Motorizing the buckled blister for rotary actuation

Pengfei Yang , Ruixing Huang , Fei Dang , Baoxiang Shan , Dewen Wang , Hong Liu , Yi Li , Xiangbiao Liao

Exploration ›› 2024, Vol. 4 ›› Issue (5) : 20230055

PDF
Exploration ›› 2024, Vol. 4 ›› Issue (5) : 20230055 DOI: 10.1002/EXP.20230055
RESEARCH ARTICLE

Motorizing the buckled blister for rotary actuation

Author information +
History +
PDF

Abstract

Snap-through bistability was widely exploited for rapid hopping in micro-electro-mechanical systems and soft robots. However, considerable energy input was required to trigger the transition between discrete buckling states blocked by potentialwells.Here a dynamic buckling mechanism of a buckled blister constrained inside an outer ring is explored for eliciting rotary actuation via a localized change of curvature in the blister. Due to rotational invariance of the buckled blister, lower energy supply is required to initiate the snap-through of buckling compared to conventional bistable mechanism. The controllability in rotational speed and output torque of the bimetallic blister-based rotator inside a rigid stator is exhibited, and the locomotion is demonstrated with two elastic rings via localizedpneumatic actuators.Withbroadchoices of stimulus andmaterial for rings, the findings illustrate the promising potential of two nested rings to create activemotions for diverse applications including gearlessmotors, peristaltic pumps, and locomotive robots.

Keywords

buckling / rotary actuation / rotary mechanism / snap-through bistability

Cite this article

Download citation ▾
Pengfei Yang, Ruixing Huang, Fei Dang, Baoxiang Shan, Dewen Wang, Hong Liu, Yi Li, Xiangbiao Liao. Motorizing the buckled blister for rotary actuation. Exploration, 2024, 4(5): 20230055 DOI:10.1002/EXP.20230055

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Katz, S. Givli, J. Mech. Phys. Solids 2015, 78, 443.

[2]

a) H. Fu, K. Nan, W. Bai, W. Huang, K. Bai, L. Lu, C. Zhou, Y. Liu, F. Liu, J. Wang, M. Han, Z. Yan, H. Luan, Y. Zhang, Y. Zhang, J. Zhao, X. Cheng, M. Li, J. W. Lee, Y. Liu, D. Fang, X. Li, Y. Huang, Y. Zhang, J. A. Rogers, Nat. Mater. 2018, 17, 268b)L. Boue, M. Adda-Bedia, A. Boudaoud, D. Cassani, Y. Couder, A. Eddi, M. Trejo, Phys. Rev. Lett. 2006, 97, 166104.

[3]

a) B. Camescasse, A. Fernandes, J. Pouget, Int. J. Solids Struct. 2013, 50, 2881;b)P. Rothemund, A. Ainla, L. Belding, D. J. Preston, S. Kurihara, Z. Suo, G. M. Whitesides, Sci. Robot. 2018, 3, 1;c)D. J. Preston, P. Rothemund, H. J. Jiang, M. P. Nemitz, J. Rawson, Z. Suo, G. M. Whitesides, Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 7750.

[4]

W. K. Lee, D. J. Preston, M. P. Nemitz, A. Nagarkar, A. K. MacKeith, B. Gorissen, N. Vasios, V. Sanchez, K. Bertoldi, L. Mahadevan, G. M. Whitesides, Sci. Robot. 2022, 7, eabg5812.

[5]

B. Camescasse, A. Fernandes, J. Pouget, Int. J. Solids Struct. 2014, 51, 1750.

[6]

a) X. Chen, S. A. Meguid, Proc. Math. Phys. Eng. Sci. 2015, 471, 20150072;b)Y. Zhang, M. Tichem, F. v. Keulen, Int. J. Mech. Sci. 2021, 193, 106172.

[7]

a) B. Gorissen, D. Melancon, N. Vasios, M. Torbati, K. Bertoldi, Sci. Robot. 2020, 5, eabb1967; b)A. Pandey, D. E. Moulton, D. Vella, D. P. Holmes, Europhys. Lett. 2014, 105, 24001.

[8]

a) M. Hua, C. Kim, Y. Du, D. Wu, R. Bai, X. He, Matter 2021, 4, 1029;b)M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett, T. Ikeda, Angew. Chem., Int. Ed. Engl. 2008, 47, 4986.

[9]

S. Yin, B. Li, X.-Q. Feng, Proc. Nat. Acad. Sci. 2022, 119, e2206159119.

[10]

Y. Chi, Y. Li, Y. Zhao, Y. Hong, Y. Tang, J. Yin, Adv. Mater. 2022, 34, 2110384.

[11]

a) A. H. Gelebart, D. Jan Mulder, M. Varga, A. Konya, G. Vantomme, E. W. Meijer, R. L. B. Selinger, D. J. Broer, Nature 2017, 546, 632;b)A. S. Kuenstler, Y. Chen, P. Bui, H. Kim, A. DeSimone, L. Jin, R. C. Hayward, Adv. Mater. 2020, 32, 2000609;c)H. Shahsavan, A. Aghakhani, H. Zeng, Y. Guo, Z. S. Davidson, A. Priimagi, M. Sitti, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 5125.

[12]

B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R. F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, G. M. Whitesides, Adv. Funct. Mater. 2014, 24, 2163.

[13]

D. Rus, M. T. Tolley, Nature 2015, 521, 467.

[14]

D. J. Preston, H. J. Jiang, V. Sanchez, P. Rothemund, J. Rawson, M. P. Nemitz, W. K. Lee, Z. Suo, C. J. Walsh, G. M. Whitesides, Sci. Robot. 2019, 4, 1.

[15]

X. Gong, K. Yang, J. Xie, Y. Wang, P. Kulkarni, A. S. Hobbs, A. D. Mazzeo, Adv. Mater. 2016, 28, 7533.

[16]

A. Baumann, A. Sanchez-Ferrer, L. Jacomine, P. Martinoty, V. Le Houerou, F. Ziebert, I. M. Kulic, Nat. Mater. 2018, 17, 523.

[17]

a) R. De Pascalis, G. Napoli, S. S. Turzi, Phys. D 2014, 283, 1;b)G. Napoli, A. Goriely, Proc. R. Soc. A 2017, 473, 20170340.

[18]

G. Napoli, S. Turzi, Proc. R. Soc. A 2015, 471, 2183.

[19]

S.-Y. Kuo, L.-C. Shiau, K.-H. Chen, Compos. Struct. 2009, 90, 188.

[20]

R. Mutlu, G. Alici, W. Li, in IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, IEEE, Wollongong, Australia, 2013, pp.1096.

[21]

D. Yan, M. Pezzulla, L. Cruveiller, A. Abbasi, P. M. Reis, Nat. Commun. 2021, 12, 2831.

[22]

A. Pandey, A. Arockiarajan, Sens. Actuators, A 2016, 248, 114.

[23]

B. Charlot, W. Sun, K. Yamashita, H. Fujita, H. Toshiyoshi, J. Micromech. Microeng. 2008, 18, 045005.

[24]

a) M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C. Galloway, M. Wehner, M. Karpelson, R. J. Wood, G. M. Whitesides, Soft Robot. 2014, 1, 213;b)B. Mosadegh, A. D. Mazzeo, R. F. Shepherd, S. A. Morin, U. Gupta, I. Z. Sani, D. Lai, S. Takayama, G. M. Whitesides, Lab Chip 2014, 14, 189.

RIGHTS & PERMISSIONS

2024 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/