Enhancing the activity and stability of RuO2-based catalyst via nano-confinement effect for O2 evolution reaction in acid electrolyte
Shukai Liu , Huang Tan , Gaole Dai , Shiyun Xiong , Yu Zhao , Benxia Li
Energy Materials ›› 2025, Vol. 5 ›› Issue (11) : 500144
Enhancing the activity and stability of RuO2-based catalyst via nano-confinement effect for O2 evolution reaction in acid electrolyte
The oxygen evolution reaction (OER), as a pivotal process in electrochemical water splitting, directly determines energy conversion efficiency. Ruthenium (Ru)-based catalysts have gained considerable attention in recent years due to their decent intrinsic activity in acidic media. Previous studies have demonstrated that while Ru exhibits superior OER activity compared to RuO2 in acidic environments, its operational stability remains markedly inferior. This performance dichotomy, coupled with the persistent challenges of active species dissolution and catalyst particle aggregation during prolonged operation, significantly hinders their practical implementation in electrochemical systems. To address these challenges, this study develops a carbon nanotube (CNT)/Fe-Ni@RuO2@PANI-350 composite catalyst composed of RuO2 nanoparticles supported on bimetallic Fe-Ni modified CNTs (CNT/Fe-Ni) and encapsulated with polyaniline (PANI). This catalyst utilizes the anchoring effect of bimetallic Fe-Ni sites and the spatial confinement effect of PANI coating layer, effectively inhibiting the dissolution and agglomeration of RuO2 during both high-temperature processing and electrochemical operation, thereby significantly enhancing electrochemical stability. The anchoring strength of RuO2 nanoparticles on CNT/Fe-Ni support via the nano-confinement effect, as well as the microscopic mechanisms underlying the performance enhancement, are revealed by density functional theory calculations and experimental characterizations. The composite catalyst demonstrates fascinating OER performance in 0.5 M H2SO4, exhibiting a low Tafel slope of
Oxygen evolution reaction (OER) / ruthenium (Ru)-based catalysts / nano-confinement strategy / electrochemical stability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Zoubi W, Sheng Y, Hussain I, Seongjun H, Thalji MR, Park N. Synthesis and machine learning prediction of high entropy multi-principal element nanoparticles.Small2025;21:e2501444 |
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
/
| 〈 |
|
〉 |