Sustainable clinical translation: development of implantable energy systems

Wei Cao , Xingyu Wang , Yafei Feng , Wei Lei

Energy Materials ›› 2025, Vol. 5 ›› Issue (12) : 500157

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (12) :500157 DOI: 10.20517/energymater.2025.71
Mini Review

Sustainable clinical translation: development of implantable energy systems

Author information +
History +
PDF

Abstract

Advances in the Internet of Things and artificial intelligence have accelerated the clinical adoption of implantable electronic medical devices, expanding their applications in brain-computer interfaces, chronic disease management, and post-operative rehabilitation. However, the growing disparity between finite global energy resources and escalating clinical demands necessitates urgent breakthroughs in implantable energy systems. To address this challenge, implantable energy systems are evolving towards sustainability, miniaturisation, system-level integration and flexibility for better application in the human body. This review synthesizes the key design principles and requirements for an implantable energy system driven by clinical demands, then highlights recent progress in three key categories: energy storage systems, energy harvesting systems and environmental energy transfer systems. Notable advancements include biocompatible materials and enhanced integration strategies. Emerging energy systems, such as biofuel cells and nanogenerators, are also analyzed. Furthermore, we discuss their translational challenges and future directions, such as long-term biocompatibility, holistic energy solutions, closed-loop surveillance, and intelligent network architectures. Overall, this review bridges medical energy innovation with environmental sustainability, providing insights into sustainable closed-loop networks that integrate energy, medicine, and industry.

Keywords

Sustainability / biocompatibility / specific energy requirements / energy storage / energy harvest / energy transfer

Cite this article

Download citation ▾
Wei Cao, Xingyu Wang, Yafei Feng, Wei Lei. Sustainable clinical translation: development of implantable energy systems. Energy Materials, 2025, 5(12): 500157 DOI:10.20517/energymater.2025.71

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Friedman P,Boersma LVA.Efficacy and safety of an extravascular implantable cardioverter-defibrillator.N Engl J Med2022;387:1292-302

[2]

Bai C,Ji K,Kong D.Stretchable microbatteries and microsupercapacitors for next-generation wearable electronics.Energy Mater2023;3:300041

[3]

Buchman CA,Haynes DS.Unilateral cochlear implants for severe, profound, or moderate sloping to profound bilateral sensorineural hearing loss: a systematic review and consensus statements.JAMA Otolaryngol Head Neck Surg2020;146:942-53

[4]

McGlynn E,Ren E.The future of neuroscience: flexible and wireless implantable neural electronics.Adv Sci2021;8:2002693 PMCID:PMC8132070

[5]

Yan B,Peng H.Tissue-matchable and implantable batteries toward biomedical applications.Small Methods2023;7:e2300501

[6]

Zhao T,Choi Y.A novel process for multi-stage continuous selective leaching of lithium from industrial-grade complicated lithium-ion battery waste.Sci Total Environ2024;909:168533

[7]

Kim Y,Moon H.Artificial interphase design employing inorganic-organic components for high-energy lithium-metal batteries.ACS Appl Mater Interfaces2023;15:20987-97

[8]

Wang S,Abiri P.A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy.Sci Adv2023;9:eadj0540 PMCID:PMC10584332

[9]

Ahn SH,Park M.Liquid crystal polymer-based miniaturized fully implantable deep brain stimulator.Polymers2023;15:4439 PMCID:PMC10675735

[10]

Lv Q,Luo D.An implantable and degradable silk sericin protein film energy harvester for next-generation cardiovascular electronic devices.Adv Mater2025;37:e2413610

[11]

Choi YS,Pfenniger A.Fully implantable and bioresorbable cardiac pacemakers without leads or batteries.Nat Biotechnol2021;39:1228-38 PMCID:PMC9270064

[12]

Basha SI,Ahmad S,Al-Zahrani MM.Construction building materials as a potential for structural supercapacitor applications.Chem Rec2022;22:e202200134

[13]

Kabir MH,Djokoto G.Energy harvesting by mesoporous reduced graphene oxide enhanced the mediator-free glucose-powered enzymatic biofuel cell for biomedical applications.ACS Appl Mater Interfaces2022;14:24229-44

[14]

Lv Q,Zhang C.Nanocellulose-based nanogenerators for sensor applications: a review.Int J Biol Macromol2024;259:129268

[15]

Bronner H,Donath S.A versatile two-light mode triggered system for highly localized sequential release of reactive oxygen species and conjugated drugs from mesoporous organosilica particles.J Mater Chem B2025;13:3032-8

[16]

Wang H,Jin W.A linear-power-regulated wireless power transfer method for decreasing the heat dissipation of fully implantable microsystems.Sensors2022;22:8765 PMCID:PMC9697315

[17]

Imani IM,Shin J.Advanced ultrasound energy transfer technologies using metamaterial structures.Adv Sci2024;11:e2401494 PMCID:PMC11336982

[18]

Long H,Gang S.High-performance thermoelectric composite of Bi2Te3 nanosheets and carbon aerogel for harvesting of environmental electromagnetic energy.ACS Nano2025;19:1819-31

[19]

Wang W,Zhu Z.Electrochemical lithium recycling from spent batteries with electricity generation.Nat Sustain2025;8:287-96

[20]

Innocenti A,Garche J.A critical discussion of the current availability of lithium and zinc for use in batteries.Nat Commun2024;15:4068 PMCID:PMC11094038

[21]

Tran HA,Maraldo A.Emerging silk fibroin materials and their applications: new functionality arising from innovations in silk crosslinking.Mater Today2023;65:244-59

[22]

Barri K,Swink I.Patient-specific self-powered metamaterial implants for detecting bone healing progress.Adv Funct Mater2022;32:2203533

[23]

Zhou X,Ji J.Materials strategies to overcome the foreign body response.Adv Healthc Mater2024;13:e2304478

[24]

Zhou X,Chen Y.Covalently grafted human serum albumin coating mitigates the foreign body response against silicone implants in mice.Bioact Mater2024;34:482-93 PMCID:PMC10827492

[25]

Kim K,Kim TH.Fully implantable and battery-free wireless optoelectronic system for modulable cancer therapy and real-time monitoring.NPJ Flex Electron2023;7:276

[26]

Maduka CV,Makela AV.Immunometabolic cues recompose and reprogram the microenvironment around implanted biomaterials.Nat Biomed Eng2024;8:1308-21 PMCID:PMC12197073

[27]

Maduka CV,Ural E.Polylactide degradation activates immune cells by metabolic reprogramming.Adv Sci2023;10:e2304632

[28]

Wu Z,Hai F.A metal-organic framework based quasi-solid-state electrolyte enabling continuous ion transport for high-safety and high-energy-density lithium metal batteries.ACS Appl Mater Interfaces2023;15:22065-74

[29]

Cai G,Lin S.Unravelling ultrafast Li ion transport in functionalized metal-organic framework-based battery electrolytes.Nano Lett2023;23:7062-9

[30]

Raza A.Metal-organic frameworks in oral drug delivery.Asian J Pharm Sci2024;19:100951 PMCID:PMC11530798

[31]

Yang SY,You SS.Powering implantable and ingestible electronics.Adv Funct Mater2021;31:2009289 PMCID:PMC8553224

[32]

Wang J,Song J.The application of impantable sensors in the musculoskeletal system: a review.Front Bioeng Biotechnol2024;12:1270237 PMCID:PMC10847584

[33]

Xiao B,Ying T.Achieving ultrahigh anodic efficiency via single-phase design of Mg-Zn alloy anode for Mg-air batteries.ACS Appl Mater Interfaces2021;13:58737-45

[34]

Bhaduri A.Biowaste-derived triboelectric nanogenerators for emerging bioelectronics.Adv Sci2024;11:e2405666 PMCID:PMC11558148

[35]

Lai Y,Li P.Ion-migration mechanism: an overall understanding of anionic redox activity in metal oxide cathodes of Li/Na-ion batteries.Adv Mater2022;34:e2206039

[36]

Feng K,Liu W.Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications.Small2018;14:1702737

[37]

Heubner C,Michaelis A.Theoretical optimization of electrode design parameters of Si based anodes for lithium-ion batteries.J Energy Storage2018;15:181-90

[38]

Dou Y,Shao J.Bi-functional materials for sulfur cathode and lithium metal anode of lithium-sulfur batteries: status and challenges.Adv Sci2024;11:e2407304 PMCID:PMC11615826

[39]

Wang T,Zhang J.Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries.Nat Commun2020;11:5429 PMCID:PMC7591880

[40]

Xu T,Min Y.Gelatin network reinforced poly (vinylene carbonate-acrylonitrile) based composite solid electrolyte for all-solid-state lithium metal batteries.Chem Eng J2023;475:146409

[41]

Paz-González JA,Velasco-Santos C.Enhancing polylactic acid/carbon fiber-reinforced biomedical composites (PLA/CFRCs) with multi-walled carbon nanotube (MWCNT) fillers: a comparative study on reinforcing techniques.J Compos Sci2025;9:167

[42]

Li L,Wang Y.Implantable zinc-oxygen battery for in situ electrical stimulation-promoted neural regeneration.Adv Mater2023;35:e2302997

[43]

Lv Y,Liu J.Implantable and bio-compatible Na-O2 battery.Chem2024;10:1885-96

[44]

Yao G,Li C.A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing.Proc Natl Acad Sci USA2021;118:e2100772118 PMCID:PMC8285966

[45]

Li Y,Liu Y,Cao Z.Dual storage mechanism of charge adsorption desorption and Faraday redox reaction enables aqueous symmetric supercapacitor with 1.4 V output voltage.Chem Eng J2024;479:147906

[46]

Worsley EA,Bertoncello P.Application of graphene nanoplatelets in supercapacitor devices: a review of recent developments.Nanomaterials2022;12:3600 PMCID:PMC9609597

[47]

Chernysheva DV,Ananikov VP.Recent trends in supercapacitor research: sustainability in energy and materials.ChemSusChem2024;17:e202301367

[48]

Gopi CVV, Alzahmi S, Narayanaswamy V, Raghavendra KVG, Issa B, Obaidat IM. A review on electrode materials of supercapacitors used in wearable bioelectronics and implantable biomedical applications.Mater Horiz2025;12:4092-132

[49]

Portenkirchner E.Substantial Na-ion storage at high current rates: redox-pseudocapacitance through sodium oxide formation.Nanomaterials2022;12:4264 PMCID:PMC9737611

[50]

Khan B, Haider F, Zhang T, Zahra S. Advances in graphene-transition metal selenides hybrid materials for high-performance supercapacitors: a review.Chem Rec2025;25:e202500037

[51]

Wang X,Kamal Hadi M.An anticoagulant supercapacitor for implantable applications.Nat Commun2024;15:10497 PMCID:PMC11615336

[52]

Zhu Z,Yin Y.Production of a hybrid capacitive storage device via hydrogen gas and carbon electrodes coupling.Nat Commun2022;13:2805 PMCID:PMC9120448

[53]

Xie P,Man Z.Wearable, recoverable, and implantable energy storage devices with heterostructure porous COF-5/Ti3C2Tx cathode for high-performance aqueous Zn-ion hybrid capacitor.Adv Funct Mater2025;35:2421517

[54]

Jing L,Sun L.The mass-balancing between positive and negative electrodes for optimizing energy density of supercapacitors.J Am Chem Soc2024;146:14369-85

[55]

Shao M,Lin L.High-performance biodegradable energy storage devices enabled by heterostructured MoO3-MoS2 composites.Small2023;19:e2205529

[56]

Gloeb-McDonald RG.Glucose fuel cells: electricity from blood sugar.IEEE Rev Biomed Eng2025;18:268-80 PMCID:PMC12315024

[57]

Ge J,Wang X,Liu S.The fluorescent detection of glucose and lactic acid based on fluorescent iron nanoclusters.Sensors2024;24:3447 PMCID:PMC11174429

[58]

Maity D,Buchmann P,Fussenegger M.Blood-glucose-powered metabolic fuel cell for self-sufficient bioelectronics.Adv Mater2023;35:e2300890

[59]

Zhang X,Jiang H.Self-powered enzyme-linked microneedle patch for scar-prevention healing of diabetic wounds.Sci Adv2023;9:eadh1415 PMCID:PMC10348682

[60]

Rui X,Ren D.In situ polymerization facilitating practical high-safety quasi-solid-state batteries.Adv Mater2024;36:e2402401

[61]

Huddleston M.Biomass valorization via paired electrocatalysis.ChemSusChem2025;18:e202402161

[62]

Song Y.High-power biofuel cells based on three-dimensional reduced graphene oxide/carbon nanotube micro-arrays.Microsyst Nanoeng2019;5:46 PMCID:PMC6799826

[63]

Buaki-Sogó M,Gil-Agustí M,García-Pellicer M.Enzymatic glucose-based bio-batteries: bioenergy to fuel next-generation devices.Top Curr Chem2020;378:49

[64]

Wang Y,Ni S.Combining hard shell with soft core to enhance enzyme activity and resist external disturbances.Adv Sci2025;12:e2411196 PMCID:PMC11905098

[65]

Welsh CL.Chapter Two - Protein tyrosine phosphatase regulation by reactive oxygen species.Adv Cancer Res2024;162:74

[66]

Feliciano AJ,Bosman AW.Complementary supramolecular functionalization enhances antifouling surfaces: a ureidopyrimidinone-functionalized phosphorylcholine polymer.ACS Biomater Sci Eng2023;9:4619-31 PMCID:PMC10428092

[67]

Xie WJ.Harnessing generative AI to decode enzyme catalysis and evolution for enhanced engineering.Natl Sci Rev2023;10:nwad331 PMCID:PMC10829072

[68]

Chen N,Shi N,Lu F.Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications.Crit Rev Biotechnol2023;43:369-83

[69]

Zhang M,Liu W.Engineering a binding peptide for oriented immobilization and efficient bioelectrocatalytic oxygen reduction of multicopper oxidases.ACS Appl Mater Interfaces2025;17:2355-64

[70]

Cao L,Pang J,Liu J.Research progress in enzyme biofuel cells modified using nanomaterials and their implementation as self-powered sensors.Molecules2024;29:257 PMCID:PMC10780655

[71]

Khan M.Fabrication and characterization of electrically conducting electrochemically synthesized polypyrrole-based enzymatic biofuel cell anode with biocompatible redox mediator vitamin K3.Sci Rep2024;14:3324 PMCID:PMC10858164

[72]

Zhang Y,Shi K.Fabrication and characterization of glucose-oxidase-trehalase electrode based on nanomaterial-coated carbon paper.RSC Adv2023;13:33918-28 PMCID:PMC10658183

[73]

Maiti TK,Niyazi A,Chattpoadhyay S.Soft-template-based manufacturing of gold nanostructures for energy and sensing applications.Biosensors2024;14:289 PMCID:PMC11202093

[74]

Ji K,Wang P,Ma Q.Mxene-based capacitive enzyme-free biofuel cell self-powered sensor for lead ion detection in human plasma.Chem Eng J2024;495:153598

[75]

Wang X,Xiao Z.3-D printable living hydrogels as portable bio-energy devices (Adv. Mater. 18/2025).Adv Mater2025;37:2570134

[76]

Sode K,Lee I,Tsugawa W.BioCapacitor: a novel principle for biosensors.Biosens Bioelectron2016;76:20-8

[77]

Upadhyay V,Maranas CD.Rank-ordering of known enzymes as starting points for re-engineering novel substrate activity using a convolutional neural network.Metab Eng2023;78:171-82

[78]

Liu G,Qi Y.Ultrahigh-current-density tribovoltaic nanogenerators based on hydrogen bond-activated flexible organic semiconductor textiles.ACS Nano2025;19:6771-83

[79]

Cui X,Zhang C.Implantable self-powered systems for electrical stimulation medical devices.Adv Sci2025;12:e2412044 PMCID:PMC12199599

[80]

Fan N,Liu B,Liu S.Origin and mechanism of piezoelectric and photovoltaic effects in (111) polar orientated NiO films.Adv Sci2023;10:e2304637 PMCID:PMC10646231

[81]

Park DS,Riemer LM.Induced giant piezoelectricity in centrosymmetric oxides.Science2022;375:653-7

[82]

Xiang H,Yang Q,Cao X.Triboelectric nanogenerator for high-entropy energy, self-powered sensors, and popular education.Sci Adv2024;10:eads2291 PMCID:PMC11606449

[83]

Xiang Z,Lu Z.High-performance microcone-array flexible piezoelectric acoustic sensor based on multicomponent lead-free perovskite rods.Matter2023;6:554-69

[84]

Liu Z,Qu X.A self-powered intracardiac pacemaker in swine model.Nat Commun2024;15:507 PMCID:PMC10787765

[85]

Jała J,Toroń B.Piezotronic antimony sulphoiodide/polyvinylidene composite for strain-sensing and energy-harvesting applications.Sensors2023;23:7855 PMCID:PMC10536266

[86]

Chen Q,Lu Y.Hybrid piezoelectric/triboelectric wearable nanogenerator based on stretchable PVDF-PDMS composite films.ACS Appl Mater Interfaces2024;16:6239-49

[87]

Yang F,Long Y.Wafer-scale heterostructured piezoelectric bio-organic thin films.Science2021;373:337-42 PMCID:PMC8516594

[88]

Cheng Y,Li L.Boosting the piezoelectric sensitivity of amino acid crystals by mechanical annealing for the engineering of fully degradable force sensors.Adv Sci2023;10:e2207269 PMCID:PMC10104669

[89]

Sun Q,Ren G.Density-of-states matching-induced ultrahigh current density and high-humidity resistance in a simply structured triboelectric nanogenerator.Adv Mater2023;35:e2210915

[90]

Liu Q,He J.Highly moisture-resistant flexible thin-film-based triboelectric nanogenerator for environmental energy harvesting and self-powered tactile sensing.ACS Appl Mater Interfaces2024;16:38269-82

[91]

Ding D,Li Q.Novel thermoelectric fabric structure with switched thermal gradient direction toward wearable in-plane thermoelectric generators.Small2024;20:e2306830

[92]

Liu JZ,Zhuo S.Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation.Sci Adv2025;11:eadr2158 PMCID:PMC11698087

[93]

Yang S,Deng L.Flexible thermoelectric generator and energy management electronics powered by body heat.Microsyst Nanoeng2023;9:106 PMCID:PMC10449853

[94]

Li X,Li S,Wei D.Triboiontronics with temporal control of electrical double layer formation.Nat Commun2024;15:6182 PMCID:PMC11263338

[95]

Yan R,Wang H.Autonomous, moisture-driven flexible electrogenerative dressing for enhanced wound healing.Adv Mater2025;37:e2418074

[96]

Rayegani A,Delshad Z.Recent advances in self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators.Biosensors2022;13:37 PMCID:PMC9855384

[97]

Delgado-Alvarado E,Zamora-Peredo L.Triboelectric and piezoelectric nanogenerators for self-powered healthcare monitoring devices: operating principles, challenges, and perspectives.Nanomaterials2022;12:4403 PMCID:PMC9781874

[98]

Omi AI,Chatterjee B.Efficient inductive link design: a systematic method for optimum biomedical wireless power transfer in area-constrained implants.IEEE Trans Biomed Circuits Syst2025;19:300-16

[99]

Sheng H,Wang Q.A soft implantable energy supply system that integrates wireless charging and biodegradable Zn-ion hybrid supercapacitors.Sci Adv2023;9:eadh8083 PMCID:PMC10651135

[100]

Yu Z,Alrashdan FT.MagNI: a magnetoelectrically powered and controlled wireless neurostimulating implant.IEEE Trans Biomed Circuits Syst2020;14:1244-55

[101]

Ullah MA,Abolhasan M,Esselle KP.A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: designs, challenges and applications.IEEE Access2022;10:17231-67

[102]

Abdolrazzaghi M,Eleftheriades GV.Subwavelength-scale focused wireless powering of implantable medical devices by superoscillations.IEEE Trans Microw Theory Technol2025;73:2101-10

[103]

Hinchet R,Ryu H.Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology.Science2019;365:491-4

[104]

Zhu K,Qi X.Enhancement of ultrasonic transducer bandwidth by acoustic impedance gradient matching layer.Sensors2022;22:8025 PMCID:PMC9610773

[105]

Hou JF,Caplan KA.An implantable piezoelectric ultrasound stimulator (ImPULS) for deep brain activation.Nat Commun2024;15:4601 PMCID:PMC11150473

[106]

Imani IM,Lee M.A body conformal ultrasound receiver for efficient and stable wireless power transfer in deep percutaneous charging.Adv Mater2025;37:e2419264

[107]

Ai L,Cao C.Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies.Nat Commun2023;14:7723 PMCID:PMC10673831

[108]

Hu H,Ding Y,Huang Q.A review of structure engineering of strain-tolerant architectures for stretchable electronics.Small Methods2023;7:e2300671

[109]

Simone G,de Vries X.Near-infrared tandem organic photodiodes for future application in artificial retinal implants.Adv Mater2018;30:e1804678

[110]

Zhang Y,Zeng L.Millimetre-scale bioresorbable optoelectronic systems for electrotherapy.Nature2025;640:77-86

[111]

Cong J,Fang Y.Application of organoid technology in the human health risk assessment of microplastics: a review of progresses and challenges.Environ Int2024;188:108744

[112]

Park J,Kim J,Song T.Sustainable and cost-effective electrode manufacturing for advanced lithium batteries: the roll-to-roll dry coating process.Chem Sci2025;16:6598-619 PMCID:PMC11950987

PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

/