Epitaxial growth of aligned MoS2 via One-step CVD method for realizing the ultrasonic field-driven direct current nanogenerators

Jing Li , Jiangtao Guo , Yong Zhang , Ang Zhang , Wen Yang , Xiaobo Feng , Yunbo Zhang , Peizhi Yang

Energy Materials ›› 2025, Vol. 5 ›› Issue (11) : 500138

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (11) :500138 DOI: 10.20517/energymater.2025.77
Article

Epitaxial growth of aligned MoS2 via One-step CVD method for realizing the ultrasonic field-driven direct current nanogenerators

Author information +
History +
PDF

Abstract

Molybdenum disulfide (MoS2) is widely used in energy harvesting devices due to its high carrier mobility and semiconductor properties. However, the preparation of high-quality MoS2 still faces significant challenges. In this work, we present a one-step chemical vapor deposition method for the preparation of large-size MoS2 nanosheets with an orientation rate of over 70%. The one-step preparation method is more cost-effective and time-efficient compared to conventional techniques. The aligned MoS2 nanosheets demonstrate a significant capacity for charge transfer in triboelectric devices. Herein, we propose a concept of MoS2 as the charge transport layer for nanogenerator arrays for hybrid energy harvesting and high-performance direct output. Furthermore, the current density of the device exceeds 10 A/m2 under ultrasonic excitation. Consequently, this finding is anticipated to offer new insights into applications such as mechanical energy conversion and MoS2 charge transport.

Keywords

MoS2 / large size / one-step CVD method / MoS2-based TENG

Cite this article

Download citation ▾
Jing Li, Jiangtao Guo, Yong Zhang, Ang Zhang, Wen Yang, Xiaobo Feng, Yunbo Zhang, Peizhi Yang. Epitaxial growth of aligned MoS2 via One-step CVD method for realizing the ultrasonic field-driven direct current nanogenerators. Energy Materials, 2025, 5(11): 500138 DOI:10.20517/energymater.2025.77

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Z,Liu K.Epitaxy of 2D materials toward single crystals.Adv Sci2022;9:e2105201 PMCID:PMC8922126

[2]

Yang M,Chen X,Lin S.Ultra-low-power-consuming liquid-water-based optoelectronic computing chip.Device2024;2:100547

[3]

Cheng Z,Wei K.2D materials enabled next-generation integrated optoelectronics: from fabrication to applications.Adv Sci2021;8:e2003834 PMCID:PMC8188205

[4]

Splendiani A,Zhang Y.Emerging photoluminescence in monolayer MoS2.Nano Lett2010;10:1271-5

[5]

Mak KF,Hone J,Heinz TF.Atomically thin MoS2: a new direct-gap semiconductor.Phys Rev Lett2010;105:136805

[6]

Zhang X,Xiao S.Shape-uniform, high-quality monolayered MoS2 crystals for gate-tunable photoluminescence.ACS Appl Mater Interfaces2017;9:42121-30

[7]

Liu H,Najmaei S.Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films.Nano Lett2013;13:2640-6

[8]

Kang M,Song W.Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method.Carbon2017;116:167-73

[9]

Gautam S,Gates BD.Electrodeposition of PdPt nanoparticles on edges and S-vacancies in exfoliated MoS2 nanosheets for enhanced hydrogen evolution activity.ChemSusChem2024;17:e202301922

[10]

Gao Q,Yang K.High-performance CVD bilayer MoS2 radio frequency transistors and gigahertz mixers for flexible nanoelectronics.Micromachines2021;12:451 PMCID:PMC8072592

[11]

Kim JK,Kim TY.Analysis of noise generation and electric conduction at grain boundaries in CVD-grown MoS2 field effect transistors.Nanotechnology2017;28:47LT01

[12]

Khandelwal G,Shakthivel D.Recent developments in 2D materials for energy harvesting applications.J Phys Energy2023;5:032001

[13]

Priya S,Chowdhury A,Chandra A.Time-dependent exfoliation study of MoS2 for its use as a cathode material in high-performance hybrid supercapacitors.Nanoscale Adv2023;5:1172-82 PMCID:PMC9926909

[14]

Singh A.Large area CVD-grown vertically and horizontally oriented MoS2 nanostructures as SERS biosensors for single molecule detection.Nanoscale2023;15:16480-92

[15]

Xu C,Liu Y.Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems.Nano Energy2012;1:259-72

[16]

Oh H,Kim B.Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators.Adv Funct Mater2019;29:1904066

[17]

Ye X,Werner JG.Mechanically rupturing liquid metal oxide induces electrochemical energy (Adv. Funct. Mater. 31/2024).Adv Funct Mater2024;34:2470174

[18]

Yang C,Guo Y.Highly conductive liquid metal electrode based stretchable piezoelectric-enhanced triboelectric nanogenerator for harvesting irregular mechanical energy.Mater Des2021;201:109508

[19]

Ahmadi R,Hasani A.Pseudocapacitance-induced synaptic plasticity of tribo-phototronic effect between ionic liquid and 2D MoS2.Small2024;20:e2304988

[20]

Aji AS,Ago H.High output voltage generation of over 5 V from liquid motion on single-layer MoS2.Nano Energy2020;68:104370

[21]

Kumar S,Gupta V.Development of novel MoS2 hydrovoltaic nanogenerators for electricity generation from moving NaCl droplet.J Alloys Compd2021;884:161058

[22]

Wang T,Zhang Y.Synthesis of high-quality monolayer MoS2 via a CVD upstream deposition strategy for charge capture and collection.Cryst Growth Des2024;24:2755-63

[23]

van der Zande AM,Chenet DA.Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide.Nat Mater2013;12:554-61

[24]

You J,Luo Z.Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology.Nano Converg2018;5:26 PMCID:PMC6160381

[25]

Zhao T,Li T.Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives.Chem Soc Rev2023;52:1650-71

[26]

Chen L,Ge M,Abbas AN.Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode.ACS Nano2015;9:8368-75

[27]

Yu H,Du L.Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane.Small2017;13:1603005

[28]

Zhou X,Cai L,Liu M.Large-area orientation-controlled growth of hexagonal boron nitride on liquid copper.ACS Appl Electron Mater2022;4:6261-8

[29]

Aljarb A,Tang HL.Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides.ACS Nano2017;11:9215-22

[30]

Ji Q,Zhang Y.Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire.Nano Lett2015;15:198-205

[31]

Park Y,Ahn JG.Critical role of surface termination of sapphire substrates in crystallographic epitaxial growth of MoS2 using inorganic molecular precursors.ACS Nano2023;17:1196-205

[32]

Liu L,Ma L.Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire.Nature2022;605:69-75

[33]

Li T,Ma L.Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire.Nat Nanotechnol2021;16:1201-7

[34]

Wang Q,Tang J.Wafer-scale highly oriented monolayer MoS2 with large domain sizes.Nano Lett2020;20:7193-9

[35]

Ma Z,Deng Q.Epitaxial growth of rectangle shape MoS2 with highly aligned orientation on twofold symmetry a-Plane sapphire.Small2020;16:e2000596

[36]

Dong J,Ding F.Mechanisms of the epitaxial growth of two-dimensional polycrystals.NPJ Comput Mater2022;8:797

[37]

Ji HG,Nagashio K.Hydrogen-assisted epitaxial growth of monolayer tungsten disulfide and seamless grain stitching.Chem Mater2018;30:403-11

[38]

Yao W,Liu Y.Growth and grain boundaries in 2D materials.ACS Nano2020;14:9320-46

[39]

Yang P,Li X.Highly reproducible epitaxial growth of wafer-scale single-crystal monolayer MoS2 on sapphire.Small Methods2023;7:e2300165

[40]

Li L,Wu F.Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control.Nat Commun2024;15:1825 PMCID:PMC10901795

[41]

Rajan A, Warner JH, Blankschtein D, Strano MS. Generalized mechanistic model for the chemical vapor deposition of 2D transition metal dichalcogenide monolayers.ACS Nano2016;10:4330-44

[42]

Kang L,Meng L.Epitaxial growth of highly-aligned MoS2 on c-plane sapphire.Surf Sci2022;720:122046

[43]

Su L,Yu Y.Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering.Nanoscale2014;6:4920-7

[44]

Ling X,Lin Y.Role of the seeding promoter in MoS2 growth by chemical vapor deposition.Nano Lett2014;14:464-72

[45]

Najmaei S,Zhou W.Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers.Nat Mater2013;12:754-9

[46]

Li J,Jiang Q.Single-crystal MoS2 monolayer wafer grown on Au (111) film substrates.Small2021;17:e2100743

[47]

Wu S,Zeng X.High-performance p-type MoS2 field-effect transistor by toroidal-magnetic-field controlled oxygen plasma doping.2D Mater2019;6:025007

[48]

Xu X,Zhong Y,Jiang SP.From scheelite BaMoO4 to perovskite BaMoO3: enhanced electrocatalysis toward the hydrogen evolution in alkaline media.Compos Part B Eng2020;198:108214

PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

/