Fiber-reinforced CNT-integrated quartz fabrics as multifunctional electrodes for structural lithium-ion batteries
Hwiryeong Hwang , Su Hwan Jeong , Hyeon-Jun Choi , Dawon Baek , Donghyeon Lee , Dong-Jun Kwon , Mi Young Park , Joo-Hyung Kim
Energy Materials ›› 2025, Vol. 5 ›› Issue (12) : 500155
Fiber-reinforced CNT-integrated quartz fabrics as multifunctional electrodes for structural lithium-ion batteries
The long-term stability of lithium-ion batteries is a critical factor limiting their broader adoption in multifunctional and structural energy storage systems. However, conventional metallic current collectors tend to be heavier and less mechanically adaptable than fiber-based materials such as quartz woven fabrics (QWFs), particularly when structural integration is required. Quartz fabrics, composed primarily of silica, offer high thermal stability, mechanical robustness, and low areal weight, making them attractive candidates for multifunctional electrode platforms. In this study, carbon nanotubes (CNTs) were directly grown on QWFs via chemical vapor deposition, using Ni nanoparticles as catalysts and C2H4 as the carbon source. The growth process was optimized by varying temperature over a 2-h duration to form uniform, conductive CNT networks. The resulting CNT-coated QWFs functioned dually as current collectors and active electrode supports, delivering an initial discharge capacity of 201.54 mAh g-1 at a 0.1 C-rate. The electrodes retained 89.8% of their initial capacity after 50 cycles at a
Structural lithium-ion batteries / carbon nanotube / quartz woven fabric / chemical vapor deposition
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
/
| 〈 |
|
〉 |