Wash-free fluorescent tools based on organic molecules: Design principles and biomedical applications

Jingyun Tan , Chunfei Wang , Zhangjun Hu , Xuanjun Zhang

Exploration ›› 2025, Vol. 5 ›› Issue (1) : 20230094

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (1) : 20230094 DOI: 10.1002/EXP.20230094
REVIEW

Wash-free fluorescent tools based on organic molecules: Design principles and biomedical applications

Author information +
History +
PDF

Abstract

Fluorescence-assisted tools based on organic molecules have been extensively applied to interrogate complex biological processes in a non-invasive manner with good sensitivity, high resolution, and rich contrast. However, the signal-to-noise ratio is an essential factor to be reckoned with during collecting images for high fidelity. In view of this, the wash-free strategy is proven as a promising and important approach to improve the signal-to-noise ratio, thus a thorough introduction is presented in the current review about wash-free fluorescent tools based on organic molecules. Firstly, generalization and summarization of the principles for designing wash-freemolecular fluorescent tools (WFTs) aremade. Subsequently, tomake the thought ofmolecule designmore legible, a wash-free strategy is highlighted in recent studies from four diverse but tightly binding aspects: (1) special chemical structures, (2) molecular interactions, (3) bio-orthogonal reactions, (4) abiotic reactions. Meanwhile, biomedical applications including bioimaging, biodetection, and therapy, are ready to be accompanied by. Finally, the prospects for WFTs are elaborated and discussed. This review is a timely conclusion about wash-free strategy in the fluorescence-guided biomedical applications, which may bring WFTs to the forefront and accelerate their extensive applications in biology and medicine.

Keywords

biomedical applications / design principles / molecular fluorescent tools / wash-free

Cite this article

Download citation ▾
Jingyun Tan, Chunfei Wang, Zhangjun Hu, Xuanjun Zhang. Wash-free fluorescent tools based on organic molecules: Design principles and biomedical applications. Exploration, 2025, 5(1): 20230094 DOI:10.1002/EXP.20230094

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) S. Yao, K. D. Belfield, Eur. J. Org. Chem. 2012, 2012, 3199;b) Z. Guo, S. Park, J. Yoon, I. Shin, Chem. Soc. Rev. 2014, 43, 16;c) R. Gui, H. Jin, X. Bu, Y. Fu, Z. Wang, Q. Liu, Coord. Chem. Rev. 2019, 383, 82;d) E. Lenzi, D. J. de Aberasturi, L. M. Liz-Marzán, ACS Sens. 2019, 4, 1126;e) P. Li, F. Long, W. Chen, J. Chen, P. K. Chu, H. Wang, Curr. Opin. Biomed. Eng. 2020, 13, 51.

[2]

a) H. K. Yoon, A. Ray, Y.-E. K. Lee, G. Kim, X. Wang, R. Kopelman, J. Mater. Chem. B 2013, 1, 5611;b) A. E. Marriott, H. Sjoberg, H. Tyrer, J. Gamble, E. Murphy, J. Archer, A. Steven, M. J. Taylor, J. D. Turner, Sci. Rep. 2018, 8, 5910;c) Y. Liu, L. Teng, H.-W. Liu, C. Xu, H. Guo, L. Yuan, X.-B. Zhang, W. Tan, Sci. China Chem. 2019, 62, 1275;d) S.-Z. Lu, X.-Y. Guo, M.-S. Zou, Z.-Q. Zheng, Y.-C. Li, X.-D. Li, L.-L. Li, H. Wang, Adv. Healthcare Mater. 2020, 9, 1901229.

[3]

a) Y.-C. Lu, C.-X. Yang, X.-P. Yan, Nanoscale 2015, 7, 17929;b) X. Liu, H. Jiang, J. Ye, C. Zhao, S. Gao, C. Wu, C. Li, J. Li, X. Wang, Adv. Funct. Mater. 2016, 26, 8694;c) L. Li, S. Zhang, R. Li, Z. Chen, Opt. Eng. 2017, 56, 043106;d) Y. Yin, C. Liu, G. Gao, J. Li, X. Long, P. Zhang, W. Guo, Front. Pharmacol. 2022, 13, 890246.

[4]

a) S. Taira, Y. Sugiura, S. Moritake, S. Shimma, Y. Ichiyanagi, M. Setou, Anal. Chem. 2008, 80, 4761;b) E. R. A. van Hove, D. F. Smith, R. M. Heeren, J. Chromatogr. A 2010, 1217, 3946;c) A. R. Buchberger, K. DeLaney, J. Johnson, L. Li, Anal. Chem. 2018, 90, 240;d) C. Liu, K. Qi, L. Yao, Y. Xiong, X. Zhang, J. Zang, C. Tian, M. Xu, J. Yang, Z. Lin, Anal. Chem. 2019, 91, 6616.

[5]

a) J.-W. Shen, C.-X. Yang, L.-X. Dong, H.-R. Sun, K. Gao, X.-P. Yan, Anal. Chem. 2013, 85, 12166;b) S. Mirza, M. S. Ahmad, M. I. A. Shah, M. Ateeq, in Metal Nanoparticles for Drug Delivery and Diagnostic Applications (Eds: M. R. Shah, M. Imran, S. Ullah), Elsevier, Amsterdam, The Netherlands 2020, Ch. 11;c) C. He, Q. Kong, X. Shang, Y. Duan, Y. Cui, J. Wang, C. Ci, H. Sang, J. Infect. Chemother. 2021, 27, 1596.

[6]

a) W. Rasheed, M. R. Shah, M. H. Kazmi, K. Shah, S. Afridi, New J. Chem. 2016, 40, 5546;b) T. Uchihashi, C. Ganser, Biophys. Rev. 2020, 12, 363.

[7]

a) N. Oriuchi, T. Higuchi, T. Ishikita, M. Miyakubo, H. Hanaoka, Y. Iida, K. Endo, Cancer Sci. 2006, 97, 1291;b) Y. Sun, M. Yu, S. Liang, Y. Zhang, C. Li, T. Mou, W. Yang, X. Zhang, B. Li, C. Huang, Biomaterials 2011, 32, 2999;c) H. J. Lee, E. B. Ehlerding, W. Cai, Chembiochem 2019, 20, 422.

[8]

S. Shashkova, M. C. Leake, Biosci. Rep. 2017, 37, BSR20170031.

[9]

a) Y. Yu, M. Zhou, W. Zhang, L. Huang, D. Miao, H. Zhu, G. Su, Mol. Pharm. 2019, 16, 1929;b) G. Chen, Y. Zhao, Y. Xu, C. Zhu, T. Liu, K. Wang, Int. J. Pharm. 2020, 589, 119763;c) C. Xu, R. Song, P. Lu, J. Chen, Y. Zhou, G. Shen, M. Jiang, W. Zhang, Int. J. Nanomed. 2020, 15, 65;d) W. Shen, G. Han, L. Yu, S. Yang, X. Li, W. Zhang, P. Pei, Int. J. Nanomed. 2022, 17, 1397;e) Y. Wang, X. M. Zhang, Y. Sun, H. L. Chen, L. Y. Zhou, Iran. J. Pharm. Res. 2021, 20, 371; f) Y. Sun, T. Shi, L. Zhou, Y. Zhou, B. Sun, X. Liu, J. Microencapsulation 2017, 34, 675.

[10]

a) X. Dou, K. Sun, H. Chen, Y. Jiang, L. Wu, J. Mei, Z. Ding, J. Xie, Antibiotics (Basel) 2021, 10, 358;b) T. J. Jayeoye, F. N. Eze, O. O. Olatunde, S. Singh, J. Zuo, O. J. Olatunji, Int. J. Nanomed. 2021, 16, 7557.

[11]

a) L. Zhang, Z. Wang, H. Wang, W. Dong, Y. Liu, Q. Hu, S. Shuang, C. Dong, X. Gong, Microchim. Acta 2021, 188, 183; b) H. Liu, J. Yang, Z. Li, L. Xiao, A. A. Aryee, Y. Sun, R. Yang, H. Meng, L. Qu, Y. Lin, X. Zhang, Anal. Chem. 2019, 91, 9259.

[12]

L. Li, Y. Xue, X. Li, J. Li, Y. Fu, Y. Ding, T. Liu, N. Jia, Y. Wu, H. Bu, X. Ouyang, Anal. Chem. 2024, 96, 2052.

[13]

Y. Hori, K. Kikuchi, Curr. Opin. Chem. Biol. 2013, 17, 644.

[14]

a) M. Shin, Y. Hori, K. Kikuchi, Acc. Chem. Res. 2014, 47, 247;b) Y. Hori, K. Kikuchi, Acc. Chem. Res. 2019, 52, 2849.

[15]

A. Nadler, C. Schultz, Angew. Chem., Int. Ed. 2013, 52, 2408.

[16]

W. Chyan, R. T. Raines, ACS Chem. Biol. 2018, 13, 1810.

[17]

A. S. Klymchenko, Acc. Chem. Res. 2017, 50, 366.

[18]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 18, 1740.

[19]

a) Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361;b) Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun. 2009, 29, 4332;c) L. Shi, Y.-H. Liu, K. Li, A. Sharma, K.-K. Yu, M. S. Ji, L.-L. Li, Q. Zhou, H. Zhang, J. S. Kim, X.-Q. Yu, Angew. Chem., Int. Ed. 2020, 59, 9962.

[20]

R. Zhang, X. Qin, F. Kong, P. Chen, G. Pan, Drug Delivery 2019, 26, 328.

[21]

H. Strahl, J. Errington, Annu. Rev. Microbiol. 2017, 71, 519.

[22]

D. G. Sant, S. G. Tupe, C. V. Ramana, M. V. Deshpande, J. Appl. Microbiol. 2016, 121, 1498.

[23]

S. M. Sayed, K.-F. Xu, H.-R. Jia, F.-F. Yin, L. Ma, X. Zhang, A. Khan, Q. Ma, F.-G. Wu, X. Lu, Anal. Chim. Acta 2021, 1146, 41.

[24]

S. M. Sayed, H.-R. Jia, Y.-W. Jiang, Y.-X. Zhu, L. Ma, F. Yin, I. Hussain, A. Khan, Q. Ma, F.-G. Wu, X. Lu, J. Mater. Chem. B 2021, 9, 4303.

[25]

K. Zhang, R. Hu, Z. Wang, B. Z. Tang, Mater. Chem. Front. 2021, 5, 2724.

[26]

M.-Y. Wu, J.-K. Leung, C. Kam, T. Y. Chou, J.-L. Wang, X. Zhao, S. Feng, S. Chen, Sci. China Chem. 2022, 65, 979.

[27]

a) P. Sarder, D. Maji, S. Achilefu, Bioconjugate Chem. 2015, 26, 963;b) W. Becker, J. Microsc. 2012, 247, 119.

[28]

L. Hu, B. Xu, H. Chen, H. Wang, Sens. Actuators B 2021, 340, 129950.

[29]

D. Wang, H. Su, R. T. K. Kwok, X. Hu, H. Zou, Q. Luo, M. M. S. Lee, W. Xu, J. W. Y. Lam, B. Z. Tang, Chem. Sci. 2018, 9, 3685.

[30]

N. Niu, H. Zhou, N. Liu, J. Ren, W. Li, C. Yu, Chem. Commun. 2019, 55, 14446.

[31]

a) J. Zuo, E. Zhu, W. Yin, C. Yao, J. Liao, X. Ping, Y. Zhu, X. Cai, Y. Rao, H. Feng, K. Zhang, Z. Qian, Chem. Sci. 2023, 14, 2139;b) X. Zhang, Z. Wang, H. Chu, Z. Xiong, Y. Li, Y. Chen, Q. Zhu, H. Feng, E. Zhu, J. Zhou, P. Huang, Z. Qian, Anal. Chem. 2022, 94, 4048.

[32]

A. Saminathan, M. Zajac, P. Anees, Y. Krishnan, Nat. Rev. Mater. 2022, 7, 355.

[33]

D. E. Gottschling, T. Nyström, Cell 2017, 169, 24.

[34]

H. Wu, X. Guo, C. Yu, W.-Y. Wong, E. Hao, L. Jiao, Dyes Pigm. 2020, 176, 108209.

[35]

F.-Z. Xu, C.-Y. Wang, Q. Wang, J.-W. Zou, Y.-J. Qiao, Z.-Q. Guo, W. Zhao, W.-H. Zhu, Chem. Commun. 2022, 58, 6393.

[36]

a) H. Singh, D. Sareen, J. M. George, V. Bhardwaj, S. Rha, S. J. Lee, S. Sharma, A. Sharma, J. S. Kim, Coord. Chem. Rev. 2022, 452, 214283;b) J. L. L. Guo, Z. Liu, Q. Li, Prog. Chem. 2022, 34, 2489.

[37]

a) J. A. Olzmann, P. Carvalho, Nat. Rev. Mol. Cell Biol. 2019, 20, 137;b) S. Martin, R. G. Parton, Nat. Rev. Mol. Cell Biol. 2006, 7, 373.

[38]

a) T. C. Walther, R. V. Farese Jr., Ann. Rev. Biochem. 2012, 81, 687;b) S. Zhang, P. Zhu, J. Yuan, K. Cheng, Q. Xu, W. Chen, Z. Pan, Y. Zheng, Front. Pharmacol. 2023, 14, 1149665;c) X. Qi, S. Zheng, M. Ma, N. Lian, H. Wang, L. Chen, A. Song, C. Lu, S. Zheng, H. Jin, Front. Pharmacol. 2022, 13, 912825; d) Y. Cong, Y. Hong, D. Wang, P. Cheng, Z. Wang, C. Xing, W. Sun, G. Xu, Toxicol. Sci. 2023, 191, 276; e) Y. Q. Hua, Y. Zeng, J. Xu, X. L. Xu, Phytomedicine 2021, 81, 153412;f) Y. Peng, J. Xu, Y. Zeng, L. Chen, X. L. Xu, Phytomedicine 2019, 62, 152935;g) S. Wang, J. Tao, H. Chen, M. R. Kandadi, M. Sun, H. Xu, G. D. Lopaschuk, Y. Lu, J. Zheng, H. Peng, J. Ren, Acta Pharm. Sin. B 2021, 11, 3508;h) Y. Zeng, Y. Q. Hua, W. Wang, H. Zhang, X. L. Xu, Biochem. Pharmacol. 2020, 175, 113927.

[39]

H. Wang, C. Zhang, X. Shen, Z. Wang, J. Yang, S. Shen, L. Hu, J. Pan, X. Gu, Dyes Pigm. 2023, 212, 111137.

[40]

a) E. M. Brunt, Mod. Pathol. 2007, 20, S40;b) D. Kim, W. R. Kim, Clin. Gastroenterol. Hepatol. 2017, 15, 474.

[41]

a) N. Stefan, K. Kantartzis, H.-U. Häring, Endocr. Rev. 2008, 29, 939;b) C. Shuai, G. Q. Xia, F. Yuan, S. Wang, X. W. Lv, Eur. J. Pharmacol. 2021, 905, 174198.

[42]

S. M. Sayed, X.-F. Li, H.-R. Jia, S. Durrani, F.-G. Wu, X. Lu, Sens. Actuators, B 2021, 343, 130128.

[43]

a) K. Liu, M. J. Czaja, Cell Death Differ. 2013, 20, 3;b) N. Martinez-Lopez, R. Singh, Annu. Rev. Nutr. 2015, 35, 215.

[44]

R. Zechner, F. Madeo, D. Kratky, Nat. Rev. Mol. Cell Biol. 2017, 18, 671.

[45]

L. Feng, F. Meng, G. Niu, Chem. Asian J. 2023, 18, e202300163.

[46]

S. D. Hiremath, R. U. Gawas, S. C. Mascarenhas, A. Ganguly, M. Banerjee, A. Chatterjee, New J. Chem. 2019, 43, 5219.

[47]

Y. Yang, S. Li, Q. Zhang, Y. Kuang, A. Qin, M. Gao, F. Li, B. Z. Tang, J. Mater. Chem. B 2019, 7, 2434.

[48]

a) R. I. Nicholson, J. M. W. Gee, M. E. Harper, Eur. J. Cancer 2001, 37, 9;b) N. Normanno, A. De Luca, C. Bianco, L. Strizzi, M. Mancino, M. R. Maiello, A. Carotenuto, G. De Feo, F. Caponigro, D. S. Salomon, Gene 2006, 366, 2.

[49]

N. I. Goldstein, M. Prewett, K. Zuklys, P. Rockwell, J. Mendelsohn, Clin. Cancer Res. 1995, 1, 1311.

[50]

X. Shi, C. Y. Y. Yu, H. Su, R. T. K. Kwok, M. Jiang, Z. He, J. W. Y. Lam, B. Z. Tang, Chem. Sci. 2017, 8, 7014.

[51]

a) G. Wang, H. Zhang, J. Sun, Y. Zhang, F. He, J. Zou, Int. Immunopharmacol. 2021, 96, 107744;b) Y. Li, H. Xu, H. Wang, K. Yang, J. Luan, S. Wang, Biomed. Pharmacother. 2023, 165, 115218;c) D. Chen, C. Huang, Z. Chen, Biomed. Pharmacother. 2019, 111, 791;d) Y. A. R. Mahaman, F. Huang, H. Kessete Afewerky, T. M. S. Maibouge, B. Ghose, X. Wang, Med. Res. Rev. 2019, 39, 608;e) Z. M. Qian, Y. Ke, Med. Res. Rev. 2020, 40, 633;f) Z. Y. Wang, J. Liu, Z. Zhu, C. F. Su, S. G. Sreenivasmurthy, A. Iyaswamy, J. H. Lu, G. Chen, J. X. Song, M. Li, Biomed. Pharmacother. 2021, 133, 110968.

[52]

A. Gautam, A. Gupta, P. Prasad, P. K. Sasmal, Dalton Trans. 2023, 52, 7843.

[53]

a) C. Wang, W. Chi, Q. Qiao, D. Tan, Z. Xu, X. Liu, Chem. Soc. Rev. 2021, 50, 12656;b) Y. Li, T. Liu, H. Liu, M.-Z. Tian, Y. Li, Acc. Chem. Res. 2014, 47, 1186.

[54]

a) E. Yamaguchi, C. Wang, A. Fukazawa, M. Taki, Y. Sato, T. Sasaki, M. Ueda, N. Sasaki, T. Higashiyama, S. Yamaguchi, Angew. Chem., Int. Ed. 2015, 54, 4539;b) Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899.

[55]

K. Yu, S. Shen, Y. Wang, J. Yang, Z. Wang, F. Ding, J. Ge, Y. Deng, L. Hu, M. Wang, H. Wang, Tetrahedron Lett. 2023, 117, 154376.

[56]

C.-J. Wu, X.-Y. Li, T. Zhu, M. Zhao, Z. Song, S. Li, G.-G. Shan, G. Niu, Anal. Chem. 2022, 94, 3881.

[57]

R. J. Schulze, M. A. McNiven, Semin. Liver Dis. 2019, 39, 283.

[58]

H. Wang, C. Zhang, L. Hu, F. Tang, Y. Wang, F. Ding, J. Lu, A. Ding, Chem. Asian J. 2023, 18, e202201291.

[59]

J. L. Belmonte-Vázquez, Y. A. Amador-Sánchez, L. A. Rodríguez-Cortés, B. Rodríguez-Molina, Chem. Mater. 2021, 33, 7160.

[60]

a) F. Yu, H. Zhao, Y. Li, G. Xia, H. Wang, Mater. Chem. Front. 2022, 6, 155;b) Z. Huang, A. Ding, J. Yang, C. Wang, F. Tang, Chem. Eur. J. 2023, 29, e202203628;c) L. A. Rodríguez-Cortés, A. Navarro-Huerta, B. Rodríguez-Molina, Matter 2021, 4, 2622.

[61]

Z. Wang, T. Pan, Y. Tian, J. Liao, J. Mater. Chem. B 2022, 10, 7045.

[62]

S. Feng, Y. Liu, Q. Li, Z. Gui, G. Feng, Anal. Chem. 2022, 94, 1601.

[63]

B. Zhang, G. Feng, S. Wang, X. Zhang, Dyes Pigm. 2018, 149, 356.

[64]

O. M. Obukhova, N. O Mchedlov-Petrossyan, N. A. Vodolazkaya, L. D. Patsenker, A. O. Doroshenko, Colorants 2022, 1, 58.

[65]

N. O McHedlov-Petrossyan, V. I. Kukhtik, V. I. Alekseeva, Dyes Pigm. 1994, 24, 11.

[66]

G. V. Lukinavičius, L. Reymond, K. Umezawa, O. Sallin, E. D’Este, F. Göttfert, H. Ta, S. W. Hell, Y. Urano, K. Johnsson, J. Am. Chem. Soc. 2016, 138, 9365.

[67]

L. Wang, M. Tran, E. D’Este, J. Roberti, B. Koch, L. Xue, K. Johnsson, Nat. Chem. 2020, 12, 165.

[68]

a) P. R. Andrews, D. J. Craik, J. L. Martin, J. Med. Chem. 1984, 27, 1648;b) F. J. Carver, C. A. Hunter, F. J. Carver, E. M. Seward, Chem. Commun. 1998, 7, 775.

[69]

B. Liu, L. McDonald, Q. Liu, X. Bi, J. Zheng, L. Wang, Y. Pang, Sens. Actuators, B 2016, 235, 309.

[70]

K. A. Bertman, C. S. Abeywickrama, H. J. Baumann, N. Alexander, L. McDonald, L. P. Shriver, M. Konopka, Y. Pang, J. Mater. Chem. B 2018, 6, 5050.

[71]

F. Hovelmann, I. Gaspar, A. Ephrussi, O. Seitz, J. Am. Chem. Soc. 2013, 135, 19025.

[72]

X. Zhang, Z. Ye, X. Zhang, H. Man, Z. Huang, N. Li, Y. Xiao, Chem. Commun. 2019, 55, 1951.

[73]

C. S. Abeywickrama, K. J. Wijesinghe, R. V. Stahelin, Y. Pang, Chem. Commun. 2017, 53, 5886.

[74]

Y. Hori, T. Norinobu, M. Sato, K. Arita, M. Shirakawa, K. Kikuchi, J. Am. Chem. Soc. 2013, 135, 12360.

[75]

a) Y. Hori, H. Ueno, S. Mizukami, K. Kikuchi, J. Am. Chem. Soc. 2009, 131, 16610;b) Y. Hori, K. Nakaki, M. Sato, S. Mizukami, K. Kikuchi, Angew. Chem., Int. Ed. 2012, 51, 5611.

[76]

T. K. Liu, P. Y. Hsieh, Y. D. Zhuang, C. Y. Hsia, C. L. Huang, H. P. Lai, H. S. Lin, I. C. Chen, H. Y. Hsu, K. T. Tan, ACS Chem. Biol. 2014, 9, 2359.

[77]

E. Prifti, L. Reymond, M. Umebayashi, R. Hovius, H. Riezman, K. Johnsson, ACS Chem. Biol. 2014, 9, 606.

[78]

a) V. Martinez, M. Henary, Chemistry 2016, 22, 13764;b) I. N. Kurniasih, H. Liang, P. C. Mohr, G. Khot, J. P. Rabe, A. Mohr, Langmuir 2015, 31, 2639.

[79]

a) S. Chen, J. Xu, Y. Li, B. Peng, L. Luo, H. Feng, Z. Chen, Z. Wang, Chin. J. Org. Chem. 2022, 42, 1651;b) J. Qi, X. Hu, X. Dong, Y. Lu, H. Lu, W. Zhao, W. Wu, Adv. Drug Delivery Rev. 2019, 143, 206.

[80]

T. Guindulain, J. Comas, J. Vives-Rego, Appl. Environ. Microbiol. 1997, 63, 4608.

[81]

a) A. Okamoto, Chem. Soc. Rev. 2011, 40, 5815;b) D. Figeys, E. Arriaga, A. Renborg, N. J. Dovichi, J. Chromatogr. A 1994, 669, 205.

[82]

H.-R. Jia, Y. X. Zhu, K.-F. Xu, G.-Y. Pan, X. Liu, Y. Qiao, F.-G. Wu, Chem. Sci. 2019, 10, 4062.

[83]

X.-J. Chao, Z.-Y. Pan, L.-L. Sun, M. Tang, K.-N. Wang, Z.-W. Mao, Sens. Actuators, B 2019, 285, 156.

[84]

C. Wang, X. Song, L. Chen, Y. Xiao, Biosens. Bioelectron. 2017, 91, 313.

[85]

a) D. M. Patterson, L. A. Nazarova, J. A. Prescher, ACS Chem. Biol. 2014, 9, 592;b) J. Tu, M. Xu, R. M. Franzini, ChemBioChem 2019, 20, 1615;c) B. L. Oliveira, Z. Guo, G. J. L. Bernardes, Chem. Soc. Rev. 2017, 46, 4895.

[86]

a) D. Wu, K. Yang, Z. Zhang, Y. Feng, L. Rao, X. Chen, G. Yu, Chem. Soc. Rev. 2022, 51, 1336;b) S. Mushtaq, S.-J. Yun, J. Jeon, Molecules 2019, 24, 3567.

[87]

X. Ji, K. Ji, V. Chittavong, R. E. Aghoghovbia, M. Zhu, B. Wang, J. Org. Chem. 2017, 82, 1471.

[88]

G. Knorr, E. Kozma, J. M. Schaart, K. Nemeth, G. Torok, P. Kele, Bioconjugate Chem. 2018, 29, 1312.

[89]

L. Plougastel, M. R. Pattanayak, M. Riomet, S. Bregant, A. Sallustrau, M. Nothisen, A. Wagner, D. Audisio, F. Taran, Chem. Commun. 2019, 55, 4582.

[90]

Y. Chen, C. M. Clouthier, K. Tsao, M. Strmiskova, H. Lachance, J. W. Keillor, Angew. Chem., Int. Ed. 2014, 53, 13785.

[91]

Y. Chen, K. Tsao, S. L. Acton, J. W. Keillor, Angew. Chem., Int. Ed. 2018, 57, 12390.

[92]

Y. Dou, Y. Wang, Y. Duan, B. Liu, Q. Hu, W. Shen, H. Sun, Q. Zhu, Chemistry 2020, 26, 4576.

[93]

M. Auvray, D. Naud-Martin, G. Fontaine, F. Bolze, G. Clavier, F. Mahuteau-Betzer, Chem. Sci. 2023, 14, 8119.

[94]

Z. Liang, H. Pang, G. Zeng, T. Chen, Anal. Chem. 2022, 94, 8293.

[95]

D. Zhou, Z. Duan, Z. Li, F. Ge, R. Wei, L. Kong, Front. Pharmacol. 2022, 13, 1091779.

[96]

a) Y. Hu, W. Lu, G. Chen, P. Wang, Z. Chen, Y. Zhou, M. Ogasawara, D. Trachootham, L. Feng, H. Pelicano, P. J. Chiao, M. J. Keating, G. Garcia-Manero, P. Huang, Cell Res. 2012, 22, 399;b) D. A. Tuveson, A. T. Shaw, N. A. Willis, D. P. Silver, E. L. Jackson, S. Chang, K. L. Mercer, R. Grochow, H. Hock, D. Crowley, S. R. Hingorani, T. Zaks, C. King, M. A. Jacobetz, L. Wang, R. T. Bronson, S. H. Orkin, R. A. DePinho, T. Jacks, Cancer Cell 2004, 5, 375.

[97]

P. Werther, K. Yserentant, F. Braun, K. Grußmayer, V. Navikas, M. Yu, Z. Zhang, M. J. Ziegler, C. Mayer, A. J. Gralak, M. Busch, W. Chi, F. Rominger, A. Radenovic, X. Liu, E. A. Lemke, T. Buckup, D.-P. Herten, R. Wombacher, ACS Cent. Sci. 2021, 7, 1561.

[98]

a) S. Kurdziałek, R. Demkowicz-Dobrzański, J. Opt. 2021, 23, 075701;b) H. Blom, J. Widengren, Chem. Rev. 2017, 117, 7377.

[99]

a) M. P. Tracey, D. Pham, K. Koide, Chem. Soc. Rev. 2015, 44, 4769;b) M. Martínez-Calvo, J. L. Mascareñas, Coord. Chem. Rev. 2018, 359, 57; c) Y. Bai, J. Chen, S. C. Zimmerman, Chem. Soc. Rev. 2018, 47, 1811;d) J. J. Soldevila-Barreda, N. Metzler-Nolte, Chem. Rev. 2019, 119, 829;e) X. Ru, Y. Guo, Z. Bai, X. Xie, X. Ma, L. Zhu, K. Wang, F. Wang, L. Yang, J. Lu, Commun. Chem. 2019, 2, 105.

[100]

a) P. K. Sasmal, S. Carregal-Romero, W. J. Parak, E. Meggers, Organometallics 2012, 31, 5968;b) M. Tomas-Gamasa, M. Martinez-Calvo, J. R. Couceiro, J. L. Mascarenas, Nat. Commun. 2016, 7, 12538;c) C. Streu, E. Meggers, Angew. Chem., Int. Ed. 2006, 45, 5645;d) A. M. Perez-Lopez, B. Rubio-Ruiz, V. Sebastian, L. Hamilton, C. Adam, T. L. Bray, S. Irusta, P. M. Brennan, G. C Lloyd-Jones, D. Sieger, J. Santamaria, A. Unciti-Broceta, Angew. Chem., Int. Ed. 2017, 56, 12548.

[101]

Q. Zhang, H. Liu, Z. Pan, Chem. Commun. 2014, 50, 15319.

[102]

J. M. Lindvall, K. E. Blomberg, J. Väliaho, L. Vargas, J. E. Heinonen, A. Berglöf, A. J. Mohamed, B. F. Nore, M. Vihinen, C. I. Smith, Immunol. Rev. 2005, 203, 200.

[103]

R. W. Hendriks, S. Yuvaraj, L. P. Kil, Nat. Rev. Cancer 2014, 14, 219.

[104]

Y. Chen, M. Xu, W. Xu, H. Song, L. Hu, S. Xue, S. Zhang, X. Qian, H. Xie, Chem. Commun. 2019, 55, 9919.

[105]

a) P. Oelschlaeger, Biomolecules 2021, 11, 986;b) R. A. Bonomo, Cold Spring Harbor Perspect. Med. 2017, 7, a025239.

[106]

a) R. Sjöback, J. Nygren, M. Kubista, Spectrochim. Acta A Mol. Biomol. Spectrosc. 1995, 51, L7;b) W. R. Orndorff, A. Hemmer, J. Am. Chem. Soc. 1927, 49, 1272.

[107]

J. Bucevičius, G. Kostiuk, R. Gerasimaitė, T. Gilat, G. Lukinavičius, Chem. Sci. 2020, 11, 7313.

[108]

M. V. Konovalova, P. A. Markov, E. A. Durnev, D. V. Kurek, S. V. Popov, V. P. Varlamov, J. Biomed. Mater. Res. A 2017, 105, 547.

[109]

J. Mosquera, I. García, L. M. Liz-Marzán, Acc. Chem. Res. 2018, 51, 2305.

[110]

S. L. Scinto, D. A. Bilodeau, R. Hincapie, W. Lee, S. S. Nguyen, M. Xu, C. W. am Ende, M. G. Finn, K. Lang, Q. Lin, J. P. Pezacki, J. A. Prescher, M. S. Robillard, J. M. Fox, Nat. Rev. Methods Primers 2021, 1, 30.

[111]

C. P. Ramil, Q. Lin, Chem. Commun. 2013, 49, 11007.

[112]

H.-W. Shih, D. N. Kamber, J. A. Prescher, Curr. Opin. Chem. Biol. 2014, 21, 103.

[113]

a) S. E. Geissinger, A. Schreiber, M. C. Huber, L. G. Stuhn, S. M. Schiller, ACS Synth. Biol. 2020, 9, 827;b) H. Komatsu, Y. Shindo, K. Oka, J. P. Hill, K. Ariga, Angew. Chem., Int. Ed. 2014, 53, 3993;c) J. Geng, W. Li, Y. Zhang, N. Thottappillil, J. Clavadetscher, A. Lilienkampf, M. Bradley, Nat. Chem. 2019, 11, 578.

RIGHTS & PERMISSIONS

2024 The Author(s). Exploration published by Henan University and JohnWiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/