ASPM Induces Radiotherapy Resistance by Disrupting Microtubule Stability Leading to Chromosome Malsegregation in Non-Small Cell Lung Cancer

Tao Zhong , Ning Liu , Juan Wang , Songbo Xie , Lisheng Liu , Minglei Wang , Fei Wu , Xiaozheng Chen , Changyan Xiao , Xiaoxiao Gongye , Meng Wu , Liewei Wen , Jinming Yu , Dawei Chen

Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20230024

PDF
Exploration ›› 2025, Vol. 5 ›› Issue (4) : e20230024 DOI: 10.1002/EXP.20230024
RESEARCH ARTICLE

ASPM Induces Radiotherapy Resistance by Disrupting Microtubule Stability Leading to Chromosome Malsegregation in Non-Small Cell Lung Cancer

Author information +
History +
PDF

Abstract

Radiotherapy (RT) resistance remains a substantial challenge in cancer therapy. Although physical factors are optimizing, the biological mechanisms for RT resistance are still elusive. Herein, we explored potential reasons for this difficult problem by generating RT-resistant models for in vitro and in vivo experiments. We found that abnormal spindle-like microcephaly-associated protein (ASPM) was highly expressed in RT-resistant samples and significantly correlated with disease advance in lung adenocarcinoma. Mechanistically, ASPM helps RT-resistant cells to evade spindle checkpoint surveillance and complete cell division after irradiation through destruction of microtubule stability, with subsequent increases in chromosome mis-segregation and deteriorating chromosomal stability during mitosis. Depletion of ASPM stabilized microtubules and significantly decreased chromosome mis-segregation, restoring the sensitivity of RT-resistant cells to radiation. We further found, with bioinformatics analysis, amino acid sequence 963-1263 of ASPM as a potential new drug target for overcoming RT resistance and identified 9 drug pockets within this domain for clinical translation. Our findings suggest that ASPM is a key regulator with an important role in promoting RT resistance in non-small cell lung cancer, and that suppressing or blocking its expression could be worth exploring as therapy for a variety of RT-resistant cancers.

Keywords

ASPM / chromosomal malsegregation / radiotherapy / radiotherapy resistance

Cite this article

Download citation ▾
Tao Zhong, Ning Liu, Juan Wang, Songbo Xie, Lisheng Liu, Minglei Wang, Fei Wu, Xiaozheng Chen, Changyan Xiao, Xiaoxiao Gongye, Meng Wu, Liewei Wen, Jinming Yu, Dawei Chen. ASPM Induces Radiotherapy Resistance by Disrupting Microtubule Stability Leading to Chromosome Malsegregation in Non-Small Cell Lung Cancer. Exploration, 2025, 5(4): e20230024 DOI:10.1002/EXP.20230024

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Miller and N. Hanna, “Advances in Systemic Therapy for Non-Small Cell Lung Cancer,” BMJ 375 (2021): n2363.

[2]

P. Iyengar, E. Zhang-Velten, L. Court, et al., “Accelerated Hypofractionated Image-Guided vs Conventional Radiotherapy for Patients with Stage II/III Non-Small Cell Lung Cancer and Poor Performance Status,” JAMA Oncology 7 (2021): 1497.

[3]

a) F. G. Herrera, C. Ronet, M. Ochoa de Olza, et al., “Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy,” Cancer Discovery 12 (2022): 108-133; b) M. Mondini, A. Levy, L. Meziani, F. Milliat, and E. Deutsch, “Radiotherapy-Immunotherapy Combinations—Perspectives and Challenges,” Molecular Oncology 14 (2020): 1529-1537.

[4]

a) S. K. Vinod and E. Hau, “Radiotherapy Treatment for Lung Cancer: Current Status and Future Directions,” Respirology 25, no. Suppl 2 (2020): 61-71. b) R. A. Chandra, F. K. Keane, and F. E. M. Voncken, “Contemporary Radiotherapy: Present and Future,” Lancet 398 (2021): 171-184.

[5]

a) K. Banfill, M. Giuliani, M. Aznar, et al., “Cardiac Toxicity of Thoracic Radiotherapy: Existing Evidence and Future Directions,” Journal of Thoracic Oncology 16 (2021): 216-227. b) M. Chovanec, J. Lauritsen, M. Bandak, et al., “Late Adverse Effects and Quality of Life in Survivors of Testicular Germ Cell Tumour,” Nature Reviews Urology 18 (2021): 227-245. c) K. Lindberg, V. Grozman, K. Karlsson, et al., “The HILUS-Trial—A Prospective Nordic Multicenter Phase 2 Study of Ultracentral Lung Tumors Treated With Stereotactic Body Radiotherapy,” Journal of Thoracic Oncology 16 (2021): 1200-1210.

[6]

a) H. Jin and H. J. Kim Int J Mol Sci (2021): 22. b) A. Paramanantham, E. J. Jung, S. I. Go, et al. Int J Mol Sci (2021): 22.

[7]

P. F. Cosper, S. E. Copeland, J. B. Tucker, and B. A. Weaver, “Chromosome Missegregation as a Modulator of Radiation Sensitivity,” Seminars in Radiation Oncology 32 (2022): 54-63.

[8]

Z. Guo, Y. Dai, W. Hu, et al., “Retracted Article: The Long Noncoding RNA CRYBG3 Induces Aneuploidy by Interfering With Spindle Assembly Checkpoint via Direct Binding With Bub3,” Oncogene 40 (2021): 1821-1835.

[9]

S. F. Bakhoum, L. Kabeche, M. D. Wood, et al., “Numerical Chromosomal Instability Mediates Susceptibility to Radiation Treatment,” Nature Communications 6 (2015): 5990.

[10]

A. Ghelli Luserna di Rora, C. Cerchione, G. Martinelli, and G. Simonetti, “A WEE1 Family Business: Regulation of Mitosis, Cancer Progression, and Therapeutic Target,” Journal of Hematology & Oncology 13 (2020): 126.

[11]

a) S. Kim, N. H. Kim, J. E. Park, et al., “PRMT6-Mediated H3R2me2a Guides Aurora B to Chromosome Arms for Proper Chromosome Segregation,” Nature Communications 11 (2020): 612. b) E. Petsalaki and G. Zachos, J Cell Biol (2021): 220. c) M. Seibert, M. Kruger, N. A. Watson, et al., “CDK1-Mmediated Phosphorylation at H2B Serine 6 Is Required for Mitotic Chromosome Segregation,” Journal of Cell Biology 218 (2019): 1164-1181. d) J. Hannabuss, M. Lera-Ramirez, N. I. Cade, F. J. Fourniol, F. Nedelec, and T. Surrey, “Self-Organization of Minimal Anaphase Spindle Midzone Bundles,” Current Biology 29 (2019): 2120-2130.e7.

[12]

a) E. T. Spiliotis and K. Nakos, “Cellular Functions of Actin- and Microtubule-Associated Septins,” Current Biology 31 (2021): R651-R666. b) L. Capalbo, Z. I. Bassi, M. Geymonat, et al., “The Midbody Interactome Reveals Unexpected Roles for PP1 Phosphatases in Cytokinesis,” Nature Communications 10 (2019): 4513. c) K. Sofroni, H. Takatsuka, C. Yang, et al. J Cell Biol (2020): 219.

[13]

N. Mani, S. Jiang, A. E. Neary, S. S. Wijeratne, and R. Subramanian, “Differential Regulation of Single Microtubules and Bundles by a Three-Protein Module,” Nature Chemical Biology 17 (2021): 964-974.

[14]

a) J. D. Bradley, R. Paulus, R. Komaki, et al., “Standard-Dose versus High-Dose Conformal Radiotherapy With Concurrent and Consolidation Carboplatin Plus Paclitaxel With or Without Cetuximab for Patients With Stage IIIA or IIIB Non-Small-Cell Lung Cancer (RTOG 0617): A Randomised, Two-by-Two Factorial Phase 3 Study,” Lancet Oncology 16 (2015): 187-199. b) J. D. Bradley, C. Hu, R. R. Komaki, et al., “Long-Term Results of NRG Oncology RTOG 0617: Standard- Versus High-Dose Chemoradiotherapy With or Without Cetuximab for Unresectable Stage III Non-Small-Cell Lung Cancer,” Journal of Clinical Oncology 38 (2020): 706-714.

[15]

a) T. Zhong, X. Wu, W. Xie, et al., “ENKD1 Promotes Epidermal Stratification by Regulating Spindle Orientation in Basal Keratinocytes,” Cell Death and Differentiation 29 (2022): 1719-1729. b) S. F. Bakhoum, S. L. Thompson, A. L. Manning, and D. A. Compton, “Genome Stability Is Ensured by Temporal Control of Kinetochore-Microtubule Dynamics,” Nature Cell Biology 11 (2009): 27-35.

[16]

a) S. Venkatesan, M. Angelova, C. Puttick, et al., “Induction of APOBEC3 Exacerbates DNA Replication Stress and Chromosomal Instability in Early Breast and Lung Cancer Evolution,” Cancer Discovery 11 (2021): 2456-2473. b) M. Chan-Seng-Yue, J. C. Kim, G. W. Wilson, et al., “Transcription Phenotypes of Pancreatic Cancer Are Driven by Genomic Events During Tumor Evolution,” Nature Genetics 52 (2020): 231-240.

[17]

a) L. Wei, J. Sun, N. Zhang, et al., “Noncoding RNAs in Gastric Cancer: Implications for Drug Resistance,” Molecular Cancer 19 (2020): 62. b) T. Das, U. Anand, S. K. Pandey, et al., “Therapeutic Strategies to Overcome Taxane Resistance in Cancer,” Drug Resistance Updates 55 (2021): 100754. c) S. Fu, G. Li, W. Zang, X. Zhou, K. Shi, and Y. Zhai, “Pure Drug Nano-assemblies: A Facile Carrier-Free Nanoplatform for Efficient Cancer Therapy,” Acta Pharmaceutica Sinica B 12 (2022): 92-106.

[18]

a) X. Lu, S. Gao, H. Lin, and J. Shi, “Single-Atom Catalysts for Nanocatalytic Tumor Therapy,” Small 17 (2021): e2004467. b) X. Lu, S. Gao, H. Lin, H. Tian, D. Xu, and J. Shi, “Bridging Oxidase Catalysis and Oxygen Reduction Electrocatalysis by Model Single-Atom Catalysts,” National Science Review 9 (2022): nwac022. c) X. Lu, S. Gao, H. Lin, et al., “Bioinspired Copper Single-Atom Catalysts for Tumor Parallel Catalytic Therapy,” Advanced Materials 32 (2020): e2002246.

[19]

a) M. Timaner and Y. Shaked, “Elucidating the Roles of ASPM Isoforms Reveals a Novel Prognostic Marker for Pancreatic Cancer,” Journal of Pathology 250 (2020): 123-125. b) C. C. Hsu, W. Y. Liao, K. Y. Chang, et al., “A Multi-Mode Wnt- and Stemness-Regulatory Module Dictated by FOXM1 and ASPM Isoform I in Gastric Cancer,” Gastric Cancer 24 (2021): 624-639. c) C. C. Hsu, W. Y. Liao, K. Y. Chang, et al., “Correction to: A Multi-Mode Wnt- and Stemness-Regulatory Module Dictated by FOXM1 and ASPM Isoform I in Gastric Cancer,” Gastric Cancer 24 (2021): 640-641.

[20]

a) G. Iegiani, F. Di Cunto, and G. Pallavicini, “Inhibiting Microcephaly Genes as Alternative to Microtubule Targeting Agents to Treat Brain Tumors,” Cell Death & Disease 12 (2021): 956. b) Y. Mao, W. Cheng, Q. Yang, et al., “The Enhanced Cell Cycle Related to the Response to Adjuvant Therapy in Pancreatic Ductal Adenocarcinoma,” Genomics 114 (2022): 95-106. c) S. Hou, H. Xu, S. Liu, et al., “Integrated Bioinformatics Analysis Identifies a New Stemness Index-Related Survival Model for Prognostic Prediction in Lung Adenocarcinoma,” Frontiers in Genetics 13 (2022): 860268.

[21]

a) N. B. Gudimchuk and J. R. McIntosh, “Regulation of Microtubule Dynamics, Mechanics and Function Through the Growing Tip,” Nature Reviews Molecular Cell Biology 22 (2021): 777-795. b) S. Ma, Z. Rong, C. Liu, X. Qin, X. Zhang, and Q. Chen J Cell Biol (2021): 220.

[22]

J. Ran, M. Liu, J. Feng, et al., “ASK1-Mediated Phosphorylation Blocks HDAC6 Ubiquitination and Degradation to Drive the Disassembly of Photoreceptor Connecting Cilia,” Developmental Cell 53 (2020): 287-299.e5.

[23]

Q. Yang, M. Qi, Y. Chen, S. Tian, F. Liao, and W. Dong, “ASPM Is a Novel Candidate Gene Associated With Colorectal Cancer Cell Growth,” DNA and Cell Biology 40 (2021): 921-935.

[24]

a) S. Xu, X. Wu, P. Wang, S. L. Cao, B. Peng, and X. Xu, “ASPM Promotes Homologous Recombination-Mediated DNA Repair by Safeguarding BRCA1 Stability,” iScience 24 (2021): 102534. b) T. A. Kato, R. Okayasu, P. A. Jeggo, and A. Fujimori, “ASPM Influences DNA Double-Strand Break Repair and Represents a Potential Target for Radiotherapy,” International Journal of Radiation Biology 87 (2011): 1189-1195.

[25]

L. J. Sang, H. Q. Ju, G. P. Liu, et al., “LncRNA CamK-A Regulates Ca2+-Signaling-Mediated Tumor Microenvironment Remodeling,” Molecular Cell 72 (2018): 71-83.e7.

[26]

Y. Yang, M. Liu, D. Li, et al., “CYLD Regulates Spindle Orientation by Stabilizing Astral Microtubules and Promoting Dishevelled-NuMA-dynein/Dynactin Complex Formation,” PNAS 111 (2014): 2158-2163.

[27]

J. Gao, L. Sun, L. Huo, M. Liu, D. Li, and J. Zhou, “CYLD Regulates Angiogenesis by Mediating Vascular Endothelial Cell Migration,” Blood 115 (2010): 4130-4137.

RIGHTS & PERMISSIONS

2025 The Author(s). Exploration published by Henan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/