Rapid flame induced dual-metal doping on WO3 electrode for boosting photo-electrochemical water oxidation

Seung Hun Roh , Jaekyum Kim , Won So , Yuankai Li , Won Tae Hong , Hyun Min Kwon , Sae Byeok Jo , Wooseok Yang , Byung-Keun Oh , Chan-Hwa Chung , Jongwook Park , Chisung Ahn , Byung-Hyun Kim , Jung Kyu Kim

Energy Materials ›› 2025, Vol. 5 ›› Issue (10) : 500128

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (10) :500128 DOI: 10.20517/energymater.2025.59
Article

Rapid flame induced dual-metal doping on WO3 electrode for boosting photo-electrochemical water oxidation

Author information +
History +
PDF

Abstract

A bidirectional co-doping of transition metal Fe and post-transition metal Sn on WO3 photoanode via a facile one step flame-doping process demonstrates the challenging amelioration of both thermodynamic charge migration and surface catalytic kinetics, achieving high-efficient photoelectrochemical (PEC) water oxidation reaction in a neutral pH. The direct flamethrower with rapid thermal flux effectively induces the bidirectional doping of Fe3+ and Sn4+ into WO3 without damaging its nanostructure and fluorine-doped tin oxide glass substrate. From the synergetic effect of the dual-metal doping, the photoinduced charge migration and the surface water oxidation kinetics are effectively ameliorated. As a result, the Fe/Sn co-doped WO3 photoanode shows significantly enhanced PEC response with 6.16-fold higher photocurrent density performance at 1.23 VRHE than bare WO3. This work highlights the facile metal atom co-doping method without affecting intrinsic properties of photoanode and substrate for boosting the PEC water splitting performance and solar fuel production.

Keywords

Flame treatment / dual metal co-doping / oxygen evolution reaction / photoelectrochemical reaction / water splitting

Cite this article

Download citation ▾
Seung Hun Roh, Jaekyum Kim, Won So, Yuankai Li, Won Tae Hong, Hyun Min Kwon, Sae Byeok Jo, Wooseok Yang, Byung-Keun Oh, Chan-Hwa Chung, Jongwook Park, Chisung Ahn, Byung-Hyun Kim, Jung Kyu Kim. Rapid flame induced dual-metal doping on WO3 electrode for boosting photo-electrochemical water oxidation. Energy Materials, 2025, 5(10): 500128 DOI:10.20517/energymater.2025.59

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim JH,Sharma P,Lee JS.Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge.Chem Soc Rev2019;48:1908-71

[2]

Rossmeisl J,Nørskov J.Electrolysis of water on (oxidized) metal surfaces.Chem Phys2005;319:178-84

[3]

Man IC,Calle-Vallejo F.Universality in oxygen evolution electrocatalysis on oxide surfaces.ChemCatChem2011;3:1159-65

[4]

Song J,Huang ZF.A review on fundamentals for designing oxygen evolution electrocatalysts.Chem Soc Rev2020;49:2196-214

[5]

Li Y,Kim J.Rational nanopositioning of homogeneous amorphous phase on crystalline tungsten oxide for boosting solar water oxidation.Chem Eng J2022;438:135532

[6]

Jiang C,Wang A,Tang J.Photoelectrochemical devices for solar water splitting - materials and challenges.Chem Soc Rev2017;46:4645-60

[7]

Yang Y,Han D,Wang G.Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting.Adv Energy Mater2017;7:1700555

[8]

Klotz D,Rothschild A.Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting.Phys Chem Chem Phys2017;19:20383-92

[9]

He H,Guo W,Zhou Y.State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis.Nano Today2019;28:100763

[10]

Wang Y,Chen C,Li L.Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation.Adv Funct Mater2019;29:1809036

[11]

Li Y,Liu Z.Fluorine-doped iron oxyhydroxide cocatalyst: promotion on the WO3 photoanode conducted photoelectrochemical water splitting.Appl Catal B Environ2022;304:120995

[12]

Amano F.Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding.Energy Mater2024;4:400006

[13]

Huang Y,Wang H.Candle-soot template-mediated synthesis of nanoporous WO3 films as photoanodes for solar water splitting.Appl Mater Today2025;42:102553

[14]

Jafarpour S.Reactive co-sputter deposition of Ta-doped tungsten oxide thin films for water splitting application.Sci Rep2025;15:8302 PMCID:PMC11893905

[15]

Li B,Liang T.WO3 nanorod arrays decorated with isolated Fe active sites for photoelectrocatalytic water oxidation.J Colloid Interface Sci2025;689:137257

[16]

Kim W,Monllor-Satoca D,Majima T.Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer.Energy Environ Sci2013;6:3732

[17]

Zheng G,Liu H.Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting.Nanoscale2019;11:18968-94

[18]

Li Y,Xia C.A natural molecule-driven organometallic conformal overlayer for high efficiency photoelectrochemical water splitting.Appl Catal B Environ2024;343:123516

[19]

Shinde PA.Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage.ChemSusChem2020;13:11-38

[20]

Hill JC.Effect of electrolytes on the selectivity and stability of n-type WO3 photoelectrodes for use in solar water oxidation.J Phys Chem C2012;116:7612-20

[21]

Song H,Lou Z.Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities.Appl Catal B Environ2015;166-7:112-20

[22]

Wang S,Gao G.Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance.Nano Energy2016;24:94-102

[23]

Kim JH,Kim TH.Heterostructure between WO3 and metal organic framework-derived BiVO4 nanoleaves for enhanced photoelectrochemical performances.Chem Eng J2021;425:131496

[24]

Seabold JA.Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode.Chem Mater2011;23:1105-12

[25]

Parmar KPS,Bist A,Jang JS.Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes.ChemSusChem2012;5:1926-34

[26]

Chen B,Fu S.Ex-situ flame co-doping of tin and tungsten ions in TiO2 nanorod arrays for synergistic promotion of solar water splitting.Chem Eng Sci2020;226:115843

[27]

Annamalai A,Jeon TH.Fabrication of superior α-Fe2O3 nanorod photoanodes through ex-situ Sn-doping for solar water splitting.Solar Energy Mater Solar Cells2016;144:247-55

[28]

Wang G,Li Y.Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications.Nanoscale2012;4:6682-91

[29]

Liu Y,Li W.Electrochemical doping induced in situ homo-species for enhanced photoelectrochemical performance on WO3 nanoparticles film photoelectrodes.Electrochim Acta2016;210:251-60

[30]

Weigel T,Erickson EM,Markovsky B.Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations.ACS Energy Lett2019;4:508-16

[31]

Tang LB,Wei H.Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design.J Energy Chem2021;55:114-23

[32]

Kim JH.Elaborately modified BiVO4 photoanodes for solar water splitting.Adv Mater2019;31:e1806938

[33]

Salem M,Ghrib T,Gaidi M.Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films.J Alloys Compd2016;685:107-13

[34]

Chakhari W,Ben Taieb S,Chtourou R.Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials.J Alloys Compd2017;708:862-70

[35]

Ling Y,Wheeler DA,Li Y.Sn-doped hematite nanostructures for photoelectrochemical water splitting.Nano Lett2011;11:2119-25

[36]

Cho IS,Feng Y.Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance.Nat Commun2013;4:1723

[37]

Feng Y,Cai L,Zheng X.Sol-flame synthesis of hybrid metal oxide nanowires.Proc Combust Inst2013;34:2179-86

[38]

He Y,Liu X,Yang J.Effect of annealing on the structure, morphology and photocatalytic activity of surface-fluorinated TiO2 with dominant {001} facets.J Photochem Photobiol A Chem2020;393:112400

[39]

Trzciński K,Szkoda M,Berent K.Controlling crystallites orientation and facet exposure for enhanced electrochemical properties of polycrystalline MoO3 films.Sci Rep2023;13:16668 PMCID:PMC10550991

[40]

Wen X,Lu S.Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.Nat Commun2018;9:2179 PMCID:PMC5988661

[41]

Antonaia A,Addonizio M,Minarini C.Structural and optical characterization of amorphous and crystalline evaporated WO3 layers.Thin Solid Films1999;354:73-81

[42]

Feng C,Wang W,Bi Y.High-crystalline and high-aspect-ratio hematite nanotube photoanode for efficient solar water splitting.Appl Catal B Environ2019;257:117900

[43]

Li Y,Li J,Guo Z.An effective strategy of constructing a multi-junction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3.J Mater Chem A2020;8:6256-67

[44]

Li F,Li F.Facile regrowth of Mg-Fe2O3/P-Fe2O3 homojunction photoelectrode for efficient solar water oxidation.J Mater Chem A2018;6:13412-8

[45]

Jang JW,Ye Y.Enabling unassisted solar water splitting by iron oxide and silicon.Nat Commun2015;6:7447 PMCID:PMC4490416

[46]

Santato C,Ulmann M.Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications.J Am Chem Soc2001;123:10639-49

[47]

Daniel M,Lassegues J,Figlarz M.Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates.J Solid State Chem1987;67:235-47

[48]

Moulzolf SC,Lad RJ.Stoichiometry and microstructure effects on tungsten oxide chemiresistive films.Sens Actuators B Chem2001;77:375-82

[49]

Xia C,Kim H.A highly activated iron phosphate over-layer for enhancing photoelectrochemical ammonia decomposition.J Hazard Mater2021;408:124900

[50]

Kim TW.Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting.Science2014;343:990-4

[51]

Kalanur SS.Structural, optical, band edge and enhanced photoelectrochemical water splitting properties of tin-doped WO3.Catalysts2019;9:456

[52]

He Y,Teng B.New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel.Environ Sci Technol2015;49:649-56

[53]

Yan L,Huang X,Bi Y.Unraveling oxygen vacancy changes of WO3 photoanodes for promoting oxygen evolution reaction.Appl Catal B Environ2024;345:123682

[54]

Silva AM,Sales FAM.Optical absorption and DFT calculations in L -aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior.Phys Rev B2012;86:195201

[55]

Wang F,Pacchioni G.Electronic and structural properties of WO3: a systematic hybrid DFT study.J Phys Chem C2011;115:8345-53

[56]

Kishore R,Zhang X.Electrochemical water oxidation on WO3 surfaces: a density functional theory study.Catal Today2019;321-2:94-9

[57]

Shi X,Hersbach TJP.Efficient and stable acidic water oxidation enabled by low-concentration, high-valence iridium sites.ACS Energy Lett2022;7:2228-35

PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

/