Polyol-solid surface/interface transesterification strategy to construct precise anatase/rutile TiO2 hetero-phase junctions towards enhanced photocatalytic performance

Chengxiang Zhang , Yanming Zhou , Yang Li , Xue Yang , Ke Liu , Azhar Ayyub , Kang Hui Lim , Wei Zheng , Meisong Xu , Wanliang Yang , Sibudjing Kawi

Energy Materials ›› 2025, Vol. 5 ›› Issue (9) : 500116

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (9) :500116 DOI: 10.20517/energymater.2025.41
Article

Polyol-solid surface/interface transesterification strategy to construct precise anatase/rutile TiO2 hetero-phase junctions towards enhanced photocatalytic performance

Author information +
History +
PDF

Abstract

Heterophase anatase/rutile junctions (A/R-HPJs) in TiO2 hold significant promise for photocatalysis, yet precise control over phase composition remains elusive. Here, we develop a novel polyol-solid surface/interface transesterification strategy to synthesize TiO2 A/R-HPJs with tunable mass ratios for photocatalytic seawater splitting and dye degradation. Mechanistic studies reveal that glucose-Ti complexes (GTCs) govern rutile formation, enabling a linear correlation between A/R mass ratios and GTC/Ti molar ratios. Increasing glucose particle surface area via grinding enhances rutile content, evidenced by amplified slope values in this linear relationship. This approach for constructing precise A/R TiO2 HPJs demonstrates generalizability across diverse polyols, non-solubilizing solvents, and titanium precursors. Phase-dependent carrier separation efficacy is highlighted, with optimized GT15 (optimal A/R ratio) exhibiting exceptional photocatalytic H2 evolution and pollutant degradation. Our work establishes a surface/interface engineering paradigm for precise heterophase control in metal oxides, addressing a critical gap in designing functional HPJs for energy and environmental applications.

Keywords

Precise anatase/rutile mass ratio / hetero-phase junction / transesterification strategy / polyol-solid surface/interface / photocatalytic performance

Cite this article

Download citation ▾
Chengxiang Zhang, Yanming Zhou, Yang Li, Xue Yang, Ke Liu, Azhar Ayyub, Kang Hui Lim, Wei Zheng, Meisong Xu, Wanliang Yang, Sibudjing Kawi. Polyol-solid surface/interface transesterification strategy to construct precise anatase/rutile TiO2 hetero-phase junctions towards enhanced photocatalytic performance. Energy Materials, 2025, 5(9): 500116 DOI:10.20517/energymater.2025.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Motesharrei S,Kalnay E.Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the earth and human systems.Natl Sci Rev2016;3:470-94 PMCID:PMC7398446

[2]

Feng L,Yang G.Novel 3D@2D/2D HHSS@BiOBr/Znln2S4 S-scheme photocatalyst for efficient adsorption-photocatalytic-photosensitization synergistic degradation of organics.Appl Surf Sci2023;640:158340

[3]

Bolson N.Capacity factors for electrical power generation from renewable and nonrenewable sources.Proc Natl Acad Sci U S A2022;119:52 PMCID:PMC9907140

[4]

Wang M,Qian T.Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential.Nat Commun2019;10:341 PMCID:PMC6341113

[5]

Wang H,Sun H,Li S.Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid-gas mode.Coord Chem Rev2021;438:213906

[6]

Liu M,Zhuzhang H.Fully condensed poly (triazine imide) crystals: extended π-conjugation and structural defects for overall water splitting.Angew Chem Int Ed2022;61:e202113389

[7]

Yan Y,Huang K.Tensile strain-mediated spinel ferrites enable superior oxygen evolution activity.J Am Chem Soc2023;145:24218-29

[8]

Zhou W,Yang X.Peanut-chocolate-ball-inspired construction of the interface engineering between CdS and intergrown Cd: boosting both the photocatalytic activity and photocorrosion resistance.J Energy Chem2023;76:75-89

[9]

Chen X,Li G,Li H.Recent advances in photocatalytic renewable energy production.Energy Mater2022;2:200001

[10]

Phongamwong T,Donphai W,Rupprechter G.Chlorophyll-modified Au25(SR)18-functionalized TiO2 for photocatalytic degradation of rhodamine B.Appl Catal B Environ2023;325:122336

[11]

Ruan X,Xu M.Iso-elemental ZnIn2S4/Zn3In2S6 heterojunction with low contact energy barrier boosts artificial photosynthesis of hydrogen peroxide.Adv Energy Mater2024;14:2401744

[12]

Ruan X,Cui Y.Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%.Adv Energy Mater2022;12:2200298

[13]

Li S,Li X.Construction of Cu-doped α-Fe2O3/γ-Fe2O3 hetero-phase junction composite and its photocatalytic performance.Chem Eng J2024;501:157678

[14]

Fujishima A and Honda K.Electrochemical photolysis of water at a semiconductor electrode.Nature1972;238:37-38.

[15]

Linsebigler AL,Yates JT.Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results.Chem Rev1995;95:735-58

[16]

Liu M,Miyauchi M.Cu(II) oxide amorphous nanoclusters grafted Ti3+ Self-Doped TiO2: an efficient visible light photocatalyst.Chem Mater2011;23:5282-6

[17]

Chen X.Introduction: titanium dioxide (TiO2) nanomaterials.Chem Rev2014;114:9281-2

[18]

Mishra PR.On the synthesis, characterization and photocatalytic applications of nanostructured TiO2.Bull Mater Sci2008;31:545-50

[19]

Puddu V,Dionysiou DD.TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation.Appl Catal B Environ2010;94:211-8

[20]

Roy P,Schmuki P.TiO2 nanotubes: synthesis and applications.Angew Chem Int Ed2011;50:2904-39

[21]

Kyriaki E.Karakitsou XEV. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage.J Phys Chem C1993;97:1184-9.

[22]

Feng Y,Wang J.Promotion of anatase/rutile junction to direct conversion of syngas to ethanol on the Rh/TiO2 catalysts.ACS Catal2024;14:1874-81

[23]

Cho IS,Forman AJ.Branched TiO2 nanorods for photoelectrochemical hydrogen production.Nano Lett2011;11:4978-84

[24]

Wang H,Xiao F,Liu B.Doping-induced structural evolution from rutile to anatase: formation of Nb-doped anatase TiO2 nanosheets with high photocatalytic activity.J Mater Chem A2016;4:6926-32

[25]

Li B,Zhou T.Revealing the synergistic effect of bulk and surface co-doped boron on TiO2 for enhanced photocatalytic H2 evolution.Chem Eng J2024;497:154726

[26]

Wang G,Ling Y.Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.Nano Lett2011;11:3026-33

[27]

Choi SY,Lee KJ,Han DS.Solar hydrogen peroxide production on carbon nanotubes wired to titania nanorod arrays catalyzing As(III) oxidation.Appl Catal B Environ2019;252:55-61

[28]

Xiao L,Sheehan CJ.Electron transfer dynamics at dye-sensitized SnO2/TiO2 core/shell electrodes in aqueous/nonaqueous electrolyte mixtures.J Am Chem Soc2024;146:18117-27

[29]

Liu ESA. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells.J Am Chem Soc2009;131:3985-90.

[30]

Zhang P,Kang Y.Sub-10 nm corrugated TiO2 nanowire arrays by monomicelle-directed assembly for efficient hole extraction.J Am Chem Soc2022;144:20964-74

[31]

Wu J,Lu P.Engineering 2D multi-hetero-interface in the well-designed nanosheet composite photocatalyst with broad electron-transfer channels for highly-efficient solar-to-fuels conversion.Appl Catal B Environ2021;286:119944

[32]

Zhang D,Wang R,Qiu S.Interface engineering of hierarchical photocatalyst for enhancing photoinduced charge transfers.Appl Catal B Environ2021;283:119632

[33]

Zhou Y,Feng L,Abbas M.Sunflower-disc-inspired vertical growth of 2D ZnIn2S4 on ultra-thin TiO2: Constructing a 3D porous photocatalytic glass film for ultra-efficient organic pollutant degradation.Appl Catal B Environ Energy2025;363:124782

[34]

Peng C,Wei P.Regulation of the rutile/anatase TiO2 phase junction in-situ grown on -OH terminated Ti3C2Tx (MXene) towards remarkably enhanced photocatalytic hydrogen evolution.Chem Eng J2022;439:135685

[35]

Cho M,Lee CS,Kim K.The superior mineralization potential of a graphitic carbon nitride/titanium dioxide composite and its application in the construction of a portable photocatalytic air purification system against gaseous formaldehyde.J Mater Chem A2024;12:32239-58

[36]

Navakoteswara Rao V,Lee Y.Synergistic integration of MXene nanosheets with CdS@TiO2 core@shell S-scheme photocatalyst for augmented hydrogen generation.Chem Eng J2023;471:144490

[37]

Yang G,Chen D,Hao Q.Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution.Appl Catal B Environ2018;234:260-7

[38]

Cui P,Zhang Q.Homojunction perovskite solar cells: opportunities and challenges.Energy Mater2022;1:100014

[39]

Zhang Y,Meng A.Molecular heptazine-triazine junction over carbon nitride frameworks for artificial photosynthesis of hydrogen peroxide.Adv Mater2023;35:2306831

[40]

Liu J,Liu Q.Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting.Appl Catal B Environ2014;158-9:296-300

[41]

Chen K,Hu Z.Construction of γ-MnS/α-MnS hetero-phase junction for high-performance sodium-ion batteries.Chem Eng J2022;435:135149

[42]

Ren H,Qi J,Jin Q.Hollow multishelled heterostructured anatase/TiO2(B) with superior rate capability and cycling performance.Adv Mater2019;31:1805754

[43]

Liu C,Song Q.A Metastable crystalline phase in two-dimensional metallic oxide nanoplates.Angew Chem Int Ed2019;58:2055-9

[44]

Zhang J,Feng Z,Li C.Importance of the relationship between surface phases and photocatalytic activity of TiO2.Angew Chem Int Ed2008;47:1766-9

[45]

Jiang Y,Li S.Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering.J Am Chem Soc2022;144:15977-87

[46]

Chen X,Yu PY.Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals.Science2011;331:746-50

[47]

Yan P,Zheng X.Photovoltaic device based on TiO2 rutile/anatase phase junctions fabricated in coaxial nanorod arrays.Nano Energy2015;15:406-12

[48]

Zhang W,Tian Y.Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting.Chem Sci2019;10:1664-70

[49]

Tomita K,Kobayashi M,Yoshimura M.A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method.Angew Chem Int Ed2006;45:2378-81

[50]

Lei W,Wang H,Terashima C.Gelation-induced controlled synthesis of TiO2 with tunable phase transition for efficient photocatalytic hydrogen evolution.Inorg Chem Front2024;11:2178-86

[51]

Rao KVK,Iyengar L.Thermal expansion of rutile and anatase.J Am Ceram Soc1970;53:124-6

[52]

Koirala R,Baiker A.Synthesis of catalytic materials in flames: opportunities and challenges.Chem Soc Rev2016;45:3053-68

[53]

Zhang X,Jiang S.Enhanced photocatalytic degradation of gaseous toluene and liquidus tetracycline by anatase/rutile titanium dioxide with heterophase junction derived from materials of Institut Lavoisier-125(Ti): degradation pathway and mechanism studies.J Colloid Interface Sci2021;588:122-37

[54]

Peng C,Yu H.(111) TiO2-x/Ti3C2: synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity.Mater Res Bull2017;89:16-25

[55]

Xia X,Bao Y.Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation.J Power Sources2018;376:11-7

[56]

Choi HC,Kim SB.Size effects in the Raman spectra of TiO2 nanoparticles.Vib Spectrosc2005;37:33-8

[57]

Brouwer DH.A combined solid-state NMR and quantum chemical calculation study of hydrogen bonding in two forms of α-d-glucose.Solid State Nucl Magn Reson2023;123:101848

[58]

Carnahan SL,Wishart JF,Rossini AJ.Magic angle spinning dynamic nuclear polarization solid-state NMR spectroscopy of γ-irradiated molecular organic solids.Solid State Nucl Magn Reson2022;119:101785

[59]

Pisklak DM,Szeleszczuk Ł.13C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: chemical shifts assignment.J Pharm Biomed Anal2016;122:81-9

[60]

Wang J,Wang M,Chen Y.A novel biochar-composed TiO2 (BC-Ti) for efficient photocatalytic degradation on arbidol.J Ind Eng Chem2024;134:537-47

[61]

Bibi S,Anjum MAR.Photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide (rGO) based metal oxides (rGO-Fe3O4/TiO2) nanocomposite under UV-visible light irradiation.J Environ Chem Eng2021;9:105580

[62]

Shah AH.Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2 nanoparticles synthesized via polyol-mediated method.Mater Today Proc2021;44:482-8

[63]

Peng C,Chen X.A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance.Ceram Int2018;44:18886-93

[64]

Zhou T,Wang Y.Super-tough MXene-functionalized graphene sheets.Nat Commun2020;11:2077 PMCID:PMC7190721

[65]

Midya P,Dutta A,Sarkar D.Carbon-modified TiO2 nanourchin with Ag nanoparticle decoration for environmental remediation.Mater Sci Eng B2022;286:116028

[66]

Gao P,Ma T.MXene/TiO2 heterostructure-decorated hard carbon with stable Ti-O-C bonding for enhanced sodium-ion storage.ACS Appl Mater Interfaces2021;13:51028-38

[67]

Roldán MV,Durán A,Pellegri N.Development of photocatalysts based on TiO2 films with embedded Ag nanoparticles.Int J Appl Glass Sci2022;13:429-43

[68]

With PC,Naumov S.Low-temperature photochemical conversion of organometallic precursor layers to titanium(IV) oxide thin films.Chem Mater2016;28:7715-24

[69]

Chen J,Jiang B,Song X.TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge.Bioresour Technol2015;192:1-10

[70]

Lovatti BP,Portela NDA.Identification of petroleum profiles by infrared spectroscopy and chemometrics.Fuel2019;254:115670

[71]

Özsin G.Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR.Waste Manag2017;64:315-26

[72]

Fan QG,Tapley KN.Characterization of cellulose aldehyde using Fourier transform infrared spectroscopy.J Appl Polym Sci2001;82:1195-202

[73]

Tracy L.Thompson and John T. Yates J. Surface science studies of the photoactivation of TiO2-new photochemical processes.Chem Rev2006;106:4428-53

[74]

Ding Y,Li Z.Nanoporous TiO2 spheres with tailored textural properties: controllable synthesis, formation mechanism, and photochemical applications.Prog Mater Sci2020;109:100620

[75]

Scanlon DO,Buckeridge J.Band alignment of rutile and anatase TiO2.Nat Mater2013;12:798-801

[76]

Apopei P,Teodosiu C.Mixed-phase TiO2 photocatalysts: crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents.Appl Catal B Environ2014;160-161:374-82

[77]

Gao Y,An H.Directly probing charge separation at interface of TiO2 phase junction.J Phys Chem Lett2017;8:1419-23

[78]

Qu J,Li H.Unraveling the role of interface in photogenerated charge separation at the anatase/rutile heterophase junction.J Phys Chem C2023;127:768-75

PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

/