongnate, S. Maenpuen, P. Chaiyen, S. Kamnerdnakta, et al., Nat. Biomed. Eng. 2020, 4, 1140.

[18]

J. S. Gootenberg, O. O. Abudayyeh, M. J. Kellner, J. Joung, J. J. Collins, F. Zhang, Science 2018, 360, 439.

[19]

J. S. Gootenberg, O. O. Abudayyeh, J. W. Lee, P. Essletzbichler, A. J. Dy, J. Joung, V. Verdine, N. Donghia, N. M. Daringer, C. A. Freije, C. Myhrvold, R. P. Bhattacharyya, J. Livny, A. Regev, E. V. Koonin, D. T. Hung, P. C. Sabeti, J. J. Collins, F. Zhang, Science 2017, 356, 438.

[20]

S.-Y. Li, Q.-X. Cheng, J.-K. Liu, X.-Q. Nie, G.-P. Zhao, J. Wang, Cell Res. 2018, 28, 491.

[21]

S. Y. Li, Q. X. Cheng, J. M. Wang, X. Y. Li, Z. L. Zhang, S. Gao, R. B. Cao, G. P. Zhao, J. Wang, Cell Discovery 2018, 4, 20.

[22]

H. Kim, S. Lee, H. W. Seo, B. Kang, J. Moon, K. G. Lee, D. Yong, H. Kang, J. Jung, E. K. Lim, J. Jeong, H. G. Park, C. M. Ryu, T. Kang, ACS Nano 2020, 14, 17241.

[23]

R. Hajian, S. Balderston, T. Tran, T. DeBoer, J. Etienne, M. Sandhu, N. A. Wauford, J. Y. Chung, J. Nokes, M. Athaiya, J. Paredes, R. Peytavi, B. Goldsmith, N. Murthy, I. M. Conboy, K. Aran, Nat. Biomed. Eng. 2019, 3, 427.

[24]

F. Zheng, Z. Chen, J. Li, R. Wu, B. Zhang, G. Nie, Z. Xie, H. Zhang, Adv. Sci. 2022, 9, 2105231.

[25]

C. Wu, Z. Chen, C. Li, Y. Hao, Y. Tang, Y. Yuan, L. Chai, T. Fan, J. Yu, X. Ma, O. A Al-Hartomy, S. Wageh, A. G Al-Sehemi, Z. Luo, Y. He, J. Li, Z. Xie, H. Zhang, Nano-Micro Lett. 2022, 14, 159.

[26]

X. Liu, Y. Zhao, F. Li, Biosens. Bioelectron. 2021, 173, 112832.

[27]

Z. Qiu, J. Shu, J. Liu, D. Tang, Anal. Chem. 2018, 91, 1260.

[28]

W.-W. Zhao, J.-J. Xu, H.-Y. Chen, Chem. Rev. 2014, 114, 7421.

[29]

L. Ge, Q. Hong, H. Li, C. Liu, F. Li, Adv. Funct. Mater. 2019, 29, 1904000.

[30]

Z. Yu, L. Huang, J. Chen, Y. Tang, B. Xia, D. Tang, Electrochim. Acta 2020, 332, 135473.

[31]

C. Li, W. Lu, X. Zhou, M. Pang, X. Luo, Anal. Chem. 2018, 90, 14239.

[32]

M. Hojamberdiev, B. Czech, A. C. Göktaş, K. Yubuta, Z. C. Kadirova, J. Alloys Compd. 2020, 827, 154339.

[33]

M. H. Hsu, C. J. Chang, H. T. Weng, ACS Sustainable Chem. Eng. 2016, 4, 1381.

[34]

J. Zhang, Y. Wang, J. Zhang, Z. Lin, F. Huang, J. Yu, ACS Appl. Mater. Interfaces 2013, 5, 1031.

[35]

J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 2016, 316, 194.

[36]

Z. Guo, K. Jiang, H. Jiang, H. Zhang, Q. Liu, T. You, J. Hazard. Mater. 2022, 424, 127498.

[37]

D. Liao, G. Liang, Y. Liu, W. Yan, Y. Guo, W. Liang, C. Dong, L. Fan, J. Hazard. Mater. 2023, 441, 129901.

[38]

Z. Chen, C. Wu, Y. Yuan, Z. Xie, T. Li, H. Huang, S. Li, J. Deng, H. Lin, Z. Shi, C. Li, Y. Hao, Y. Tang, Y. You, O. A Al-Hartomy, S. Wageh, A. G Al-Sehemi, R. Lu, L. Zhang, X. Lin, Y. He, G. Zhao, D. Li, H. Zhang, J. Nanobiotechnol. 2023, 21, 141.

[39]

C. F. Guo, Y. Chen, L. Tang, F. Wang, Z. Ren, Nano Lett. 2016, 16, 594.

[40]

H. Gong, X. Hu, R. Zeng, Y. Li, J. Xu, M. Li, D. Tang, Sens. Actuators, B 2022, 369, 132307.

[41]

R. Zeng, J. Xu, L. Lu, Q. Lin, X. Huang, L. Huang, M. Li, D. Tang, Chem. Commun. 2022, 58, 7562.

[42]

R. Zeng, H. Gong, Y. Li, Y. Li, W. Lin, D. Tang, D. Knopp, Anal. Chem. 2022, 94, 7442.

[43]

H. Gong, Y. Wu, R. Zeng, Y. Zeng, X. Liu, D. Tang, Chem. Commun. 2021, 57, 8977.

[44]

H. Meng, P. Liu, F. Mo, M. Chen, Y. Fu, Sens. Actuators, B 2020, 325, 128782.

[45]

Y. Li, R. Zeng, W. Wang, J. Xu, H. Gong, L. Li, M. Li, D. Tang, ACS Sens. 2022, 7, 1593.

[46]

R. Zeng, W. Wang, M. Chen, Q. Wan, C. Wang, D. Knopp, D. Tang, Nano Energy 2021, 82, 105711.

[47]

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, P. Wang, Nano Lett. 2013, 13, 14.

[48]

Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B. C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y.-J. Hsu, Y. Li, Nano Lett. 2013, 13, 3817.

[49]

A. Suea-Ngam, P. D. Howes, A. J. DeMello, Chem. Sci. 2021, 12, 12733.

[50]

D. Zhang, Y. Yan, H. Que, T. Yang, X. Cheng, S. Ding, X. Zhang, W. Cheng, ACS Sens. 2020, 5, 557.

[51]

Y. Dai, C. Wang, L. Y. Chiu, K. Abbasi, B. S. Tolbert, G. Sauvé, Y. Yen, C. C. Liu, Biosens. Bioelectron. 2018, 117, 60.

RIGHTS & PERMISSIONS

2024 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/