LixVSy nanocomposite electrodes for high-energy carbon-additive-free all-solid-state lithium-sulfur batteries

Misae Otoyama , Mizue Wanibuchi , Tomonari Takeuchi , Naoya Ishida , Noboru Taguchi , Mitsunori Kitta , Hikaru Sano , Koji Kawamoto , Toyoki Okumura , Kentaro Kuratani , Hikari Sakaebe

Energy Materials ›› 2025, Vol. 5 ›› Issue (10) : 500126

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (10) :500126 DOI: 10.20517/energymater.2025.44
Article

LixVSy nanocomposite electrodes for high-energy carbon-additive-free all-solid-state lithium-sulfur batteries

Author information +
History +
PDF

Abstract

All-solid-state (ASS) lithium-sulfur batteries are promising power sources with the potential for high capacity and safety. Lithium metal polysulfide cathodes can address issues arising from the low electronic conductivity of Li2S and S. This study synthesized lithium vanadium polysulfides (LixVSy) by the mechanochemical treatment of Li2S and V2S3. The LixVSysystem contains nanocomposites of Li2S and LiVS2 in an amorphous matrix; lithiation and delithiation occur in both Li2S and LiVS2 during charging and discharging. LiVS2 enhances the electronic conductivity of LixVSy (~10-1-10-2 S cm-1) and the reversibility of charge-discharge reactions because of its high electronic conductivity and layered structure. Therefore, ASS batteries with LixVSy show high capacity (~650 mAh g-1), even without conductive additives. Here, ASS full cells with high loading assembled using a composite cathode comprising Li8VS5.5 and a solid electrolyte in a 80:20 (wt.%) ratio (33 mg cm-2) and a composite Si anode (10.4 mg cm-2) exhibited a high areal capacity of 15 mAh cm-2, resulting in calculation of high energy densities of 853 Wh L-1 and 515 Wh kg-1 when assuming the cells were enlarged and stacked. This study is expected to expedite research on the development of high-performance ASS batteries.

Keywords

Lithium-vanadium polysulfide cathodes / all-solid-state lithium-sulfur batteries / sulfide solid electrolytes / high energy density / nanocomposites

Cite this article

Download citation ▾
Misae Otoyama, Mizue Wanibuchi, Tomonari Takeuchi, Naoya Ishida, Noboru Taguchi, Mitsunori Kitta, Hikaru Sano, Koji Kawamoto, Toyoki Okumura, Kentaro Kuratani, Hikari Sakaebe. LixVSy nanocomposite electrodes for high-energy carbon-additive-free all-solid-state lithium-sulfur batteries. Energy Materials, 2025, 5(10): 500126 DOI:10.20517/energymater.2025.44

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ji X.Advances in Li-S batteries.J Mater Chem2010;20:9821

[2]

Manthiram A,Chung SH,Su YS.Rechargeable lithium-sulfur batteries.Chem Rev2014;114:11751-87

[3]

Yamin H,Penciner J,Peled E.Lithium sulfur battery - oxidation reduction-mechanisms of polysulfides in Thf solutions.J Electrochem Soc1988;135:1045-8

[4]

Shim J,Cairns EJ.The lithium/sulfur rechargeable cell: effects of electrode composition and solvent on cell performance.J Electrochem Soc2002;149:A1321

[5]

Sakuda A,Tatsumisago M.Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery.Sci Rep2013;3:2261 PMCID:PMC3719077

[6]

Fujita Y,Asakura T.Dynamic volume change of Li2S-based active material and the influence of stacking pressure on capacity in all-solid-state batteries.Chem Mater2024;36:7533-40

[7]

Kamaya N,Yamakawa Y.A lithium superionic conductor.Nat Mater2011;10:682-6

[8]

Kato Y,Saito T.High-power all-solid-state batteries using sulfide superionic conductors.Nat Energy2016;1:201630

[9]

Li Y,Kim H.A lithium superionic conductor for millimeter-thick battery electrode.Science2023;381:50-3

[10]

Boulineau S,Tarascon J.Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application.Solid State Ion2012;221:1-5

[11]

Yang X,Sun X.Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design.Chem Soc Rev2020;49:2140-95

[12]

Zhang W,Culver SP.The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries.ACS Appl Mater Interfaces2017;9:35888-96

[13]

Strauss F,Maibach J.Influence of electronically conductive additives on the cycling performance of argyrodite-based all-solid-state batteries.RSC Adv2020;10:1114-9 PMCID:PMC9046990

[14]

Walther F,Schneider Y.Influence of carbon additives on the decomposition pathways in cathodes of lithium thiophosphate-based all-solid-state batteries.Chem Mater2020;32:6123-36

[15]

Fang R,Li Y,Goodenough JB.Achieving stable all-solid-state lithium-metal batteries by tuning the cathode-electrolyte interface and ionic/electronic transport within the cathode.Mater Today2023;64:52-60

[16]

Balach J,Jaumann T.Metal-based nanostructured materials for advanced lithium-sulfur batteries.J Mater Chem A2018;6:23127-68

[17]

Li X,Xiao B,Liang J.Inorganic polysulfide chemistries for better energy storage systems.Acc Chem Res2023;56:3547-57

[18]

Sakuda A.Metal polysulfides as high capacity electrode active materials - toward superior secondary batteries based on sulfur chemistry.Electrochemistry2023;91:102003

[19]

Kawasaki Y,Ayama T.Synthesis and electrochemical properties of Li3CuS2 as a positive electrode material for all-solid-state batteries.ACS Appl Energy Mater2021;4:20-4

[20]

Otoyama M,Taguchi N,Sakaebe H.Mechanochemical synthesis and electrochemical properties of LixVSy positive electrodes for all-solid-state batteries.ECS Adv2023;2:010501

[21]

Ji Q,Wang J.Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications.Nano Lett2017;17:4908-16

[22]

Cai L,Mwizerwa JP.Highly crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances.ACS Appl Mater Interfaces2018;10:10053-63

[23]

Xu S,Zhou L,Kochetkov I.A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture.Adv Funct Mater2021;31:2004239

[24]

Shigedomi T,Kishi T.Li2S-V2S3 -LiI bifunctional material as the positive electrode in the all-solid-state Li/S battery.Chem Mater2022;34:9745-52

[25]

Kwok CY,Kochetkov I,Nazar LF.High-performance all-solid-state Li2S batteries using an interfacial redox mediator.Energy Environ Sci2023;16:610-8

[26]

Izumi F.Three-dimensional visualization in powder diffraction.Solid State Phenomen2007;130:15-20

[27]

Nakanishi K,Ohta T.XAFS measurements under atmospheric pressure in the soft X-ray region.Aip Conf Proc2010;1234:931-4

[28]

Kiguchi M,Matsumura D,Ohta T.Interface structure of alkali-halide heteroepitaxial films studied by X-ray-absorption fine structure.Phys Rev B1999;60:16205-10

[29]

Han F,Fan X.High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite.Nano Lett2016;16:4521-7

[30]

Gamo H,Matsuda A.Understanding decomposition of electrolytes in all-solid-state lithium-sulfur batteries.Chem Mater2022;34:10952-63

[31]

Kim JT,Nie HY.Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life.Nat Commun2023;14:6404 PMCID:PMC10570351

[32]

Sun Z,Lv N.Insights on the properties of the O-doped argyrodite sulfide solid electrolytes (Li6PS5-xClOx, x=0-1).ACS Appl Mater Interfaces2021;13:54924-35

[33]

Murphy DW,Di Salvo FJ.Preparation and properties of LixVS2 (0 .ltoreq. x .ltoreq. 1).Inorg Chem1977;16:3027-31

PDF

202

Accesses

0

Citation

Detail

Sections
Recommended

/