Unveiling the importance of the interface in nanocomposite cathodes for proton-conducting solid oxide fuel cells

Yanru Yin , Yifan Wang , Nan Yang , Lei Bi

Exploration ›› 2024, Vol. 4 ›› Issue (4) : 20230082

PDF
Exploration ›› 2024, Vol. 4 ›› Issue (4) :20230082 DOI: 10.1002/EXP.20230082
RESEARCH ARTICLE

Unveiling the importance of the interface in nanocomposite cathodes for proton-conducting solid oxide fuel cells

Author information +
History +
PDF

Abstract

Designing a high-performance cathode is essential for the development of protonconducting solid oxide fuel cells (H-SOFCs), and nanocomposite cathodes have proven to be an effective means of achieving this. However, the mechanism behind the nanocomposite cathodes’ remarkable performance remains unknown. Doping the Co element into BaZrO3 can result in the development of BaCoO3 and BaZr0.7Co0.3O3 nanocomposites when the doping concentration exceeds 30%, according to the present study. The construction of the BaCoO3/BaZr0.7Co0.3O3 interface is essential for the enhancement of the cathode catalytic activity, as demonstrated by thin-filmstudies using pulsed laser deposition to simulate the interface of the BCO and BZCO individual particles and first-principles calculations to predict the oxygen reduction reaction steps. Eventually, the H-SOFC with a BaZr0.4Co0.6O3 cathode produces a record-breaking power density of 2253 mW cm−2 at 700°C.

Keywords

interface / proton conductor / pulsed laser deposition / solid oxide fuel cells

Cite this article

Download citation ▾
Yanru Yin, Yifan Wang, Nan Yang, Lei Bi. Unveiling the importance of the interface in nanocomposite cathodes for proton-conducting solid oxide fuel cells. Exploration, 2024, 4(4): 20230082 DOI:10.1002/EXP.20230082

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) Y. Zhang, J. Mei, C. Yan, T. Liao, J. Bell, Z. Sun, Adv. Mater. 2020, 32, 1902806; b) J. Mei, T. Liao, J. Liang, Y. X. Qiao, S. X. Dou, Z. Q. Sun, Adv. Energy Mater. 2020, 10, 1901997.

[2]

Z. Zhuang, Y. Li, R. Yu, L. Xia, J. Yang, Z. Lang, J. Zhu, J. Huang, J. Wang, Y. Wang, L. Fan, J. Wu, Y. Zhao, D. Wang, Y. Li, Nat. Catal. 2022, 5, 300.

[3]

Y. Zhang, B. Chen, D. Guan, M. Xu, R. Ran, M. Ni, W. Zhou, R. O’Hayre, Z. Shao, Nature 2021, 591, 246.

[4]

a) Y. Zhang, R. Knibbe, J. Sunarso, Y. Zhong, W. Zhou, Z. Shao, Z. Zhu, Adv. Mater. 2017, 29, 1700132; b) D. J. L. Brett, A. Atkinson, N. P. Brandon, S. J. Skinner, Chem. Soc. Rev. 2008, 37, 1568;c) X. Zhang, L. Liu, Z. Zhao, B. Tu, D. Ou, D. Cui, X. Wei, X. Chen, M. Cheng, Nano Lett. 2015, 15, 1703.

[5]

C. Duan, J. Huang, N. Sullivan, R. O’Hayre, Appl. Phys. Rev. 2020, 7, 011314.

[6]

a) H. Zhang, Y. Zhou, K. Pei, Y. Pan, K. Xu, Y. Ding, B. Zhao, K. Sasaki, Y. M. Choi, Y. Chen, M. Liu, Environ. Sci. 2022, 15, 287;b) D. Cao, M. Y. Zhou, X. M. Yan, Z. J. Liu, J. Liu, Electrochem. Commun. 2021, 125, 106986.

[7]

I. Zvonareva, X. Z. Fu, D. Medvedev, Z. P. Shao, Environ. Sci. 2022, 15, 439.

[8]

a) N. Wang, C. Tang, L. Du, R. Zhu, L. Xing, Z. Song, B. Yuan, L. Zhao, Y. Aoki, S. Ye, Adv. Energy Mater. 2022, 12, 2201882; b) Y. Niu, Y. Zhou, W. Zhang, Y. Zhang, C. Evans, Z. Luo, N. Kane, Y. Ding, Y. Chen, X. Guo, W. Lv, M. Liu, Adv. Energy Mater. 2022, 12, 2103783.

[9]

M. Wang, C. Su, Z. Zhu, H. Wang, L. Ge, Compos. Part B-Eng. 2022, 238, 109881

[10]

a) J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M. Liu, G. Kim, ChemSusChem 2014, 7, 2811;b) C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O’Hayre, Science 2015, 349, 1321.

[11]

a) J. H. Kim, J. Hong, D. -K. Lim, S. Ahn, J. Kim, J. K. Kim, D. Oh, S. Jeon, S.-J. Song, W. Jung, Environ. Sci. 2022, 15, 1097;b) M. Papac, V. Stevanovi, A. Zakutayev, R. O’Hayre, Nat. Mater. 2021, 20, 301;c) K. Park, H. Bae, H.-K. Kim, I.-G. Choi, M. Jo, G.-M. Park, M. Asif, A. Bhardwaj, K.-S. Lee, Y.-C. Kim, S. J. Song, E. D. Wachsman, J.-Y. Park, Adv. Energy Mater. 2023, 13, 2202999; d) Z. Zhao, J. Cui, M. Zou, S. Mu, H. Huang, Y. Meng, K. He, K. S. Brinkman, J. Tong, J. Power Sources 2020, 450, 227609.

[12]

H. Ding, W. Wu, C. Jiang, Y. Ding, W. Bian, B. Hu, P. Singh, C. Orme, L. Wang, Y. Zhang, D. Ding, Nat. Commun. 2020, 11, 1907.

[13]

a) Y. Song, Y. Chen, W. Wang, C. Zhou, Y. Zhong, G. Yang, W. Zhou, M. Liu, Z. Shao, Joule 2019, 3, 2842;b) D. Zou, Y. Yi, Y. Song, D. Guan, M. Xu, R. Ran, W. Wang, W. Zhou, Z. Shao, J. Mater. Chem. 2022, 10, 5381; c) Y. Yi, R. Ran, W. Wang, W. Zhou, Z. Shao, Curr. Opin. Green Sustainable Chem. 2022, 38, 100711.

[14]

Y. Rao, S. Zhong, F. He, Z. Wang, R. Peng, Y. Lu, Int. J. Hydrogen Energy 2012, 37, 12522.

[15]

X. Zhang, C. Pei, X. Chang, S. Chen, R. Liu, Z.-J. Zhao, R. Mu, J. Gong, J. Am. Chem. Soc. 2020, 142, 11540.

[16]

Q. Ji, L. Bi, J. Zhang, H. Cao, X. S. Zhao, Environ. Sci. 2020, 13, 1408.

[17]

R. Xie, X. Hu, Y. Shi, Z. Nie, N. Zhang, E. Traversa, Y. Yu, N. Yang, ACS Appl. Energy Mater. 2020, 3, 7988.

[18]

G. J. Ia O’, Y. Shao-Horn, J. Electrochem. Soc. 2009, 156, B816.

[19]

K. Kerman, C. H. Ko, S. Ramanathan, Phys. Chem. Chem. Phys. 2012, 14, 11953.

[20]

A. B Munoz-Garcia, M. Tuccillo, M. Pavone, J. Mater. Chem. 2017, 5, 11825.

[21]

a) Y. Chen, S. Yoo, K. Pei, D. Chen, L. Zhang, B. deGlee, R. Murphy, B. Zhao, Y. Zhang, Y. Chen, M. Liu, Adv. Funct. Mater. 2018, 28, 1704907; b) Y. Xie, N. Shi, D. M. Huan, W. Tan, J. Zhu, X. Zheng, H. Pan, R. Peng, C. Xia, ChemSusChem 2018, 11, 3423;c) Y. Bu, S. Joo, Y. Zhang, Y. Wang, D. Meng, X. Ge, G. Kim, J. Power Sources 2020, 451, 227812;d) J. Hou, Q. Wang, J. Li, Y. Lu, L. Wang, X.-Z. Fu, J.-L. Luo, J. Power Sources 2020, 466, 228240; e) Q. Wang, J. Hou, Y. Fan, X.-A. Xi, J. Li, Y. Lu, G. Huo, L. Shao, X.-Z. Fu, J.-L. Luo, J. Mater. Chem. 2020, 8, 7704;f) Y. Ling, T. Guo, Y. Guo, Y. Yang, Y. Tian, X. Wang, X. Ou, P. Feng, J. Adv. Ceram. 2021, 10, 1052;g) H. Dai, Y. Yin, X. Li, C. Ma, Z. Chen, M. Hua, L. Bi, Sustainable Mater. Technol. 2022, 32, e00409h) L. Zhang, Y. Yin, Y. Xu, S. Yu, L. Bi, Sci. China Mater. 2022, 65, 1485; i) Y. Yin, H. Dai, S. Yu, L. Bi, E. Traversa, SusMat 2022, 2, 607;j) Z. Ma, Q. Ye, B. Zhang, W. Yang, F. Dong, M. Ni, Z. Lin, Adv. Funct. Mater. 2022, 32, 2209054; k) H. Tong, M. Fu, Y. Yang, F. Chen, Z. Tao, Adv. Funct. Mater. 2022, 32, 2209695; l) Z. Wang, Y. Wang, J. Wang, Y. Song, M. J. Robson, A. Seong, M. Yang, Z. Zhang, A. Belotti, J. Liu, G. Kim, J. Lim, Z. Shao, F. Ciucci, Nat. Catal. 2022, 5, 777;m) R. Zhou, Y. Yin, H. Dai, X. Yang, Y. Gu, L. Bi, J. Adv. Ceram. 2023, 12, 1189; n) R. Zhou, Y. Gu, H. Dai, Y. Xu, L. Bi, J. Eur. Ceram. Soc. 2023, 43, 6612.

[22]

G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.

[23]

V. I. Anisimov, J. Zaanen, O. K. Andersen, Phys. Rev. B 1991, 44, 943.

RIGHTS & PERMISSIONS

2024 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/