Phonon and electron transport engineering for enhanced thermoelectric performance and the challenges of device integration

Marisol Martin-Gonzalez , Ketan Lohani , Neophytos Neophytou

Energy Materials ›› 2025, Vol. 5 ›› Issue (9) : 500121

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (9) :500121 DOI: 10.20517/energymater.2025.32
Review

Phonon and electron transport engineering for enhanced thermoelectric performance and the challenges of device integration

Author information +
History +
PDF

Abstract

Thermoelectricity has long been recognized as a transformative technology for power generation and cooling, owing to its capability to convert heat directly into electricity and vice versa, thereby facilitating cost-effective and environmentally friendly energy conversion. Following a period of modest activity, the field has experienced a remarkable resurgence since 2000, driven by significant advancements in the development of a diverse array of new materials and compounds, alongside enhanced capabilities for controlled nanostructuring. This rapid growth and the innovative breakthroughs observed over the past two decades can be largely attributed to a deeper understanding of the physical properties at the nanoscale. Among the various thermoelectric materials, nanostructured variants exhibit the highest potential for commercial application due to their unprecedented thermoelectric performance, which arises from substantial reductions in thermal conductivity. However, further advancements will not rely solely on nanostructuring; they will also necessitate novel electronic structure design concepts that require a comprehensive understanding of the complexities of electronic and phonon transport. These developments present significant opportunities for thermoelectric energy harvesting, power generation, and cooling applications. This article aims to summarize and elucidate the breakthroughs reported in recent years, discuss future avenues that integrate nanostructuring concepts with the rich electronic structures of novel materials, and provide a critical overview of the future directions in thermoelectric materials research. Additionally, it offers a comprehensive overview of state-of-the-art thermoelectric materials and devices and a summary of the challenges associated with transitioning these materials into practical devices.

Keywords

Thermoelectricity / nanostructuring / phonon and electron transport / energy harvesting / zT figure of merit / thermoelectric devices

Cite this article

Download citation ▾
Marisol Martin-Gonzalez, Ketan Lohani, Neophytos Neophytou. Phonon and electron transport engineering for enhanced thermoelectric performance and the challenges of device integration. Energy Materials, 2025, 5(9): 500121 DOI:10.20517/energymater.2025.32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beretta D,Hodges JM.Thermoelectrics: from history, a window to the future.Mater Sci Eng R Rep2019;138:100501

[2]

Bell LE.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems.Science2008;321:1457-61

[3]

Channegowda M,Nagaraj Y.Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity.ACS Appl Energy Mater2022;5:7913-43

[4]

Snyder GJ.Figure of merit ZT of a thermoelectric device defined from materials properties.Energy Environ Sci2017;10:2280-3

[5]

Sootsman JR,Kanatzidis MG.New and old concepts in thermoelectric materials.Angew Chem Int Ed2009;48:8616-39

[6]

Hicks LD.Effect of quantum-well structures on the thermoelectric figure of merit.Phys Rev B Condens Matter1993;47:12727-31

[7]

Hicks LD.Thermoelectric figure of merit of a one-dimensional conductor.Phys Rev B Condens Matter1993;47:16631-4

[8]

Neophytou N.Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires.Phys Rev B2011;83:245305

[9]

Neophytou N.On the interplay between electrical conductivity and Seebeck coefficient in ultra-narrow silicon nanowires.J Electron Mater2012;41:1305-11

[10]

Cornett JE.Thermoelectric figure of merit calculations for semiconducting nanowires.Appl Phys Lett2011;98:182104

[11]

Kim R,Lundstrom MS.Influence of dimensionality on thermoelectric device performance.J Appl Phys2009;105:034506

[12]

Zhou C,Yu Y.Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal.Nat Mater2021;20:1378-84 PMCID:PMC8463294

[13]

Lee YK,Cho SP,Chung I.Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance.Joule2019;3:719-31

[14]

Roychowdhury S,Arora R.Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2.Science2021;371:722-7

[15]

He J.Advances in thermoelectric materials research: looking back and moving forward.Science2017;357:eaak9997

[16]

Yang J,Qiu W.On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective.NPJ Comput Mater2016;2:201515

[17]

Biswas K,Blum ID.High-performance bulk thermoelectrics with all-scale hierarchical architectures.Nature2012;489:414-8

[18]

Zhao LD,Zhang Y.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals.Nature2014;508:373-7

[19]

Zhu B,Wang Q.Realizing record high performance in n-type Bi2Te3-based thermoelectric materials.Energy Environ Sci2020;13:2106-14

[20]

Lin C,Tsai Y.Unravelling p-n conduction transition in high thermoelectric figure of merit gallium-doped Bi2Te3 via phase diagram engineering.ACS Appl Energy Mater2020;3:1311-8

[21]

Liu H,Lu P.Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIx.Adv Mater2013;25:6607-12

[22]

Zhang J,Pedersen SH,Hung LT.Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands.Nat Commun2017;8:13901 PMCID:PMC5227096

[23]

Cheng Y,Jiang Q.New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance.J Mater Chem A2017;5:5163-70

[24]

Rogl G,Rogl P.n-type skutterudites (R,Ba,Yb)yCo4Sb12 (R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZT≈2.0.Acta Mater2014;63:30-43

[25]

Fu T,Wu H.Enhanced thermoelectric performance of PbTe bulk materials with figure of merit zT >2 by multi-functional alloying.J Mater2016;2:141-9

[26]

Liu H,Xu F.Copper ion liquid-like thermoelectrics.Nat Mater2012;11:422-5

[27]

Zhong B,Li W.High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu1.94Al0.02Se.Appl Phys Lett2014;105:123902

[28]

Basu R,Bhatt R.Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys.J Mater Chem A2014;2:6922

[29]

Joshi G,Wang H,Chen G.Enhancement in thermoelectric figure-of-merit of an N-type half-heusler compound by the nanocomposite approach.Adv Energy Mater2011;1:643-7

[30]

Fu C,Liu Y.Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.Nat Commun2015;6:8144 PMCID:PMC4569725

[31]

Perez-Taborda JA,Maiz J,Martin-Gonzalez M.Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications.Sci Rep2016;6:32778 PMCID:PMC5030677

[32]

Tan G,Hao S.Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe.Nat Commun2016;7:12167 PMCID:PMC4963473

[33]

Iversen BB.Breaking thermoelectric performance limits.Nat Mater2021;20:1309-10

[34]

Hinterleitner B,Poneder M.Thermoelectric performance of a metastable thin-film Heusler alloy.Nature2019;576:85-90

[35]

Hori T.Tuning phonon transport spectrum for better thermoelectric materials.Sci Technol Adv Mater2019;20:10-25 PMCID:PMC6454406

[36]

Moure A,Abad B.Thermoelectric Skutterudite/oxide nanocomposites: effective decoupling of electrical and thermal conductivity by functional interfaces.Nano Energy2017;31:393-402

[37]

Khitun A,Chen G.Thermoelectric figure of merit enhancement in a quantum dot superlattice.Nanotechnology2000;11:327-31

[38]

Zhao L,Kanatzidis MG.The panoscopic approach to high performance thermoelectrics.Energy Environ Sci2014;7:251-68

[39]

He J,Dravid VP.High performance bulk thermoelectrics via a panoscopic approach.Mater Today2013;16:166-76

[40]

Domínguez-adame F,Sánchez D.Nanowires: a route to efficient thermoelectric devices.Phys E2019;113:213-25

[41]

Hochbaum AI,Delgado RD.Enhanced thermoelectric performance of rough silicon nanowires.Nature2008;451:163-7

[42]

Chen R,Lee W.Thermoelectrics of nanowires.Chem Rev2019;119:9260-302

[43]

Böttner H,Venkatasubramanian R.Aspects of thin-film superlattice thermoelectric materials, devices, and applications.MRS Bull2006;31:211-7

[44]

Harman TC,Walsh MP.Quantum dot superlattice thermoelectric materials and devices.Science2002;297:2229-32

[45]

Tang J,Lee DH.Holey silicon as an efficient thermoelectric material.Nano Lett2010;10:4279-83

[46]

Duong AT,Duvjir G.Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals.Nat Commun2016;7:13713 PMCID:PMC5160008

[47]

Dong J,Liu J.Relating local structure to thermoelectric properties in Pb1-xGexBi2Te4.Chem Mater2024;36:10831-40

[48]

Khan A,Kyratsi T.High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb.Scr Mater2013;69:606-9

[49]

Khan A,Hatzikraniotis E.Thermoelectric properties of highly efficient Bi-doped Mg2Si1-x-ySnxGey materials.Acta Mater2014;77:43-53

[50]

Norizan MN,Ohishi Y,Kurosaki K.The nanometer-sized eutectic structure of Si/CrSi2 thermoelectric materials fabricated by rapid solidification.J Electron Mater2018;47:2330-6

[51]

Xie J,Ichikawa S,Kurosaki K.Thermoelectric properties of Si/CoSi2 sub-micrometer composites prepared by melt-spinning technique.J Appl Phys2017;121:205107

[52]

Tanusilp S,Yusufu A,Muta H.Enhancement of thermoelectric properties of bulk Si by dispersing size-controlled VSi2.J Electron Mater2017;46:3249-55

[53]

Tanusilp S,Muta H.Ytterbium silicide (YbSi2): a promising thermoelectric material with a high power factor at room temperature.Phys Rapid Res Lett2018;12:1700372

[54]

Liu W,Zou J.Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges.Adv Energy Mater2018;8:1800056

[55]

Ruiz-Clavijo A,Manzano CV.3D Bi2Te3 interconnected nanowire networks to increase thermoelectric efficiency.ACS Appl Energy Mater2021;4:13556-66

[56]

Anand S,Soldi T,Orenstein R.Thermoelectric transport of semiconductor full-Heusler VFe2Al.J Mater Chem C2020;8:10174-84

[57]

Neophytou N.Optimizing thermoelectric power factor by means of a potential barrier.J Appl Phys2013;114:044315

[58]

Shutoh N.Thermoelectric properties of the TiX(Zr0.5Hf0.5)1-XNiSn half-Heusler compounds.J Alloys Compd2005;389:204-8

[59]

Sakurada S.Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds.Appl Phys Lett2005;86:082105

[60]

Zebarjadi M,Zhu G.Power factor enhancement by modulation doping in bulk nanocomposites.Nano Lett2011;11:2225-30

[61]

Zhou C,Lee YL.Exceptionally high average power factor and thermoelectric figure of merit in n-type PbSe by the dual incorporation of Cu and Te.J Am Chem Soc2020;142:15172-86

[62]

Bahk J,Shakouri A.Electron transport modeling and energy filtering for efficient thermoelectric Mg2Si1-xSnx solid solutions.Phys Rev B2014;89:075204

[63]

Vineis CJ,Majumdar A.Nanostructured thermoelectrics: big efficiency gains from small features.Adv Mater2010;22:3970-80

[64]

Vargiamidis V.Hierarchical nanostructuring approaches for thermoelectric materials with high power factors.Phys Rev B2019;99:045405

[65]

Kim R.Computational study of energy filtering effects in one-dimensional composite nano-structures.J Appl Phys2012;111:024508

[66]

Gayner C.Energy filtering of charge carriers: current trends, challenges, and prospects for thermoelectric materials.Adv Funct Mater2020;30:1901789

[67]

Sakane S,Taniguchi T.Thermoelectric power factor enhancement based on carrier transport physics in ultimately phonon-controlled Si nanostructures.Mater Today Energy2019;13:56-63

[68]

Ishibe T,Watanabe K.Methodology of thermoelectric power factor enhancement by controlling nanowire interface.ACS Appl Mater Interfaces2018;10:37709-16

[69]

Kuo JJ,Imasato K.Grain boundary dominated charge transport in Mg3Sb2-based compounds.Energy Environ Sci2018;11:429-34

[70]

Neophytou N,Kosina H,Lorenzi B.Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si.Nanotechnology2013;24:205402

[71]

Lorenzi B,Tonini R.Paradoxical enhancement of the power factor of polycrystalline silicon as a result of the formation of nanovoids.J Electron Mater2014;43:3812-6

[72]

Bennett NS,Cowley A.Dislocation loops as a mechanism for thermoelectric power factor enhancement in silicon nano-layers.Appl Phys Lett2016;109:173905

[73]

Narducci D,Lorenzi B,Villa E.Exceptional thermoelectric power factors in hyperdoped, fully dehydrogenated nanocrystalline silicon thin films.Appl Phys Lett2021;119:263903

[74]

Neophytou N,Vargiamidis V,Narducci D.Nanostructured potential well/barrier engineering for realizing unprecedentedly large thermoelectric power factors.Mater Today Phys2019;11:100159

[75]

Vargiamidis V,Neophytou N.Theoretical model for the Seebeck coefficient in superlattice materials with energy relaxation.J Appl Phys2019;126:055105

[76]

Masci A,Neophytou N,Pennelli G.Large increase of the thermoelectric power factor in multi-barrier nanodevices.Nano Energy2024;132:110391

[77]

Bux SK,Gogna PK.Nanostructured bulk silicon as an effective thermoelectric material.Adv Funct Mater2009;19:2445-52

[78]

Hong S,Jeon SG.Monolithic Bi1.5Sb0.5Te3 ternary alloys with a periodic 3D nanostructure for enhancing thermoelectric performance.J Mater Chem C2017;5:8974-80

[79]

Manzano CV,Casari D.~5-Fold enhancement in the thermoelectric figure of merit of sustainable 3D-CuNi interconnected nanonetworks due to ultralow lattice thermal conductivity.Nanoscale2025;17:6757-66

[80]

Manzano CV,Muñoz Rojo M.Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films.Sci Rep2016;6:19129 PMCID:PMC4726026

[81]

Muñoz Rojo M,Manzano CV.Thermal conductivity of Bi2Te3 nanowires: how size affects phonon scattering.Nanoscale2017;9:6741-7

[82]

Ahmad M,Munoz SG.Engineering interfacial effects in electron and phonon transport of Sb2Te3/MoS2 multilayer for thermoelectric ZT above 2.0.Adv Funct Mater2022;32:2206384

[83]

Duan J,Lai X.High thermoelectricpower factor in graphene/hBN devices.Proc Natl Acad Sci USA2016;113:14272-6 PMCID:PMC5167211

[84]

Radisavljevic B.Mobility engineering and a metal-insulator transition in monolayer MoS2.Nat Mater2013;12:815-20

[85]

Baugher BW,Yang Y.Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2.Nano Lett2013;13:4212-6

[86]

Yu X,Quan Y.Electronic correlation effects and orbital density wave in the layered compound 1T-TaS2.Phys Rev B2017;96:125138

[87]

Isaacs EB.Electronic correlations in monolayer VS2.Phys Rev B2016;94:035120

[88]

Withers F,Mishchenko A.Light-emitting diodes by band-structure engineering in van der Waals heterostructures.Nat Mater2015;14:301-6

[89]

Zhang Q,Zhang C.Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures.Nat Commun2016;7:13843 PMCID:PMC5171833

[90]

Vargiamidis V,Tahir M.Berry curvature, orbital magnetization, and Nernst effect in biased bilayer WSe2.Phys Rev B2020;102:235426

[91]

Yu XQ,Su G.Thermally driven pure spin and valley currents via the anomalous nernst effect in monolayer group-VI dichalcogenides.Phys Rev Lett2015;115:246601

[92]

Sharma G.Tunable topological Nernst effect in two-dimensional transition-metal dichalcogenides.Phys Rev B2018;98:075416

[93]

Liang T,Gibson Q.Anomalous nernst effect in the dirac semimetal Cd3As2.Phys Rev Lett2017;118:136601

[94]

Son JS,Han MK.n-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates.Nano Lett2012;12:640-7

[95]

Min Y,Kim B.Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties.ACS Nano2015;9:6843-53

[96]

Yoshida M,Saito Y.Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals.Nano Lett2016;16:2061-5

[97]

Gómez-Navarro C,Sundaram RS.Atomic structure of reduced graphene oxide.Nano Lett2010;10:1144-8

[98]

Chen JH,Jang C,Williams ED.Defect scattering in graphene.Phys Rev Lett2009;102:236805

[99]

Tu NDK,Park CR.Remarkable conversion between n- and p-type reduced graphene oxide on varying the thermal annealing temperature.Chem Mater2015;27:7362-9

[100]

Kim J,Kim J.Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds.Carbon2018;139:309-16

[101]

Kim J,Kim J,Kim JK.Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel.ACS Appl Mater Interfaces2018;10:37507-16

[102]

Novak TG,Song SH.Fast P3HT exciton dissociation and absorption enhancement of organic solar cells by PEG-functionalized graphene quantum dots.Small2016;12:994-9

[103]

Park M,Lee J.Efficient solid-state photoluminescence of graphene quantum dots embedded in boron oxynitride for AC-electroluminescent device.Adv Mater2018;30:e1802951

[104]

Novak TG,Kim J.Complementary n-type and p-type graphene films for high power factor thermoelectric generators.Adv Funct Mater2020;30:2001760

[105]

Oh JY,Han SW.Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators.Energy Environ Sci2016;9:1696-705

[106]

Li X,Jiang F.Optimizing thermoelectric performance of MoS2 films by spontaneous noble metal nanoparticles decoration.J Alloys Compd2019;781:744-50

[107]

Shi D,Li C,Nie Q.Preparation and thermoelectric properties of MoTe2 thin films by magnetron co-sputtering.Vacuum2017;138:101-4

[108]

Gogotsi Y.The rise of MXenes.ACS Nano2019;13:8491-4

[109]

Kim H,Gogotsi Y.Thermoelectric properties of two-dimensional molybdenum-based MXenes.Chem Mater2017;29:6472-9

[110]

Cha J,Cho SP,Chung I.Ultrahigh power factor and electron mobility in n-type Bi2Te3-x%Cu stabilized under excess Te condition.ACS Appl Mater Interfaces2019;11:30999-1008

[111]

Zheng Z,Ao D.Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film.Nat Sustain2023;6:180-91

[112]

Manzano CV,Caballero-Calero O.High thermoelectric efficiency in electrodeposited silver selenide films: from Pourbaix diagram to a flexible thermoelectric module.Sustain Energy Fuels2021;5:4597-605

[113]

Xin J,Liu Y,Pan H.Valleytronics in thermoelectric materials.NPJ Quant Mater2018;3:83

[114]

Slack GA. New materials and performance limits for thermoelectric cooling. In: Rowe D, editor. CRC handbook of thermoelectrics. CRC Press; 1995. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781420049718-34/new-materials-performance-limits-thermoelectric-cooling-glen-slack [Last accessed on 5 Jun 2025]

[115]

Mahan GD. Good thermoelectrics. In: Solid state physics. Elsevier; 1998, pp 81-157. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0081194708601903 [Last accessed on 19 Jun 2025]

[116]

Goldsmid HJ. Thermoelectric refrigeration; 1964. Available from: https://link.springer.com/book/10.1007/978-1-4899-5723-8 [Last accessed on 19 Jun 2025]

[117]

Zhang X,Shi X.Electronic quality factor for thermoelectrics.Sci Adv2020;6:eabc0726 PMCID:PMC7673762

[118]

Graziosi P,Neophytou N.Material descriptors for the discovery of efficient thermoelectrics.ACS Appl Energy Mater2020;3:5913-26

[119]

Graziosi P,Neophytou N.Impact of the scattering physics on the power factor of complex thermoelectric materials.J Appl Phys2019;126:155701

[120]

Kumarasinghe C.Band alignment and scattering considerations for enhancing the thermoelectric power factor of complex materials: the case of Co-based half-Heusler alloys.Phys Rev B2019;99:195202

[121]

Akhtar SEA.Conditions for thermoelectric power factor improvements upon band alignment in complex bandstructure materials.ACS Appl Energy Mater2025;8:1609-19 PMCID:PMC11815832

[122]

Park J,Xia Y,Snyder GJ.When band convergence is not beneficial for thermoelectrics.Nat Commun2021;12:3425 PMCID:PMC8187731

[123]

D'souza R,Querales-flores JD,Savić I.Electron-phonon scattering and thermoelectric transport in p-type PbTe from first principles.Phys Rev B2020;102:115204

[124]

Pei Y,LaLonde A,Chen L.Convergence of electronic bands for high performance bulk thermoelectrics.Nature2011;473:66-9

[125]

Liu W,Yin K.Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions.Phys Rev Lett2012;108:166601

[126]

Xiao Y.Charge and phonon transport in PbTe-based thermoelectric materials.NPJ Quant Mater2018;3:127

[127]

Tan X,Hu T,Ren SF.Theoretical understanding on band engineering of Mn-doped lead chalcogenides PbX (X = Te, Se, S).J Phys Condens Matter2015;27:095501

[128]

Brod MK,Zhang Y.Explaining the electronic band structure of half-Heusler thermoelectric semiconductors for engineering high valley degeneracy.MRS Bull2022;47:573-83

[129]

Tang Y,Agapito LA.Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites.Nat Mater2015;14:1223-8

[130]

Querales-flores JD,Fahy S.Temperature effects on the electronic band structure of PbTe from first principles.Phys Rev Mater2019;3:055405

[131]

He W,Wu H.High thermoelectric performance in low-cost SnS0.91Se0.09 crystals.Science2019;365:1418-24

[132]

Xiao Y,Zhang Y.Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS.J Am Chem Soc2020;142:4051-60

[133]

Kim H.Effect of thermal disorder on high figure of merit in PbTe.Phys Rev B2012;86:045213

[134]

Troncoso JF,Kohanoff J.Effect of intrinsic defects on the thermal conductivity of PbTe from classical molecular dynamics simulations.J Phys Condens Matter2020;32:045701

[135]

Pei Y,Gibbs ZM,Snyder GJ.Thermopower enhancement in Pb1-xMnxTe alloys and its effect on thermoelectric efficiency.NPG Asia Mater2012;4:e28

[136]

Chen S,Walsh A.Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds.Phys Rev B2009;79:165211

[137]

Zhang J,Cheng N.High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds.Adv Mater2014;26:3848-53

[138]

Zeier WG,Gibbs ZM,Tremel W.Band convergence in the non-cubic chalcopyrite compounds Cu2MGeSe4.J Mater Chem C2014;2:10189-94

[139]

Garmroudi F,Riss A.Anderson transition in stoichiometric Fe2VAl: high thermoelectric performance from impurity bands.Nat Commun2022;13:3599 PMCID:PMC9226177

[140]

Garmroudi F,Riss A.Large thermoelectric power factors by opening the band gap in semimetallic Heusler alloys.Mater Today Phys2022;27:100742

[141]

Domínguez-Vázquez JM,Lohani K,Antonio M.Thermoelectric performance boost by chemical order in epitaxial L21 (100) and (110) oriented undoped Fe2VAl Thin films: an experimental and theoretical study.arXiv2025;2503.21575

[142]

Markov M,Sadeghi SN,Zebarjadi M.Thermoelectric properties of semimetals.Phys Rev Mater2019;3:095401

[143]

Graziosi P.Ultra-high thermoelectric power factors in narrow gap materials with asymmetric bands.J Phys Chem C2020;124:18462-73

[144]

Lo CT,Tseng YC,Bogdan J.Microstructural instability and its effects on thermoelectric properties of SnSe and Na-doped SnSe.ACS Appl Mater Interfaces2024;16:49442-53

[145]

Lu W,Xu R.Boosting thermoelectric performance of SnSe via Tailoring band structure, suppressing bipolar thermal conductivity, and introducing large mass fluctuation.ACS Appl Mater Interfaces2019;11:45133-41

[146]

Wei B,Lin L.Enhancing electrical transport performance of polycrystalline tin selenide by doping different elements.Phys Status Solidi2024;221:2300717

[147]

Hasdeo EH,Hanna MY,Hung NT.Optimal band gap for improved thermoelectric performance of two-dimensional Dirac materials.J Appl Phys2019;126:035109

[148]

Heremans JP,Toberer ES.Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states.Science2008;321:554-7

[149]

Xiong K,Gupta RP,Gnade BE.Behaviour of group IIIA impurities in PbTe: implications to improve thermoelectric efficiency.J Phys D Appl Phys2010;43:405403

[150]

Wiendlocha B.Fermi surface and electron dispersion of PbTe doped with resonant Tl impurity from KKR-CPA calculations.Phys Rev B2013;8:205205

[151]

Tan G,Hao S.Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence.J Am Chem Soc2015;137:5100-12

[152]

Jaworski CM,Heremans JP.Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power.Phys Rev B2009;80:233201

[153]

Cui J,Du Z,Zhou H.Promising defect thermoelectric semiconductors Cu1-xGaSbxTe2 (x = 0-0.1) with the chalcopyrite structure.J Mater Chem A2013;1:677-83

[154]

Lan JL,Zhan B.Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics.Adv Mater2013;25:5086-90

[155]

Qiu P,Huang X,Chen L.Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys.Appl Phys Lett2010;96:152105

[156]

Fang T,Hu C.Complex band structures and lattice dynamics of Bi2Te3 -based compounds and solid solutions.Adv Funct Mater2019;29:1900677

[157]

Toriyama MY,Gomes LC.Tuning valley degeneracy with band inversion.J Mater Chem A2022;10:1588-95

[158]

Yuan J,Shen L.One-dimensional thermoelectrics induced by Rashba spin-orbit coupling in two-dimensional BiSb monolayer.Nano Energy2018;52:163-70

[159]

Ugeda MM,Tang S.Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2.Nat Commun2018;9:3401 PMCID:PMC6109167

[160]

Chen P,Chan YH.Large quantum-spin-Hall gap in single-layer 1T' WSe2.Nat Commun2018;9:2003 PMCID:PMC5962594

[161]

Ikhlas M,Koretsune T.Large anomalous Nernst effect at room temperature in a chiral antiferromagnet.Nature Phys2017;13:1085-90

[162]

Guin SN,Zhang Y.Zero-field nernst effect in a ferromagnetic kagome-lattice weyl-semimetal Co3Sn2S2.Adv Mater2019;31:e1806622

[163]

Guin SN,Noky J.Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa.NPG Asia Mater2019;11:116

[164]

Slade TJ,Wood M.Charge-carrier-mediated lattice softening contributes to high zT in thermoelectric semiconductors.Joule2021;5:1168-82

[165]

Cheikh D,Vo T.Praseodymium telluride: a high-temperature, high-ZT thermoelectric material.Joule2018;2:698-709

[166]

Garmroudi F,Riss A.High thermoelectric performance in metallic NiAu alloys via interband scattering.Sci Adv2023;9:eadj1611 PMCID:PMC10881022

[167]

Zhu H,Mao J.Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency.Nat Commun2018;9:2497

[168]

Rogl G,Romaka V.High-ZT half-Heusler thermoelectrics, Ti0.5Zr0.5NiSn and Ti0.5Zr0.5NiSn0.98Sb0.02: physical properties at low temperatures.Acta Mater2019;166:466-83

[169]

Tamaki H,Kanno T.Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance.Adv Mater2016;28:10182-7

[170]

Mao J,Song S.Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials.Proc Natl Acad Sci USA2017;114:10548-53 PMCID:PMC5635921

[171]

Imasato K,Pan Y.Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance.Adv Mater2020;32:e1908218

[172]

Luo T,Griffith KJ.Nb-mediated grain growth and grain-boundary engineering in Mg3Sb2-based thermoelectric materials.Adv Funct Mater2021;31:2100258

[173]

Uchida K,Adachi H.Spin Seebeck insulator.Nat Mater2010;9:894-7

[174]

Uchida K,Kikkawa T,Murakami T.Longitudinal spin Seebeck effect: from fundamentals to applications.J Phys Condens Matter2014;26:343202

[175]

Kikkawa T,Flebus B.Magnon polarons in the Spin Seebeck effect.Phys Rev Lett2016;117:207203

[176]

Meier D,van Straaten M.Longitudinal spin Seebeck effect contribution in transverse spin Seebeck effect experiments in Pt/YIG and Pt/NFO.Nat Commun2015;6:8211 PMCID:PMC4598359

[177]

Holanda J,Cunha RO.Longitudinal spin Seebeck effect in permalloy separated from the anomalous Nernst effect: theory and experiment.Phys Rev B2017;95:214421

[178]

Kimberly TQ,Qi X,Kauzlarich SM.High thermoelectric performance in 2D Sb2Te3 and Bi2Te3 nanoplate composites enabled by energy carrier filtering and low thermal conductivity.ACS Appl Electron Mater2024;6:2816-25 PMCID:PMC11137805

[179]

Cao T,Li M.Advances in bismuth-telluride-based thermoelectric devices: Progress and challenges.eScience2023;3:100122

[180]

Rogl G.Skutterudites, a most promising group of thermoelectric materials.Curr Opin Green Sustain Chem2017;4:50-7

[181]

Rull-Bravo M,Fernández JF.Skutterudites as thermoelectric materials: revisited.RSC Adv2015;5:41653-67

[182]

Balvanz A,Baranets S,Gorai P.New n-type Zintl phases for thermoelectrics: discovery, structural characterization, and band engineering of the compounds A2CdP2 (A = Sr, Ba, Eu).Chem Mater2020;32:10697-707

[183]

Islam MM.The potential of arsenic-based Zintl phases as thermoelectric materials: structure & thermoelectric properties.Zeitschrift Anorg Allge Chemie2023;649:e202300149

[184]

Kauzlarich SM,Snyder GJ.Zintl phases for thermoelectric devices.Dalton Trans2007;21:2099-107

[185]

Dolyniuk J,Wang J,Kovnir K.Clathrate thermoelectrics.Mater Sci Eng R Rep2016;108:1-46

[186]

Christensen M,Iversen BB.Thermoelectric clathrates of type I.Dalton Trans2010;39:978-92

[187]

Zhang Y,Qiu R.Enhanced thermoelectric performance of Ba8Ga16Ge30 clathrate by modulation doping and improved carrier mobility.Adv Electron Mater2021;7:2000782

[188]

Gui Z,Wang H.Large improvement of thermoelectric performance by magnetism in co-based full-heusler alloys.Adv Sci2023;10:e2303967 PMCID:PMC10558654

[189]

Guo S,Li J,Cui T.Novel room-temperature full-Heusler thermoelectric material Li2TlSb.Phys Chem Chem Phys2024;26:6774-81

[190]

do Nascimento JCA,Hasnip PJ.Significant improvement of the Seebeck coefficient of Fe2Val with antisite defects.Mater Today Commun2022;31:103510

[191]

Ojha A,Bathula S.Advancement in half-Heusler thermoelectric materials and strategies to enhance the thermoelectric performance.Mater Sci Semicond Proc2024;171:107996

[192]

Zhu H,Nozariasbmarz A.Half-Heusler alloys as emerging high power density thermoelectric cooling materials.Nat Commun2023;14:3300 PMCID:PMC10244423

[193]

Li W,Liu N.Half-Heusler thermoelectrics: advances from materials fundamental to device engineering.Joule2024;8:1274-311

[194]

Nozariasbmarz A,Coutant ZA.Thermoelectric silicides: a review.Jpn J Appl Phys2017;56:05DA04

[195]

Kim G,Lee J.A review on silicide-based materials: thermoelectric and mechanical properties.Met Mater Int2021;27:2205-19

[196]

Ge B,Wang G,Zhou C.Oxide semiconductors for thermoelectric: the challenges and future.J Am Ceram Soc2024;107:1985-95

[197]

Assadi MHN,Fronzi M.High-performance thermoelectric oxides based on spinel structure.ACS Appl Energy Mater2020;3:5666-74

[198]

Zhang Y.Recent progress in thermoelectric layered cobalt oxide thin films.NPG Asia Mater2023;15:520

[199]

Faizan M,Liu Z.Ultralow lattice thermal conductivity and superior thermoelectric performance in AgAlS2 and AgAlSe2.J Mater Chem C2025;13:2853-67

[200]

Baláž P,Levinský P.Enhanced thermoelectric performance of chalcopyrite nanocomposite via co-milling of synthetic and natural minerals.Mater Lett2020;275:128107

[201]

Tang Q,Wang K.High-entropy thermoelectric materials.Joule2024;8:1641-66

[202]

Ren K,Chen S,Wang B.High-entropy alloys in thermoelectric application: a selective review.Chinese Phys B2024;33:057202

[203]

Pallecchi I,Patil B,Marré D.Review on thermoelectric properties of transition metal dichalcogenides.Nano Futur2020;4:032008

[204]

Zhou W,Jin X,Li H.Recent progress of two-dimensional transition metal dichalcogenides for thermoelectric applications.Front Phys2022;10:842789

[205]

Chen K,Mo D.Thermoelectric Properties of transition metal dichalcogenides: from monolayers to nanotubes.J Phys Chem C2015;119:26706-11

[206]

Zhang G.Thermoelectric properties of two-dimensional transition metal dichalcogenides.J Mater Chem C2017;5:7684-98

[207]

Chetty R,Mallik RC.Tetrahedrites as thermoelectric materials: an overview.J Mater Chem C2015;3:12364-78

[208]

Weller DP.Tetrahedrite thermoelectrics: from fundamental science to facile synthesis.Front Electron Mater2022;2:913280

[209]

Mulla R,Warwick MEA,Dunnill CW.High performance thermoelectrics from low-cost and abundant CuS/CuI composites.J Mater Chem A2024;12:2974-85

[210]

Gu Y,Zhao Y.Remarkable thermoelectric property enhancement in Cu2SnS3-CuCo2S4 nanocomposites via 3D modulation doping.J Mater Chem A2021;9:16928-35

[211]

Yen W,Wu H.Hybridization of n-type Bi2Te3 crystals with liquid-like copper chalcogenide elicits record-high thermoelectric performance.Mater Today Phys2023;34:101065

[212]

Russ B,Urban JJ,Segalman RA.Organic thermoelectric materials for energy harvesting and temperature control.Nat Rev Mater2016;1:201650

[213]

Finn PA,Wan K,Fenwick O.Thermoelectric materials: current status and future challenges.Front Electron Mater2021;1:677845

[214]

Artini C,Graziosi P.Roadmap on thermoelectricity.Nanotechnology2023;34:292001

[215]

Singh Bhathal Singh B. Thermoelectric generators: design, operation, and applications. In: Abed Ismail I, editor. New materials and devices for thermoelectric power generation. IntechOpen; 2024.

[216]

Mao J,Ren Z.Thermoelectric cooling materials.Nat Mater2021;20:454-61

[217]

Han Z,Jiang F.Room-temperature thermoelectric materials: challenges and a new paradigm.J Mater2022;8:427-36

[218]

Perez-Taborda JA,Vera-Londono L,Martin-Gonzalez M.High thermoelectric zT in n-type silver selenide films at room temperature.Adv Energy Mater2018;8:1702024

[219]

Liu M,Zhang S.Ag2Se as a tougher alternative to n-type Bi2Te3 thermoelectrics.Nat Commun2024;15:6580 PMCID:PMC11297924

[220]

Abusa Y,Viswanathan G.A recipe for a great meal: a benchtop route from elemental Se to superior thermoelectric β-Ag2Se.J Am Chem Soc2024;146:11382-931

[221]

Khan JA,Singh JP.Ag2Se nanorod arrays with ultrahigh room temperature thermoelectric performance and superior mechanical properties.ACS Appl Mater Interfaces2023;15:35001-13

[222]

Chen J,Bao D.Hierarchical structures advance thermoelectric properties of porous n-type β-Ag2Se.ACS Appl Mater Interfaces2020;12:51523-9

[223]

Santhosh R,Abinaya R.Enhanced thermoelectric performance of hot-pressed n-type Ag2Se nanostructures by controlling the intrinsic lattice defects.CrystEngComm2023;25:3317-27

[224]

Jia B,Xie L.Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe.Science2024;384:81-6

[225]

Sauerschnig P,Koshino M,Yamamoto A.Improving the long-term stability of PbTe-based thermoelectric modules: from nanostructures to packaged module architecture.ACS Appl Mater Interfaces2024;16:46421-32

[226]

Liu H,Zhong Y.High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering.Nano Energy2022;91:106706

[227]

Yang W,Lyu J.Enhancing Thermoelectric performance in P-type Sb2Te3-based compounds through Nb-Ag co-doping with donor-like effect.Small2024;20:e2307798

[228]

Wang J,Yu Y.Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects.Nano Energy2021;79:105484

[229]

Liu Z,Oshima H,Lee CH.Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling.Nat Commun2022;13:1120 PMCID:PMC8891317

[230]

Tiadi M,Kumar S.Enhanced thermoelectric efficiency in P-type Mg3Sb2: role of monovalent atoms codoping at Mg sites.ACS Appl Mater Interfaces2023;15:20175-90

[231]

Xie Y,Yang Y.Pseudo-Nanostructuring and grain refinement enhance the near-room-temperature thermoelectric performance in n-type PbSe.Small2025;21:e2408852

[232]

Jiang J,Niu Y.Achieving high room-temperature thermoelectric performance in cubic AgCuTe.J Mater Chem A2020;8:4790-9

[233]

Liang T,Yan Y.Panoscopic approach for high-performance Te-doped skutterudite.NPG Asia Mater2017;9:e352

[234]

Li D,Zhu J.High-performance flexible p-type Ce-filled Fe3CoSb12 skutterudite thin film for medium-to-high-temperature applications.Nat Commun2024;15:4242 PMCID:PMC11102547

[235]

Zhang Z,Dong H.Low-cost magnesium-based thermoelectric materials: progress, challenges, and enhancements.ACS Appl Energy Mater2024;7:5629-46 PMCID:PMC11267501

[236]

de Boor J,Kolb H,Müller E.Thermoelectric transport and microstructure of optimized Mg2Si0.8Sn0.2.J Mater Chem C2015;3:10467-75

[237]

Cheng K,Tang J.Efficient Mg2Si0.3Sn0.7 thermoelectrics demonstrated for recovering heat of about 600 K.Mater Today Phys2022;28:100887

[238]

Dong J,Tang H.Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance.Energy Environ Sci2019;12:1396-403

[239]

Zhang Z,Wei T,Chen L.Cu2Se-based liquid-like thermoelectric materials: looking back and stepping forward.Energy Environ Sci2020;13:3307-29

[240]

Wu HJ,Zheng FS.Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3.Nat Commun2014;5:4515

[241]

Wasscher J,Haas C.Simple evaluation of the maximum thermoelectric figure of merit, with application to mixed crystals SnS1-xSex.Solid State Electron1963;6:261-4

[242]

Zhao LD,Hao S.Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe.Science2016;351:141-4

[243]

Chang C,He D.3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals.Science2018;360:778-83

[244]

Zhao L,Tan G.SnSe: a remarkable new thermoelectric material.Energy Environ Sci2016;9:3044-60

[245]

Nguyen VQ,Chang C.Unidentified major p-type source in SnSe: Multivacancies.NPG Asia Mater2022;14:393

[246]

Siddique S,Abbas G.Realizing high thermoelectric performance in p-type SnSe crystals via convergence of multiple electronic valence bands.ACS Appl Mater Interfaces2022;14:4091-9

[247]

Gainza J,Rodrigues JE.High-performance n-type SnSe thermoelectric polycrystal prepared by arc-melting.Cell Rep Phys Sci2020;1:100263

[248]

Viet Chien N,Shin H.Synthesis of n-type SnSe polycrystals with high and isotropic thermoelectric performance.J Alloys Compd2023;937:168043

[249]

Yang X,Li W,Feng J.Nanostructured n-type polycrystalline SnSe materials for thermoelectric applications.ACS Appl Nano Mater2023;6:11754-63

[250]

Choi M,Lee H.High figure-of-merit for ZnO nanostructures by interfacing lowly-oxidized graphene quantum dots.Nat Commun2024;15:1996 PMCID:PMC10940299

[251]

Sulaiman S,Uday MB.Review on grain size effects on thermal conductivity in ZnO thermoelectric materials.RSC Adv2022;12:5428-38 PMCID:PMC8982091

[252]

Jood P,Zhang Y.Heavy element doping for enhancing thermoelectric properties of nanostructured zinc oxide.RSC Adv2014;4:6363

[253]

Park NW,Yoon YS.Direct probing of cross-plane thermal properties of atomic layer deposition Al2O3/ZnO superlattice films with an improved figure of merit and their cross-plane thermoelectric generating performance.ACS Appl Mater Interfaces2018;10:44472-82

[254]

Lee J,Lee S.Enhancing the thermoelectric properties of super-lattice Al2O3/ZnO atomic film via interface confinement.Ceram Int2016;42:14411-5

[255]

Zhang X,Wu L.Ba1/3CoO2: a thermoelectric oxide showing a reliable ZT of ~0.55 at 600 °C in air.ACS Appl Mater Interfaces2022;14:33355-60 PMCID:PMC9335523

[256]

Shi X,Liu Q.SrTiO3-based thermoelectrics: progress and challenges.Nano Energy2020;78:105195

[257]

Zhou Z,Wei B.Compositing effects for high thermoelectric performance of Cu2Se-based materials.Nat Commun2023;14:2410 PMCID:PMC10140174

[258]

Fan Z,Chen JL.Realizing high thermoelectric performance for p-type SiGe in medium temperature region via TaC compositing.J Mater2023;9:984-91

[259]

Basu R.High temperature Si-Ge alloy towards thermoelectric applications: a comprehensive review.Mater Today Phys2021;21:100468

[260]

Lee EK,Lee Y.Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties.Nano Lett2012;12:2918-23

[261]

Ahmad A,Wang Z.Largely enhanced thermoelectric performance in p-type Bi2Te3-based materials through entropy engineering.Energy Environ Sci2024;17:695-703

[262]

Rogl G,Renk O.Influence of shear strain on HPT-processed n-type skutterudites yielding ZT=2.1.J Alloys Compd2021;855:157409

[263]

Wang S,Yang J,Duan B.High-performance n-type YbxCo4Sb12: from partially filled skutterudites towards composite thermoelectrics.NPG Asia Mater2016;8:e285

[264]

Gao P,Schmidt RD.Transport and mechanical properties of high-ZT Mg2.08Si0.4-xSn0.6Sbx thermoelectric materials.J Electron Mater2014;43:1790-803

[265]

Grebenkemper JH,Barrett D.High temperature thermoelectric properties of Yb14MnSb11 prepared from reaction of MnSb with the elements.Chem Mater2015;27:5791-8

[266]

Justl AP,Bux SK.Hydride assisted synthesis of the high temperature thermoelectric phase: Yb14MgSb11.J Appl Phys2019;126:165106

[267]

Li M,Yahyaoglu M.Ultrahigh figure-of-merit of Cu2Se incorporated with carbon coated boron nanoparticles.InfoMat2019;1:108-15

[268]

Ma JM,Zeier WG.Mechanochemical synthesis and high temperature thermoelectric properties of calcium-doped lanthanum telluride La3-xCaxTe4.J Mater Chem C Mater2015;3:10459-66 PMCID:PMC6892470

[269]

Wang J,Kang H.Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping.Nano Energy2017;35:387-95

[270]

Wu H,Duan J,Chen Z.Advances in Ag2Se-based thermoelectrics from materials to applications.Energy Environ Sci2023;16:1870-906

[271]

Wang Y,Zhao L.Strategies to enhance polycrystal SnSe thermoelectrics: structure control offers a novel direction.J Appl Phys2023;134:030901

[272]

Han L,Nong NV.Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride.RSC Adv2016;6:59565-73

[273]

Jacquot A,Moure A.Anisotropy and inhomogeneity measurement of the transport properties of spark plasma sintered thermoelectric materials.MRS Proc2013;1490:89-95

[274]

Shi X,Wu T.Weavable thermoelectrics: advances, controversies, and future developments.Mater Futur2024;3:012103

[275]

Dharmaiah P,Kim J,Baek S.Why is it challenging to improve the thermoelectric properties of n-type Bi2Te3 alloys?.Appl Phys Rev2024;11:031312

[276]

Zhang Q,Wang M.Commercially scalable (Bi,Sb)2Te3 thermoelectrics via interfacial defects evolution for advanced power generators.Acta Mater2025;292:121064

[277]

Gupta S.Advancements in Ge-based thermoelectric materials for efficient waste heat energy conversion: a comprehensive review.Phys Scr2025;100:012004

[278]

Le W,Sheng W.Research progress of interfacial design between thermoelectric materials and electrode materials.ACS Appl Mater Interfaces2023;15:12611-21

[279]

Yang L,Dargusch MS.High performance thermoelectric materials: progress and their applications.Adv Energy Mater2018;8:1701797

[280]

Guo M,Wu C,Zhang Q.Reducing the interfacial diffusion driving force to achieve diffusion-resistant bonding in Mg3Sb1.5Bi0.5-based thermoelectric devices.ACS Appl Energy Mater2025;8:3837-45

[281]

Hsieh H,Lan T.Joint properties enhancement for PbTe thermoelectric materials by addition of diffusion barrier.Mater Chem Phy2020;246:122848

[282]

Qin D,Hai F,Cui J.Enhanced interface stability of multilayer Bi2Te3/Ti/Cu films after heat treatment via the insertion of a Ti layer.Adv Mater Inter2019;6:1900682

[283]

Weidenkaff A,Cifarelli L.Thermoelectricity for future sustainable energy technologies.EPJ Web Conf2017;148:00010

[284]

Nishikawa H,Wang X,Kamada N.Microscale Ag particle paste for sintered joints in high-power devices.Mater Lett2015;161:231-3

[285]

Cheng J,Zhang T.A universal approach to high-performance thermoelectric module design for power generation.Joule2025;9:101818

[286]

Shiran Chaharsoughi M,Crispin X,Jonsson MP.Thermodiffusion-assisted pyroelectrics-enabling rapid and stable heat and radiation sensing.Adv Funct Mater2019;29:1900572

[287]

Hou S,Liu Y.Encapsulated Ag2Se-based flexible thermoelectric generator with remarkable performance.Mater Today Phys2023;38:101276

[288]

Zhang J,Song L.Insight into the strategies for improving the thermal stability of efficient N-type Mg3Sb2-based thermoelectric materials.ACS Appl Mater Interfaces2022;14:31024-34

[289]

Boldrini S,Fasolin S,Barison S.Ultrafast high-temperature sintering and thermoelectric properties of n-doped Mg2Si.Nanotechnology2023;34:155601

[290]

Gustinvil R,Di Benedetto GL.Enhancing conversion efficiency of direct ink write printed copper (I) sulfide thermoelectrics via sulfur infusion process.Machines2023;11:881

[291]

Macleod BA,Gould IE.Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films.Energy Environ Sci2017;10:2168-79

[292]

Cheng K,Huang J.Preventing degradation of thermoelectric property after aging for Bi2Te3 thin film module.Mater Chem Phys2024;318:129208

[293]

Gorskyi P.Typical mechanisms of degradation of thermoelectric materials and ways to reduce their impact on the reliability of thermoelectric modules.Phys Chem Solid State2022;23:505-16

[294]

Ferreres XR,Manettas A.Solid-state bonding of bulk PbTe to nickel electrode for thermoelectric modules.ACS Appl Energy Mater2018;1:348-54

[295]

Narducci D.Economic convenience of hybrid thermoelectric-photovoltaic solar harvesters.ACS Appl Energy Mater2021;4:4029-37 PMCID:PMC8159161

[296]

Caballero-Calero O,Cloetens P,Martin-Gonzalez M.Flexible polyester-embedded thermoelectric device with Bi2Te3 and Te legs for wearable power generation.Appl Mater Today2024;41:102458

[297]

Lee B,Park KT.High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics.Nat Commun2020;11:5948 PMCID:PMC7684283

[298]

Martinez A,Aranguren P.Thermoelectric self-cooling for power electronics: increasing the cooling power.Energy2016;112:1-7

[299]

Roccaforte F,Greco G.Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices.Microelectron Eng2018;187-8:66-77

[300]

Mamur H,Bhuiyan MRA.Future perspective and current situation of maximum power point tracking methods in thermoelectric generators.Sustain Energy Technol Assessments2022;50:101824

[301]

Cai Y,Rezania A,Rosendahl L.A multi-objective optimization in system level for thermoelectric generation system.Energy2023;281:128194

[302]

Su Y,Xiao L.An ultra-deep TSV technique enabled by the dual catalysis-based electroless plating of combined barrier and seed layers.Microsyst Nanoeng2024;10:76 PMCID:PMC11164994

[303]

Hao F,Tang Y.High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C.Energy Environ Sci2016;9:3120-7

[304]

Deng T,Li Z.Room-temperature exceptional plasticity in defective Bi2Te3-based bulk thermoelectric crystals.Science2024;386:1112-7

[305]

Nozariasbmarz A,Li W,Zhu H.Bismuth telluride thermoelectrics with 8% module efficiency for waste heat recovery application.iScience2020;23:101340 PMCID:PMC7369584

[306]

Mason LS.Realistic specific power expectations for advanced radioisotope power systems.J Propuls Power2007;23:1075-9

[307]

Sauerschnig P,Ohta M.Challenges and progress in contact development for PbTe-based thermoelectrics.ChemNanoMat2023;9:e202200560

[308]

Bu Z,Hu Y.An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of < 600 K.Energy Environ Sci2021;14:6506-13

[309]

Zhu Q,Zhu H.Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials.J Power Sources2019;414:393-400

[310]

Bu Z,Shan B.Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys.Sci Adv2021;7:eabf2738 PMCID:PMC8104868

[311]

Jiang B,Liu S.High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics.Science2022;377:208-13

[312]

Xie L,Song Q.Lead-free and scalable GeTe-based thermoelectric module with an efficiency of 12%.Sci Adv2023;9:eadg7919 PMCID:PMC10321738

[313]

Liu Z,Gao W.Demonstration of ultrahigh thermoelectric efficiency of ~7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting.Joule2021;5:1196-208

[314]

Zhang J,Iversen BB.Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment.NPJ Comput Mater2019;5:215

[315]

Jood P,Yamamoto A.Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules.Joule2018;2:1339-55

[316]

Yu J,Hu C.Half-heusler thermoelectric module with high conversion efficiency and high power density.Adv Energy Mater2020;10:2000888

[317]

Yu J,Liu Y.Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials.Adv Energy Mater2018;8:1701313

[318]

Li W,Kishore RA.Toward high conversion efficiency of thermoelectric modules through synergistical optimization of layered materials.Adv Mater2023;35:e2210407

[319]

Nozariasbmarz A,Li W.High-performance half-Heusler thermoelectric devices through direct bonding technique.J Power Sources2021;493:229695

[320]

Mejri M,Mouko HI.Reliability investigation of silicide-based thermoelectric modules.ACS Appl Mater Interfaces2024;16:8006-15

[321]

Big-alabo A.Performance evaluation of Ge/SiGe-based thermoelectric generator.Phys E2019;108:202-5

[322]

Xia GM.Interdiffusion in group IV semiconductor material systems: applications, research methods and discoveries.Sci Bull2019;64:1436-55

[323]

Schock A,Shirbacheh M.Requirements and designs for mars rover RTGs. In Proceedings of the 24th Intersociety Energy Conversion Engineering Conference; 1989, pp. 2681-91.

[324]

Geffroy C,Parez PS.Techno-economic analysis of waste-heat conversion.Joule2021;5:3080-96

[325]

Leblanc S,Scullin ML,Goodson KE.Material and manufacturing cost considerations for thermoelectrics.Renew Sustain Energy Rev2014;32:313-27

[326]

Thermoelectric materials, devices and systems: technology assessment. 2015. Available from: https://www.energy.gov/sites/prod/files/2015/02/f19/QTR%20Ch8%20-%20Thermoelectic%20Materials%20TA%20Feb-13-2015.pdf [Last accessed on 5 Jun 2025]

[327]

Zante G,Elgar CE.Targeted recovery of metals from thermoelectric generators (TEGs) using chloride brines and ultrasound.RSC Sustain2023;1:1025-34

[328]

Halli P,Hailemariam T,Yliniemi K.Electrochemical recovery of tellurium from metallurgical industrial waste.J Appl Electrochem2020;50:1-14

PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

/